How to create a system with 1500 servers that deliver results instantaneously? - algorithm

I want to create a system that delivers user interface response within 100ms, but which requires minutes of computation. Fortunately, I can divide it up into very small pieces, so that I could distribute this to a lot of servers, let's say 1500 servers. The query would be delivered to one of them, which then redistributes to 10-100 other servers, which then redistribute etc., and after doing the math, results propagate back again and are returned by a single server. In other words, something similar to Google Search.
The problem is, what technology should I use? Cloud computing sounds obvious, but the 1500 servers need to be prepared for their task by having task-specific data available. Can this be done using any of the existing cloud computing platforms? Or should I create 1500 different cloud computing applications and upload them all?
Edit: Dedicated physical servers does not make sense, because the average load will be very, very small. Therefore, it also does not make sense, that we run the servers ourselves - it needs to be some kind of shared servers at an external provider.
Edit2: I basically want to buy 30 CPU minutes in total, and I'm willing to spend up to $3000 on it, equivalent to $144,000 per CPU-day. The only criteria is, that those 30 CPU minutes are spread across 1500 responsive servers.
Edit3: I expect the solution to be something like "Use Google Apps, create 1500 apps and deploy them" or "Contact XYZ and write an asp.net script which their service can deploy, and you pay them based on the amount of CPU time you use" or something like that.
Edit4: A low-end webservice provider, offering asp.net at $1/month would actually solve the problem (!) - I could create 1500 accounts, and the latency is ok (I checked), and everything would be ok - except that I need the 1500 accounts to be on different servers, and I don't know any provider that has enough servers that is able to distribute my accounts on different servers. I am fully aware that the latency will differ from server to server, and that some may be unreliable - but that can be solved in software by retrying on different servers.
Edit5: I just tried it and benchmarked a low-end webservice provider at $1/month. They can do the node calculations and deliver results to my laptop in 15ms, if preloaded. Preloading can be done by making a request shortly before the actual performance is needed. If a node does not respond within 15ms, that node's part of the task can be distributed to a number of other servers, of which one will most likely respond within 15ms. Unfortunately, they don't have 1500 servers, and that's why I'm asking here.

[in advance, apologies to the group for using part of the response space for meta-like matters]
From the OP, Lars D:
I do not consider [this] answer to be an answer to the question, because it does not bring me closer to a solution. I know what cloud computing is, and I know that the algorithm can be perfectly split into more than 300,000 servers if needed, although the extra costs wouldn't give much extra performance because of network latency.
Lars,
I sincerely apologize for reading and responding to your question at a naive and generic level. I hope you can see how both the lack of specifity in the question itself, particularly in its original form, and also the somewhat unusual nature of the problem (1) would prompt me respond to the question in like fashion. This, and the fact that such questions on SO typically emanate from hypotheticals by folks who have put but little thought and research into the process, are my excuses for believing that I, a non-practionner [of massively distributed systems], could help your quest. The many similar responses (some of which had the benefits of the extra insight you provided) and also the many remarks and additional questions addressed to you show that I was not alone with this mindset.
(1) Unsual problem: An [apparently] mostly computational process (no mention of distributed/replicated storage structures), very highly paralellizable (1,500 servers), into fifty-millisecondish-sized tasks which collectively provide a sub-second response (? for human consumption?). And yet, a process that would only be required a few times [daily..?].
Enough looking back!
In practical terms, you may consider some of the following to help improve this SO question (or move it to other/alternate questions), and hence foster the help from experts in the domain.
re-posting as a distinct (more specific) question. In fact, probably several questions: eg. on the [likely] poor latency and/or overhead of mapreduce processes, on the current prices (for specific TOS and volume details), on the rack-awareness of distributed processes at various vendors etc.
Change the title
Add details about the process you have at hand (see many questions in the notes of both the question and of many of the responses)
in some of the questions, add tags specific to a give vendor or technique (EC2, Azure...) as this my bring in the possibly not quite unbuyist but helpful all the same, commentary from agents at these companies
Show that you understand that your quest is somewhat of a tall order
Explicitly state that you wish responses from effective practionners of the underlying technologies (maybe also include folks that are "getting their feet wet" with these technologies as well, since with the exception of the physics/high-energy folks and such, who BTW traditionnaly worked with clusters rather than clouds, many of the technologies and practices are relatively new)
Also, I'll be pleased to take the hint from you (with the implicit non-veto from other folks on this page), to delete my response, if you find that doing so will help foster better responses.
-- original response--
Warning: Not all processes or mathematical calculations can readily be split in individual pieces that can then be run in parallel...
Maybe you can check Wikipedia's entry from Cloud Computing, understanding that cloud computing is however not the only architecture which allows parallel computing.
If your process/calculation can efficitively be chunked in parallelizable pieces, maybe you can look into Hadoop, or other implementations of MapReduce, for an general understanding about these parallel processes. Also, (and I believe utilizing the same or similar algorithms), there also exist commercially available frameworks such as EC2 from amazon.
Beware however that the above systems are not particularly well suited for very quick response time. They fare better with hour long (and then some) data/number crunching and similar jobs, rather than minute long calculations such as the one you wish to parallelize so it provides results in 1/10 second.
The above frameworks are generic, in a sense that they could run processes of most any nature (again, the ones that can at least in part be chunked), but there also exist various offerings for specific applications such as searching or DNA matching etc. The search applications in particular can have very short response times (cf Google for example) and BTW this is in part tied to fact that such jobs can very easily and quickly be chunked for parallel processing.

