Invalid free Valgrind - memory-management

for some reason calling my function 'delAll' more than once will cause a invalid free error from Valgrind. I don't understand why if I call this function the second time would cause the program to go into the while loop again even though it just "delAll" of the node
//p is a linked list with call
struct node{
char *str, int data, struct node *next;
}
//here's the function I am having trouble with:
void delAll()
{
struct node *temp,*temp2;
temp=p;
while(temp!=NULL)
{
temp2=temp;
temp= temp->next;
free(temp2->str);
free(temp2);
}
}

p is the pointer to your list, and right now it will still after the delAll call point to the (free'd) start of the list. I'd just do;
p=NULL;
...right after your while loop to set p to null (ie have the list properly cleared). That will prevent your delAll from trying to free all elements again.
Of course that would depend on p not just being a temporary variable, I'm assuming it's the real "start of the list" pointer.

Related

Object lifetime of std::stirng returning const char* as a return value

In C++11:
#include <string>
#include <iostream>
const char*Inner() {
std::string content;
content = "const characters are returned.";
return content.c_str();
}
const char* Outer() {
return Inner();
}
int main(){
std::cout << "result " << Outer() <<"\n"; // <- Spot 1
return 0;
}
I am kind of understand the explanation in const char* Return Type. The string object is destroyed when the stack is gone. But I think that should happen when the Spot 1 completed execution. After that, the Inner stack is popped? But in this case, the Spot 1 is still executing but the stacks are destroyed. Could anyone explain when the stack gets destroyed?
Another question related the context is: if I change the function to
const char*Inner() {
std::string content;
content = "const characters are returned.";
const char* ptr = content.c_str()
return ptr;
}
In this case, The string content is destroyed. Is that because the return is a pointer, so the value of the pointer(address) is returned but the content the pointer pointed to is recycled?
content destructs when Inner exits, right after returning the pointer. The pointer returned by Inner is therefore a dangling pointer from the moment it's returned.
The same is true for the second version of Inner you've written here. content goes out of scope at the end of Inner, and Inner returns a dangling pointer.
So the pointer is invalid long before the cout statement finishes executing.
The function Outer here is basically irrelevant.
That said, if you run this program, you may still print out the expected value in the cout statement, because the memory that the dangling pointer points to might still contain the value it contained before. But there's no guarantee of this, and the optimizer in particular may realize that there's no way the value of content can legitimately affect anything and respond by never initializing it in the first place.

How do I update the value of void** in other function, and save it to another?

If I have a code for example like this:
#include <iostream>
using namespace std;
void swap(void** a) {
int tmp = 5;
void* b = &tmp;
a = &b;
}
int main()
{
int x=11;
void* y=&x;
void** z=&y;
swap(z);
void* a = *z;
cout << *(int*)a << endl;
return 0;
}
The code above prints 11, but I want to update the value of z (its address) to point to a place so I can print 5 (I mean update it). What should I do so that when I send z to the function and get back to main I can receive 5 instead of 11.
I'm just not that good with pointers.
EDIT: I must send to swap an argument with void**
You can't update the value of a void** (i.e. what it points to) by passing it to a function that takes a void**. That only allows to modify the pointed-to memory, not what address the pointer you pass to the function points to.
To update what it points to, the parameter should be a void**& or a void***.
Regardless of what solution you choose, the code you posted is extremely error prone and a hell to maintain. You should totally avoid it.
Also, note that &tmp becomes invalid as long as you exit the function, because the local variable tmp gets destroyed.

Getting segmentation fault when using double pointer

I trying to insert a node at the tail end of a linked list. But when I am moving the tail pointer to point to the new node I am getting an error of segmentation fault.
Also I am not able to print the current value of the tail's next value, which should be NULL.
I am using gcc in mac enviroment.
void insert_tail(int val,struct node **tail)
{
struct node *new_node=NULL;
new_node=malloc(sizeof(*new_node));
new_node->data=val;
//printf("%p",(void*)*(*tail)->next);
*(*tail)->next=*new_node;
*tail=new_node;
}
I am not getting any error when I run the same code on Visual C.
Please help me resolve this.
You didn't show your struct node definition, but this line:
*(*tail)->next=*new_node;
Almost certainly has too many dereferences in it. Something like:
(*tail)->next = new_node;
Would be more normal, for a struct node that looks something like:
struct node {
int data;
struct node *next;
};
You are not dereferencing correctly:
*(*tail)->next = *newNode;
which is the same as
Should be:
(*tail)->next = newNode;
Or
(**tail).next = newNode;
Now your next is a pointer, so dereferencing the newNode, is not accurate, bc dereferencing it and assigning it to a pointer, will cast the bytes to a pointer, and read it as a memory address, segment fault(different size, bad memory addr, etc).

