Speed from Different EC2 Regions - amazon-ec2

I'm based in the UK, as are all users of my web app, and currently host in the EU-West region. The US-East region is quite a bit cheaper and I'm using a service from another company that locate their servers in the US-East region (meaning that I'll have data transfer costs between regions if I kept things in the EU). Has much of a speed difference am I likely to see between the two?
(I could do a test myself but I'm hoping someone else has already done it :) )
I'd appreciate insights that anyone has. Thanks in advance

I found a nice service which compares the speed and latency of different clouds and different regions:
http://cloudharmony.com/speedtest
You can pick only the amazon services and test all regions.

Speed within Availability zones is very impressive. When you start talking about across continents you're going to get some lag and much less bandwidth. I think it would depend what you're passing over the network whether it would work in your case or not. However, to answer your question there is a very large difference in speed.

Related

Redis - scaling over different ec2 regions

as I understand it's technically possible to have redis cluster with nodes spreaded by different regions in amazon cloud (EC2) - so I will be able to obtain the same data in machines in each region.
But here is 2 questions I am not sure:
how it would impact on redis' speed? As guys measured (Speed from Different EC2 Regions) - there is about 4 times difference. What should it mean for redis?
how much would it cost for me? Or in other words - how much service traffic does reddis generate when work in cluster (for example, by one node in both of two regions)?
I have no any practical experience with redis, but seems it can be very useful for my purposes.
thanks a lot for help.
Costing to you will be the cost of bandwidth and instance hours.

Capacity planning and estimating costs with Amazon Web Services for 1M users

I'm in the planning stages of estimating server costs for my web application. How can I determine how many Amazon EC2 instances will I need to handle a database backed web application with 1M active users? How should I go about filling out this monthly calculator on Amazon's site?
http://calculator.s3.amazonaws.com/calc5.html
The web application will be somewhat akin to a social networking site. There will be most likely small, but anywhere from 100,000 to 500,000 data transfers from users to the servers on a daily basis.
To get an accurate estimate of your costs, you will have understand the application architecture, usage patterns and how many servers (instances) and storage and data transfer you expect to use.
Take a look at this video: https://www.youtube.com/watch?v=PsEX3W6lHN4&list=PLhr1KZpdzukcAtqFF32cjGUNNT5GOzKQ8 This video might help you understand how to use the calculator and fill up different values in it.
Jin
Capacity planning is yours, it's specific to app so nobody including Amazon can suggest anything on that regards. Regarding cost estimation, yes you can use monthly calculator. Only thing I could suggest is that when you do your capacity planning make sure that you do your homework like which AWS service you are going to use. For each service you might want to find out unit of measure used for pricing. Once you know that you should do your capacity planning accordingly to find out how much you are projecting to use for a given UOM of a given service on monthly basis. One exception to that is, as you can reserve instances for 3-5 years with upfront fees so you might want to spread that cost across 3 or 5 years based on your choice.

How do I figure out my RAM requirements for Cloud Hosting?