Sorry, but you are expecting too much.
The problem is that you are expecting to pay for processing power only. Yet your primary constraint is latency, and you expect that to come for free. That doesn't work out. You need to figure out what your latency budgets are.
The mere aggregating of data from multiple compute servers will take several milliseconds per level. There will be a gaussian distribution here, so with 1500 servers the slowest server will respond after 3σ. Since there's going to be a need for a hierarchy, the second level with 40 servers , where again you'll be waiting for the slowest server.
Internet roundtrips also add up quickly; that too should take 20 to 30 ms of your latency budget.
Another consideration is that these hypothethical servers will spend much of their time idle. That means they're powered on, drawing electricity yet not generating revenue. Any party with that many idle servers would turn them off, or at the very least in sleep mode just to conserve electricity.

MapReduce is not the solution! Map Reduce is used in Google, Yahoo and Microsoft for creating the indexes out of the huge data (the whole Web!) they have on their disk. This task is enormous and Map Reduce was built to make it happens in hours instead of years, but starting a Master controller of Map Reduce is already 2 seconds, so for your 100ms this is not an option.
Now, from Hadoop you may get advantages out of the distributed file system. It may allow you to distribute the tasks close to where the data is physically, but that's it. BTW: Setting up and managing an Hadoop Distributed File System means controlling your 1500 servers!
Frankly in your budget I don't see any "cloud" service that will allow you to rent 1500 servers. The only viable solution, is renting time on a Grid Computing solution like Sun and IBM are offering, but they want you to commit to hours of CPU from what I know.
BTW: On Amazon EC2 you have a new server up in a couple of minutes that you need to keep for an hour minimum!
Hope you'll find a solution!

I don't get why you would want to do that, only because "Our user interfaces generally aim to do all actions in less than 100ms, and that criteria should also apply to this".
First, 'aim to' != 'have to', its a guideline, why would u introduce these massive process just because of that. Consider 1500 ms x 100 = 150 secs = 2.5 mins. Reducing the 2.5 mins to a few seconds its a much more healthy goal. There is a place for 'we are processing your request' along with an animation.
So my answer to this is - post a modified version of the question with reasonable goals: a few secs, 30-50 servers. I don't have the answer for that one, but the question as posted here feels wrong. Could even be 6-8 multi-processor servers.

Google does it by having a gigantic farm of small Linux servers, networked together. They use a flavor of Linux that they have custom modified for their search algorithms. Costs are software development and cheap PC's.