When is std::weak_ptr useful?

I started studying smart pointers of C++11 and I don't see any useful use of std::weak_ptr. Can someone tell me when std::weak_ptr is useful/necessary?
std::weak_ptr is a very good way to solve the dangling pointer problem. By just using raw pointers it is impossible to know if the referenced data has been deallocated or not. Instead, by letting a std::shared_ptr manage the data, and supplying std::weak_ptr to users of the data, the users can check validity of the data by calling expired() or lock().
You could not do this with std::shared_ptr alone, because all std::shared_ptr instances share the ownership of the data which is not removed before all instances of std::shared_ptr are removed. Here is an example of how to check for dangling pointer using lock():
#include <iostream>
#include <memory>
int main()
{
// OLD, problem with dangling pointer
// PROBLEM: ref will point to undefined data!
int* ptr = new int(10);
int* ref = ptr;
delete ptr;
// NEW
// SOLUTION: check expired() or lock() to determine if pointer is valid
// empty definition
std::shared_ptr<int> sptr;
// takes ownership of pointer
sptr.reset(new int);
*sptr = 10;
// get pointer to data without taking ownership
std::weak_ptr<int> weak1 = sptr;
// deletes managed object, acquires new pointer
sptr.reset(new int);
*sptr = 5;
// get pointer to new data without taking ownership
std::weak_ptr<int> weak2 = sptr;
// weak1 is expired!
if(auto tmp = weak1.lock())
std::cout << "weak1 value is " << *tmp << '\n';
else
std::cout << "weak1 is expired\n";
// weak2 points to new data (5)
if(auto tmp = weak2.lock())
std::cout << "weak2 value is " << *tmp << '\n';
else
std::cout << "weak2 is expired\n";
}
Output
weak1 is expired
weak2 value is 5
A good example would be a cache.
For recently accessed objects, you want to keep them in memory, so you hold a strong pointer to them. Periodically, you scan the cache and decide which objects have not been accessed recently. You don't need to keep those in memory, so you get rid of the strong pointer.
But what if that object is in use and some other code holds a strong pointer to it? If the cache gets rid of its only pointer to the object, it can never find it again. So the cache keeps a weak pointer to objects that it needs to find if they happen to stay in memory.
This is exactly what a weak pointer does -- it allows you to locate an object if it's still around, but doesn't keep it around if nothing else needs it.
Another answer, hopefully simpler. (for fellow googlers)
Suppose you have Team and Member objects.
Obviously it's a relationship : the Team object will have pointers to its Members. And it's likely that the members will also have a back pointer to their Team object.
Then you have a dependency cycle. If you use shared_ptr, objects will no longer be automatically freed when you abandon reference on them, because they reference each other in a cyclic way. This is a memory leak.
You break this by using weak_ptr. The "owner" typically use shared_ptr and the "owned" use a weak_ptr to its parent, and convert it temporarily to shared_ptr when it needs access to its parent.
Store a weak ptr :
weak_ptr<Parent> parentWeakPtr_ = parentSharedPtr; // automatic conversion to weak from shared
then use it when needed
shared_ptr<Parent> tempParentSharedPtr = parentWeakPtr_.lock(); // on the stack, from the weak ptr
if( !tempParentSharedPtr ) {
// yes, it may fail if the parent was freed since we stored weak_ptr
} else {
// do stuff
}
// tempParentSharedPtr is released when it goes out of scope
Here's one example, given to me by #jleahy: Suppose you have a collection of tasks, executed asynchronously, and managed by an std::shared_ptr<Task>. You may want to do something with those tasks periodically, so a timer event may traverse a std::vector<std::weak_ptr<Task>> and give the tasks something to do. However, simultaneously a task may have concurrently decided that it is no longer needed and die. The timer can thus check whether the task is still alive by making a shared pointer from the weak pointer and using that shared pointer, provided it isn't null.
When using pointers it's important to understand the different types of pointers available and when it makes sense to use each one. There are four types of pointers in two categories as follows:
Raw pointers:
Raw Pointer [ i.e. SomeClass* ptrToSomeClass = new SomeClass(); ]
Smart pointers:
Unique Pointers [ i.e. std::unique_ptr<SomeClass> uniquePtrToSomeClass ( new SomeClass() ); ]