I'm new to everything that is 'the cloud.'
I will be developing a website/platform that will have around 15,000,000 estimated monthly visitors after the first year of production.
I'm assuming that the site will have 5 page views per visitor, and 100kb of data transfer per page.
I've contacted several cloud hosting companies, but they tell me that I need to have 'hardware requirements.'
Since I'm rather clueless about IT stuff, I'd like to know:
What are the factors that need to be analyzed in order to determine
How many servers are required
VPUs / server required
RAM / server required
Total storage / server required
Big thanks in advance!
I don't agree with the other answer as it's nearly total guesswork, as will anything you can generate yourself.
The only surefire way to know is to get some hardware, stick your application on it and run some load testing to see if you can get to the point you want to traffic wise, and with a certain amount of free overhead on the servers. Only then will you know what you need. No-one else can answer this question as every application is different. This is your application, only you can test it.
Data given wont help much in determining what numbers you want. But based on my experience I'll try to help you in analysis.
15,000,000 visits a month means 700K visits a day (assuming approx 30-35% visits are by repeat visitors).
700Kx5=3.5million page views a day.
Assuming 14 hours of active period, typical for single timezeone sites. Its 70reqs/sec.
With this big userbase few thing you surely need is a high performance DB server, with one slave.
Config of these DB server
Memory so that whole active data + indexes fits in memory (No swapping/thrashing should happen). This you need to calculate based on
what you will be storing for user and for how long.
Use some reliable storage like RAID10 (higher read/write bandwith).
Take enough storage, see that its elastic enough. (like AWS EBS).
Make frontend app server lightweight and horizontally scalable. Put them behind a loadbalancer (use software loadbalancer like nginx or HAproxy). You should be able to put as many as you go to your goal.
For loadbalacer and frontend take 4CPU, 4-8GB RAM servers.
How much each frontend can take need to be tested using a load testing method and realistic test data.
Reduce load on database/persistent using a inmemory/+persistent caches like memcached/membase/redis etc. Take a servers with 8GB and add more as you feel need.
I have not discussed about DB partitioning. Do that only when you feel the need of it. Do not over invest at start.
With 15M users a month, this setup should be enough, but again it all depends on you 1. memory footprint, 2. amount of active data
I tried to answer as much as possible. Comments on points you disagree or wanna discuss more.

Rule of thumb for determining web server scale up and down?

What's a good rule of thumb for determining whether to scale up or down the number of cloud based web servers I have running? Are there any other metrics besides request execution time, processor utilization, available memory, and requests per second that should be monitored for this purpose? Should the weighted average, standard deviation or some other calculation be used for determining scale up or down? And finally, are there any particular values that are best for determining when to add or reduce server instances?
This question of dynamically allocating compute instances brings back memories of my control systems classes in engineering school. It seems we should be able to apply classical digital control systems algorithms (think PID loops and Z-transforms) to scaling servers. Spinning up a server instance is analogous to moving an engine throttle's stepper motor one notch to increase the fuel and oxygen rate in response to increased load. Respond too slowly and the performance is sluggish (overdamped), too quickly and the system becomes unstable (underdamped).
In both the compute and physical domains, the goal is to have resources match load. The good news is that compute systems are among the easier control systems to deal with, since having too many resources doesn't cause instability; it just costs money, similar to generating electricity in a system with a resistor bank to burn off excess.
It’s great to see how the fundamentals keep coming around again! We learned all that for a reason.
Your question is a hot research area right now. However, the web-server utilization can be automated by the cloud providers in different ways. For the details, how it works? Which metrics effects the scale up and down: you can glance at this paper.
Amazon has announced Elastic Beanstalk, which lets you deploy an application to Amazon’s EC2 (Elastic Compute Cloud) and have it scale up or down, by launching or terminating server instances, according to demand. There is no additional cost for using Elastic Beanstalk; you are charged for the instances you use.
Also, you can check Auto Scaling which Amazon AWS offers.
Auto Scaling allows you to scale your
Amazon EC2 capacity automatically up
or down according to conditions you
define. With Auto Scaling, you can
ensure that the number of Amazon EC2
instances you’re using increases
seamlessly during demand spikes to
maintain performance and decreases
automatically during demand lulls to
minimize costs. Auto Scaling is
particularly well suited for
applications that experience hourly,
daily, or weekly variability in usage.
Auto Scaling is enabled by Amazon
CloudWatch and available at no
additional charge beyond Amazon
CloudWatch fees.
I recommend you to read the details from Amazon AWS to dig how their system utilize scale up and down for web servers.

How to create a system with 1500 servers that deliver results instantaneously?