It would seem that you are indeed expecting at least 1000-fold speedup from distributing your job to a number of computers. That may be ok. Your latency requirement seems tricky, though.
Have you considered the latencies inherent in distributing the job? Essentially the computers would have to be fairly close together in order to not run into speed of light issues. Also, the data center in which the machines would be would again have to be fairly close to your client so that you can get your request to them and back in less than 100 ms. On the same continent, at least.
Also note that any extra latency requires you to have many more nodes in the system. Losing 50% of available computing time to latency or anything else that doesn't parallelize requires you to double the computing capacity of the parallel portions just to keep up.
I doubt a cloud computing system would be the best fit for a problem like this. My impression at least is that the proponents of cloud computing would prefer to not even tell you where your machines are. Certainly I haven't seen any latency terms in the SLAs that are available.

You have conflicting requirements. You're requirement for 100ms latency is directly at odds with your desire to only run your program sporadically.
One of the characteristics of the Google-search type approach you mentioned in your question is that the latency of the cluster is dependent on the slowest node. So you could have 1499 machines respond in under 100ms, but if one machine took longer, say 1s - whether due to a retry, or because it needed to page you application in, or bad connectivity - your whole cluster would take 1s to produce an answer. It's inescapable with this approach.
The only way to achieve the kinds of latencies you're seeking would be to have all of the machines in your cluster keep your program loaded in RAM - along with all the data it needs - all of the time. Having to load your program from disk, or even having to page it in from disk, is going to take well over 100ms. As soon as one of your servers has to hit the disk, it is game over for your 100ms latency requirement.
In a shared server environment, which is what we're talking about here given your cost constraints, it is a near certainty that at least one of your 1500 servers is going to need to hit the disk in order to activate your app.
So you are either going to have to pay enough to convince someone to keep you program active and in memory at all times, or you're going to have to loosen your latency requirements.

Two trains of thought:
a) if those restraints are really, absolutely, truly founded in common sense, and doable in the way you propose in the nth edit, it seems the presupplied data is not huge. So how about trading storage for precomputation to time. How big would the table(s) be? Terabytes are cheap!
b) This sounds a lot like a employer / customer request that is not well founded in common sense. (from my experience)
Let´s assume the 15 minutes of computation time on one core. I guess thats what you say.
For a reasonable amount of money, you can buy a system with 16 proper, 32 hyperthreading cores and 48 GB RAM.
This should bring us in the 30 second range.
Add a dozen Terabytes of storage, and some precomputation.
Maybe a 10x increase is reachable there.
3 secs.
Are 3 secs too slow? If yes, why?

Sounds like you need to utilise an algorithm like MapReduce: Simplified Data Processing on Large Clusters
Wiki.

Check out Parallel computing and related articles in this WikiPedia-article - "Concurrent programming languages, libraries, APIs, and parallel programming models have been created for programming parallel computers." ... http://en.wikipedia.org/wiki/Parallel_computing

Although Cloud Computing is the cool new kid in town, your scenario sounds more like you need a cluster, i.e. how can I use parallelism to solve a problem in a shorter time.
My solution would be:
Understand that if you got a problem that can be solved in n time steps on one cpu, does not guarantee that it can be solved in n/m on m cpus. Actually n/m is the theoretical lower limit. Parallelism is usually forcing you to communicate more and therefore you'll hardly ever achieve this limit.
Parallelize your sequential algorithm, make sure it is still correct and you don't get any race conditions
Find a provider, see what he can offer you in terms of programming languages / APIs (no experience with that)

What you're asking for doesn't exist, for the simple reason that doing this would require having 1500 instances of your application (likely with substantial in-memory data) idle on 1500 machines - consuming resources on all of them. None of the existing cloud computing offerings bill on such a basis. Platforms like App Engine and Azure don't give you direct control over how your application is distributed, while platforms like Amazon's EC2 charge by the instance-hour, at a rate that would cost you over $2000 a day.

Related

distribute processing to a cluster of heterogeneous compute nodes taking relative performance and cost of communication into account?

Given a cluster of truly heterogeneous compute nodes how is it possible to
distribute processing to them while taking into account both their relative performance
and cost of passing messages between them?
(I know optimising this is NP-complete in general)
Which concurrency platforms currently best support this?
You might rephrase/summarise the question as:
What algorithms make most efficient use of cpu, memory and communications resources for distributed computation in theory and what existing (open source) platforms come closest to realising this?
Obviously this depends somewhat on workload so understanding the trade-offs is critical.
Some Background
I find some on S/O want to understand the background so they can provide a more specific answer, so I've included quite a bit below, but its not necessary to the essence of the question.
A typical scenario I see is:
We have an application which runs on X nodes
each with Y cores. So we start with a homogeneous cluster.
Every so often the operations team buys one or more new servers.
The new servers are faster and may have more cores.
They are integrated into the cluster to make things run faster.
Some older servers may be re-purposed but the new cluster now contains machines with different performance characteristics.
The cluster is no-longer homogeneous but has more compute power overall.
I believe this scenario must be standard in big cloud data-centres as well.
Its how this kind of change in infrastructure can be best utilised that I'm really interested in.
In one application I work with the work is divided into a number of relative long tasks. Tasks are allocated to logical processors (we usually have one per core) as they become
available. While there are tasks to perform cores are generally not unoccupied but
for the most part those jobs can be classified as "embarassingly scalable".
This particular application is currently C++ with a roll your own concurrency platform using ssh and nfs for large task.
I'm considering the arguments for various alternative approaches.
Some parties prefer various hadoop mad/reduce options. I'm wondering how they shape up versus more C++/machine oriented approaches such as openMP, Cilk++. I'm more interested in the pros and cons than the answer for that specific case.
The task model itself seems scalable and sensible independent of platform.
So, I'm assuming a model where you divide work into tasks and a (probably distributed) scheduler tries to decide which processor to which allocate each task. I am open to alternatives.
There could be task queues for each node, possibly each processor and idle processors should allow work stealing (e.g. from processors with long queues).
However, when I look at the various models of high performance and cloud cluster computing I don't see this discussed so much.
Michael Wong classifies parallelism, ignoring hadoop, into two main camps (starting around 14min in).
https://isocpp.org/blog/2016/01/the-landscape-of-parallelism-michael-wong-meetingcpp-2015
HPC and multi-threaded applications in industry
The HPC community seems to favour openMP on a cluster of identical nodes.
This may still be heterogeneous if each node supports CUDA or has FPGA support but each node tends to be identical.
If that's the case do they upgrade their data centres in a big bang or what?
(E.g. supercomputer 1 = 100 nodes of type x. supercomputer v2.0 is on a different site with
200 nodes of type y).
OpenMP only supports a single physical computer by itself.
The HPC community gets around this either using MPI (which I consider too low level) or by creating a virtual machine from all the nodes
using a hypervisor like scaleMP or vNUMA (see for example - OpenMP program on different hosts).
(anyone know of a good open source hypervisor for doing this?)
I believe these are still considered the most powerful computing systems in the world.
I find that surprising as I don't see what prevents the map/reduce people creating an even bigger cluster more easily
that is much less efficient overall but wins on brute force due to the total number of cores utilised?
So which other concurrency platforms support truly heterogeneous nodes with widely varying characteristics and how do they deal with the performance mismatch (and similarly the distribution of data)?
I'm excluding MPI as an option as while powerful it is too low-level. You might as well say use sockets. A framework building on MPI would be acceptable (does X10 work this way?).
From the user's perspective the map/reduce
approach seems to be add enough nodes that it doesn't matter and not worry about using them at maximum efficiency.
Actually those details are kept under the hood in the implementation
of the schedulers and distributed file systems.
How/where is the cost of computation and message passing taken into account?
Is there any way in openMP (or your favourite concurrency platform)
to make effective use of information that this node is N times as fast as this node and the data transfer rate
to or from this node is on average X Mb/s?
In YARN you have Dominant Resource Fairness:
http://blog.cloudera.com/blog/2013/12/managing-multiple-resources-in-hadoop-2-with-yarn/
http://static.usenix.org/event/nsdi11/tech/full_papers/Ghodsi.pdf
This covers memory and cores using Linux Control Groups but it does not yet
cover disk and network I/O resources.
Are there equivalent or better approaches in other concurrency platforms? How do they compare to DRF?
Which concurrency platforms handle this best and why?
Are there any popular ones that are likely to be evolutionary dead ends?
OpenMP keeps surprising me by actively thriving. Could something like Cilk++ be made to scale this way?
Apologies in advance for combining several PhD thesis worth questions into one.
I'm basically looking for tips on what to look for for further reading
and advice on which platforms to investigate further (from the programmer's perspective).
A good summary of some platforms to investigate and/or links to papers or articles would suffice as a useful answer.