I want to create a system that delivers user interface response within 100ms, but which requires minutes of computation. Fortunately, I can divide it up into very small pieces, so that I could distribute this to a lot of servers, let's say 1500 servers. The query would be delivered to one of them, which then redistributes to 10-100 other servers, which then redistribute etc., and after doing the math, results propagate back again and are returned by a single server. In other words, something similar to Google Search.
The problem is, what technology should I use? Cloud computing sounds obvious, but the 1500 servers need to be prepared for their task by having task-specific data available. Can this be done using any of the existing cloud computing platforms? Or should I create 1500 different cloud computing applications and upload them all?
Edit: Dedicated physical servers does not make sense, because the average load will be very, very small. Therefore, it also does not make sense, that we run the servers ourselves - it needs to be some kind of shared servers at an external provider.
Edit2: I basically want to buy 30 CPU minutes in total, and I'm willing to spend up to $3000 on it, equivalent to $144,000 per CPU-day. The only criteria is, that those 30 CPU minutes are spread across 1500 responsive servers.
Edit3: I expect the solution to be something like "Use Google Apps, create 1500 apps and deploy them" or "Contact XYZ and write an asp.net script which their service can deploy, and you pay them based on the amount of CPU time you use" or something like that.
Edit4: A low-end webservice provider, offering asp.net at $1/month would actually solve the problem (!) - I could create 1500 accounts, and the latency is ok (I checked), and everything would be ok - except that I need the 1500 accounts to be on different servers, and I don't know any provider that has enough servers that is able to distribute my accounts on different servers. I am fully aware that the latency will differ from server to server, and that some may be unreliable - but that can be solved in software by retrying on different servers.
Edit5: I just tried it and benchmarked a low-end webservice provider at $1/month. They can do the node calculations and deliver results to my laptop in 15ms, if preloaded. Preloading can be done by making a request shortly before the actual performance is needed. If a node does not respond within 15ms, that node's part of the task can be distributed to a number of other servers, of which one will most likely respond within 15ms. Unfortunately, they don't have 1500 servers, and that's why I'm asking here.
[in advance, apologies to the group for using part of the response space for meta-like matters]
From the OP, Lars D:
I do not consider [this] answer to be an answer to the question, because it does not bring me closer to a solution. I know what cloud computing is, and I know that the algorithm can be perfectly split into more than 300,000 servers if needed, although the extra costs wouldn't give much extra performance because of network latency.
Lars,
I sincerely apologize for reading and responding to your question at a naive and generic level. I hope you can see how both the lack of specifity in the question itself, particularly in its original form, and also the somewhat unusual nature of the problem (1) would prompt me respond to the question in like fashion. This, and the fact that such questions on SO typically emanate from hypotheticals by folks who have put but little thought and research into the process, are my excuses for believing that I, a non-practionner [of massively distributed systems], could help your quest. The many similar responses (some of which had the benefits of the extra insight you provided) and also the many remarks and additional questions addressed to you show that I was not alone with this mindset.
(1) Unsual problem: An [apparently] mostly computational process (no mention of distributed/replicated storage structures), very highly paralellizable (1,500 servers), into fifty-millisecondish-sized tasks which collectively provide a sub-second response (? for human consumption?). And yet, a process that would only be required a few times [daily..?].
Enough looking back!
In practical terms, you may consider some of the following to help improve this SO question (or move it to other/alternate questions), and hence foster the help from experts in the domain.
re-posting as a distinct (more specific) question. In fact, probably several questions: eg. on the [likely] poor latency and/or overhead of mapreduce processes, on the current prices (for specific TOS and volume details), on the rack-awareness of distributed processes at various vendors etc.
Change the title
Add details about the process you have at hand (see many questions in the notes of both the question and of many of the responses)
in some of the questions, add tags specific to a give vendor or technique (EC2, Azure...) as this my bring in the possibly not quite unbuyist but helpful all the same, commentary from agents at these companies