Azure web and worker role - 2x small instances or 1x medium?

Which is better in terms of performance, 2 medium role instances or 4 small role instances?
What are the pro's and cons of each configuration?
The only real way to know if you gain advantage of using larger instances is trying and measuring, not asking here. This article has a table that says that a medium instance has everything twice as large as a small one. However in real life your mileage may vary and how this affects your application only you can measure.
Smaller roles have one important advantage - if instances fail separately you get smaller performance degradation. Supposing you know about "guaranteed uptime" requirement of having at least two instances, you have to choose between two medium and four small instances. If one small instance fails you lose 1/4 of your performance, but if one medium instance fails you lose half of performance.
Instances will fail if for example you have an unhandled exception inside Run() of your role entry point descendant and sometimes something just goes wrong big time and your code can't handle this and it'd better just restart. Not that you should deliberately target for such failures but you should expect them and take measures to minimize impact to your application.
So the bottom line is - it's impossible to say which gets better performance, but uptime implications are just as important and they are clearly in favor of smaller instances.
Good points by #sharptooth. One more thing to consider: When scaling in, the fewest number of instances is one, not zero. So, say you have a worker role that does some nightly task for an hour, and it requires either 2 Medium or 4 Small instances to get the job done in that timeframe. When the work is done, you may want to save costs by scaling to one instance and let it run as one instance for 23 hours until the next nightly job. With a single Small instance, you'll burn 23 core-hours, and with a single Medium instance, you'll burn 46 core-hours. This thinking also applies to your Web role, but probably more-so since you will probably have minimum two instances to make sure you have uptime SLA (it may not be as important for you to have SLA on your worker if, say, your end user never interacts with it and it's just for utility purposes).
My general rule of thumb when sizing: Pick the smallest VM size that can properly do the work, and then scale out/in as needed. Your choice will primarily be driven by CPU, RAM, and network bandwidth needs (and don't forget you need network when moving data between Compute and Storage).
For a start, you won't get the guaranteed uptime of 99% unless you have at least 2 roles role instances, this allows one to die and be restarted while the other one takes the burden. Otherwise, it is a case of how much you want to pay and what specs you get on each. It has not caused me any hassle having more than one role role instance, Azure hides the difficult stuff.
One other point maybe worth a mention if you use four small roles you would be able to run two in one datacenter and two in another datacenter and use traffic manager to route people at least which is closer. This might give you some performance gains.
Two mediums will give you more options to store stuff in cache at compute level and thus more in cache rather than coming off SQL Azure it is going to be faster.
Ideally you have to follow #sharptooth and measure and test. This is all very subjective and I second David also you want to start as small as possible and scale outwards. We run this way, you really want to think about designing your app around a more sharding aspect as this fits azure model better than working in traditional sense of just getting a bigger box to run everything on, at some point you run out into limits thinking in the bigger box process, ie.Like SQL Azure Connection limits.
Using technologies like Jmeter is your friend here and should give you some tools to test your app.
http://jmeter.apache.org/

Maximum number of concurrent requests a webserver can serve assuming average service time to be known

Is it logical to say: "If average service time for a request is X and affordable waiting time for the requests is Y then maximum number of concurrent requests to serve would be Y / X" ?
I think what I'm asking is that if there're any hidden factors that I'm not taking into account!?
If you're talking specifically about webservers, then no, your formula doesn't work, because webservers are designed to handle multiple, simultaneous requests, using forking or threading.
This turns the formula into something far harder to quantify - in my experience, web servers can handle LOTS (i.e. hundreds or thousands) of concurrent requests which consume little or no time, but tend to reduce that concurrency quite dramatically as the requests consume more time.
That means that "average service time" isn't massively useful - it can hide wide variations, and it's actually the outliers that affect you the most.
Broadly yes, but your service provider (webserver in your case) is capable of handling more than one request in parallel, so you should take that into account. I assume you measured end to end service time and havent already averaged it by number of parallel streams. One other thing you didnt and cannot realistically measure is the delay to/from your website.
What you are heading towards is the Erlang unit (not the language using the same name) which is used to described how much load a system can take. Erlangs are unitless (it is just a number) and originated from old school telephony, POTS, where it was used to describe how many wires were needed to handle X calls per time period with low blocking probability. Beyond erlang is engset which is used more for high capacity systems, such as mobile systems.
It also gets used for expensive consultant reports into realtime computer systems and databases to describe the point at which performance degradation is likely to occur. Wikipedia has an article on this http://en.wikipedia.org/wiki/Erlang_(unit) and the book 'Fixed and mobile telecommunications, network systems and services' has a good chapter on performance analysis.
While aimed at telephone systems, just replace with word webserver and it behaves the same. A webserver is the same concept, load is offered that arrives at random intervals to a system with finite parallel capacity. In your case, you can probably calculate total load with load tools easier than parallel capacity and then back calculate the formulas. This is widely done to gain a level of confidence in overall system models.
Erlang/engsetformulas are really useful when you have a randomly arriving load over parallel stream (ie web requests) and a service time that can only be averaged or estimated (ie it varies in real life). You can then calculate the blocking probability, which is the probability a new request will need to wait while current requests are serviced, and how long it will wait. It also helps analyse whether you need to handle more requests in parallel, or make each faster (#lines and holding time in erlang speak)
You will probably look into queuing systems analysis next, as a soon as requests block (queue), the models change slightly.
many factors are not taken into account
memory limits
data locking constraints such as people wanting to update the same data
application latency
caching mechanisms
different users will have different tasks on the site and put different loads
That said, one easy way to get a rough estimate is with apache ab tool (apache benchmark)
Example, get 1000 times the homepage with 100 requests at a time:
ab -c 100 -n 1000 http://www.example.com/

How do I figure out my RAM requirements for Cloud Hosting?

I'm new to everything that is 'the cloud.'
I will be developing a website/platform that will have around 15,000,000 estimated monthly visitors after the first year of production.
I'm assuming that the site will have 5 page views per visitor, and 100kb of data transfer per page.
I've contacted several cloud hosting companies, but they tell me that I need to have 'hardware requirements.'
Since I'm rather clueless about IT stuff, I'd like to know:
What are the factors that need to be analyzed in order to determine
How many servers are required
VPUs / server required
RAM / server required
Total storage / server required
Big thanks in advance!
I don't agree with the other answer as it's nearly total guesswork, as will anything you can generate yourself.
The only surefire way to know is to get some hardware, stick your application on it and run some load testing to see if you can get to the point you want to traffic wise, and with a certain amount of free overhead on the servers. Only then will you know what you need. No-one else can answer this question as every application is different. This is your application, only you can test it.
Data given wont help much in determining what numbers you want. But based on my experience I'll try to help you in analysis.
15,000,000 visits a month means 700K visits a day (assuming approx 30-35% visits are by repeat visitors).
700Kx5=3.5million page views a day.
Assuming 14 hours of active period, typical for single timezeone sites. Its 70reqs/sec.
With this big userbase few thing you surely need is a high performance DB server, with one slave.
Config of these DB server
Memory so that whole active data + indexes fits in memory (No swapping/thrashing should happen). This you need to calculate based on
what you will be storing for user and for how long.
Use some reliable storage like RAID10 (higher read/write bandwith).
Take enough storage, see that its elastic enough. (like AWS EBS).
Make frontend app server lightweight and horizontally scalable. Put them behind a loadbalancer (use software loadbalancer like nginx or HAproxy). You should be able to put as many as you go to your goal.
For loadbalacer and frontend take 4CPU, 4-8GB RAM servers.
How much each frontend can take need to be tested using a load testing method and realistic test data.
Reduce load on database/persistent using a inmemory/+persistent caches like memcached/membase/redis etc. Take a servers with 8GB and add more as you feel need.
I have not discussed about DB partitioning. Do that only when you feel the need of it. Do not over invest at start.
With 15M users a month, this setup should be enough, but again it all depends on you 1. memory footprint, 2. amount of active data
I tried to answer as much as possible. Comments on points you disagree or wanna discuss more.