Show that you understand that your quest is somewhat of a tall order
Explicitly state that you wish responses from effective practionners of the underlying technologies (maybe also include folks that are "getting their feet wet" with these technologies as well, since with the exception of the physics/high-energy folks and such, who BTW traditionnaly worked with clusters rather than clouds, many of the technologies and practices are relatively new)
Also, I'll be pleased to take the hint from you (with the implicit non-veto from other folks on this page), to delete my response, if you find that doing so will help foster better responses.
-- original response--
Warning: Not all processes or mathematical calculations can readily be split in individual pieces that can then be run in parallel...
Maybe you can check Wikipedia's entry from Cloud Computing, understanding that cloud computing is however not the only architecture which allows parallel computing.
If your process/calculation can efficitively be chunked in parallelizable pieces, maybe you can look into Hadoop, or other implementations of MapReduce, for an general understanding about these parallel processes. Also, (and I believe utilizing the same or similar algorithms), there also exist commercially available frameworks such as EC2 from amazon.
Beware however that the above systems are not particularly well suited for very quick response time. They fare better with hour long (and then some) data/number crunching and similar jobs, rather than minute long calculations such as the one you wish to parallelize so it provides results in 1/10 second.
The above frameworks are generic, in a sense that they could run processes of most any nature (again, the ones that can at least in part be chunked), but there also exist various offerings for specific applications such as searching or DNA matching etc. The search applications in particular can have very short response times (cf Google for example) and BTW this is in part tied to fact that such jobs can very easily and quickly be chunked for parallel processing.
Sorry, but you are expecting too much.
The problem is that you are expecting to pay for processing power only. Yet your primary constraint is latency, and you expect that to come for free. That doesn't work out. You need to figure out what your latency budgets are.
The mere aggregating of data from multiple compute servers will take several milliseconds per level. There will be a gaussian distribution here, so with 1500 servers the slowest server will respond after 3σ. Since there's going to be a need for a hierarchy, the second level with 40 servers , where again you'll be waiting for the slowest server.
Internet roundtrips also add up quickly; that too should take 20 to 30 ms of your latency budget.
Another consideration is that these hypothethical servers will spend much of their time idle. That means they're powered on, drawing electricity yet not generating revenue. Any party with that many idle servers would turn them off, or at the very least in sleep mode just to conserve electricity.
MapReduce is not the solution! Map Reduce is used in Google, Yahoo and Microsoft for creating the indexes out of the huge data (the whole Web!) they have on their disk. This task is enormous and Map Reduce was built to make it happens in hours instead of years, but starting a Master controller of Map Reduce is already 2 seconds, so for your 100ms this is not an option.
Now, from Hadoop you may get advantages out of the distributed file system. It may allow you to distribute the tasks close to where the data is physically, but that's it. BTW: Setting up and managing an Hadoop Distributed File System means controlling your 1500 servers!
Frankly in your budget I don't see any "cloud" service that will allow you to rent 1500 servers. The only viable solution, is renting time on a Grid Computing solution like Sun and IBM are offering, but they want you to commit to hours of CPU from what I know.
BTW: On Amazon EC2 you have a new server up in a couple of minutes that you need to keep for an hour minimum!
Hope you'll find a solution!
I don't get why you would want to do that, only because "Our user interfaces generally aim to do all actions in less than 100ms, and that criteria should also apply to this".
First, 'aim to' != 'have to', its a guideline, why would u introduce these massive process just because of that. Consider 1500 ms x 100 = 150 secs = 2.5 mins. Reducing the 2.5 mins to a few seconds its a much more healthy goal. There is a place for 'we are processing your request' along with an animation.
So my answer to this is - post a modified version of the question with reasonable goals: a few secs, 30-50 servers. I don't have the answer for that one, but the question as posted here feels wrong. Could even be 6-8 multi-processor servers.
Google does it by having a gigantic farm of small Linux servers, networked together. They use a flavor of Linux that they have custom modified for their search algorithms. Costs are software development and cheap PC's.