How to decide on what hardware to deploy web application

Suppose you have a web application, no specific stack (Java/.NET/LAMP/Django/Rails, all good).
How would you decide on which hardware to deploy it? What rules of thumb exist when determining how many machines you need?
How would you formulate parameters such as concurrent users, simultaneous connections, daily hits and DB read/write ratio to a decision on how much, and which, hardware you need?
Any resources on this issue would be very helpful...
Specifically - any hard numbers from real world experience and case studies would be great.
Capacity Planning is quite a detailed and extensive area. You'll need to accept an iterative model with a "Theoretical Baseline > Load Testing > Tuning & Optimizing" approach.
Theory
The first step is to decide on the Business requirements: how many users are expected for peak usage ? Remember - these numbers are usually inaccurate by some margin.
As an example, let's assume that all the peak traffic (at worst case) will be over 4 hours of the day. So if the website expects 100K hits per day, we dont divide that over 24 hours, but over 4 hours instead. So my site now needs to support a peak traffic of 25K hits per hour.
This breaks down to 417 hits per minute, or 7 hits per second. This is on the front end alone.
Add to this the number of internal transactions such as database operations, any file i/o per user, any batch jobs which might run within the system, reports etc.
Tally all these up to get the number of transactions per second, per minute etc that your system needs to support.
This gets further complicated when you have requirements such as "Avg response time must be 3 seconds etc" which means you have to figure in network latency / firewall / proxy etc
Finally - when it comes to choosing hardware, check out the published datasheets from each manufacturer such as Sun, HP, IBM, Windows etc. These detail the maximum transactions per second under test conditions. We usually accept 50% of those peaks under real conditions :)
But ultimately the choice of the hardware is usually a commercial decision.
Also you need to keep a minimum of 2 servers at each tier : web / app / even db for failover clustering.
Load testing
It's recommended to have a separate reference testing environment throughout the project lifecycle and post-launch so you can come back to run dedicated performance tests on the app. Scale this to be a smaller version of production, so if Prod has 4 servers and Ref has 1, then you test for 25% of the peak transactions etc.
Tuning & Optimizing
Too often, people throw some expensive hardware together and expect it all to work beautifully. You'll need to tune the hardware and OS for various parameters such as TCP timeouts etc - these are published by the software vendors, and these have to be done once the software are finalized. Set these tuning params on the Ref env, test and then decide which ones you need to carry over to Production.
Determine your expected load.
Setup a machine and run some tests against it with a Load testing tool.
How close are you if you only accomplished 10% of the peak load with some margin for error then you know you are going to need some load balancing. Design and implement a solution and test again. Make sure you solution is flexible enough to scale.
Trial and error is pretty much the way to go. It really depends on the individual app and usage patterns.
Test your app with a sample load and measure performance and load metrics. DB queries, disk hits, latency, whatever.
Then get an estimate of the expected load when deployed (go ask the domain expert) (you have to consider average load AND spikes).
Multiply the two and add some just to be sure. That's a really rough idea of what you need.
Then implement it, keeping in mind you usually won't scale linearly and you probably won't get the expected load ;)

Resources