It would seem that you are indeed expecting at least 1000-fold speedup from distributing your job to a number of computers. That may be ok. Your latency requirement seems tricky, though.
Have you considered the latencies inherent in distributing the job? Essentially the computers would have to be fairly close together in order to not run into speed of light issues. Also, the data center in which the machines would be would again have to be fairly close to your client so that you can get your request to them and back in less than 100 ms. On the same continent, at least.
Also note that any extra latency requires you to have many more nodes in the system. Losing 50% of available computing time to latency or anything else that doesn't parallelize requires you to double the computing capacity of the parallel portions just to keep up.
I doubt a cloud computing system would be the best fit for a problem like this. My impression at least is that the proponents of cloud computing would prefer to not even tell you where your machines are. Certainly I haven't seen any latency terms in the SLAs that are available.
You have conflicting requirements. You're requirement for 100ms latency is directly at odds with your desire to only run your program sporadically.
One of the characteristics of the Google-search type approach you mentioned in your question is that the latency of the cluster is dependent on the slowest node. So you could have 1499 machines respond in under 100ms, but if one machine took longer, say 1s - whether due to a retry, or because it needed to page you application in, or bad connectivity - your whole cluster would take 1s to produce an answer. It's inescapable with this approach.
The only way to achieve the kinds of latencies you're seeking would be to have all of the machines in your cluster keep your program loaded in RAM - along with all the data it needs - all of the time. Having to load your program from disk, or even having to page it in from disk, is going to take well over 100ms. As soon as one of your servers has to hit the disk, it is game over for your 100ms latency requirement.
In a shared server environment, which is what we're talking about here given your cost constraints, it is a near certainty that at least one of your 1500 servers is going to need to hit the disk in order to activate your app.
So you are either going to have to pay enough to convince someone to keep you program active and in memory at all times, or you're going to have to loosen your latency requirements.
Two trains of thought:
a) if those restraints are really, absolutely, truly founded in common sense, and doable in the way you propose in the nth edit, it seems the presupplied data is not huge. So how about trading storage for precomputation to time. How big would the table(s) be? Terabytes are cheap!
b) This sounds a lot like a employer / customer request that is not well founded in common sense. (from my experience)
Let´s assume the 15 minutes of computation time on one core. I guess thats what you say.
For a reasonable amount of money, you can buy a system with 16 proper, 32 hyperthreading cores and 48 GB RAM.
This should bring us in the 30 second range.
Add a dozen Terabytes of storage, and some precomputation.
Maybe a 10x increase is reachable there.
3 secs.
Are 3 secs too slow? If yes, why?
Sounds like you need to utilise an algorithm like MapReduce: Simplified Data Processing on Large Clusters
Wiki.
Check out Parallel computing and related articles in this WikiPedia-article - "Concurrent programming languages, libraries, APIs, and parallel programming models have been created for programming parallel computers." ... http://en.wikipedia.org/wiki/Parallel_computing
Although Cloud Computing is the cool new kid in town, your scenario sounds more like you need a cluster, i.e. how can I use parallelism to solve a problem in a shorter time.
My solution would be:
Understand that if you got a problem that can be solved in n time steps on one cpu, does not guarantee that it can be solved in n/m on m cpus. Actually n/m is the theoretical lower limit. Parallelism is usually forcing you to communicate more and therefore you'll hardly ever achieve this limit.
Parallelize your sequential algorithm, make sure it is still correct and you don't get any race conditions
Find a provider, see what he can offer you in terms of programming languages / APIs (no experience with that)
What you're asking for doesn't exist, for the simple reason that doing this would require having 1500 instances of your application (likely with substantial in-memory data) idle on 1500 machines - consuming resources on all of them. None of the existing cloud computing offerings bill on such a basis. Platforms like App Engine and Azure don't give you direct control over how your application is distributed, while platforms like Amazon's EC2 charge by the instance-hour, at a rate that would cost you over $2000 a day.

Resources