Shared Pointers [ i.e. std::shared_ptr<SomeClass> sharedPtrToSomeClass ( new SomeClass() ); ]
Weak Pointers [ i.e. std::weak_ptr<SomeClass> weakPtrToSomeWeakOrSharedPtr ( weakOrSharedPtr ); ]
Raw pointers (sometimes referred to as "legacy pointers", or "C pointers") provide 'bare-bones' pointer behavior and are a common source of bugs and memory leaks. Raw pointers provide no means for keeping track of ownership of the resource and developers must call 'delete' manually to ensure they are not creating a memory leak. This becomes difficult if the resource is shared as it can be challenging to know whether any objects are still pointing to the resource. For these reasons, raw pointers should generally be avoided and only used in performance-critical sections of the code with limited scope.
Unique pointers are a basic smart pointer that 'owns' the underlying raw pointer to the resource and is responsible for calling delete and freeing the allocated memory once the object that 'owns' the unique pointer goes out of scope. The name 'unique' refers to the fact that only one object may 'own' the unique pointer at a given point in time. Ownership may be transferred to another object via the move command, but a unique pointer can never be copied or shared. For these reasons, unique pointers are a good alternative to raw pointers in the case that only one object needs the pointer at a given time, and this alleviates the developer from the need to free memory at the end of the owning object's lifecycle.
Shared pointers are another type of smart pointer that are similar to unique pointers, but allow for many objects to have ownership over the shared pointer. Like unique pointer, shared pointers are responsible for freeing the allocated memory once all objects are done pointing to the resource. It accomplishes this with a technique called reference counting. Each time a new object takes ownership of the shared pointer the reference count is incremented by one. Similarly, when an object goes out of scope or stops pointing to the resource, the reference count is decremented by one. When the reference count reaches zero, the allocated memory is freed. For these reasons, shared pointers are a very powerful type of smart pointer that should be used anytime multiple objects need to point to the same resource.
Finally, weak pointers are another type of smart pointer that, rather than pointing to a resource directly, they point to another pointer (weak or shared). Weak pointers can't access an object directly, but they can tell whether the object still exists or if it has expired. A weak pointer can be temporarily converted to a shared pointer to access the pointed-to object (provided it still exists). To illustrate, consider the following example:
You are busy and have overlapping meetings: Meeting A and Meeting B
You decide to go to Meeting A and your co-worker goes to Meeting B
You tell your co-worker that if Meeting B is still going after Meeting A ends, you will join
The following two scenarios could play out:
Meeting A ends and Meeting B is still going, so you join
Meeting A ends and Meeting B has also ended, so you can't join
In the example, you have a weak pointer to Meeting B. You are not an "owner" in Meeting B so it can end without you, and you do not know whether it ended or not unless you check. If it hasn't ended, you can join and participate, otherwise, you cannot. This is different than having a shared pointer to Meeting B because you would then be an "owner" in both Meeting A and Meeting B (participating in both at the same time).
The example illustrates how a weak pointer works and is useful when an object needs to be an outside observer, but does not want the responsibility of sharing ownership. This is particularly useful in the scenario that two objects need to point to each other (a.k.a. a circular reference). With shared pointers, neither object can be released because they are still 'strongly' pointed to by the other object. When one of the pointers is a weak pointer, the object holding the weak pointer can still access the other object when needed, provided it still exists.
They are useful with Boost.Asio when you are not guaranteed that a target object still exists when an asynchronous handler is invoked. The trick is to bind a weak_ptr into the asynchonous handler object, using std::bind or lambda captures.
void MyClass::startTimer()
{
std::weak_ptr<MyClass> weak = shared_from_this();
timer_.async_wait( [weak](const boost::system::error_code& ec)
{
auto self = weak.lock();
if (self)
{
self->handleTimeout();
}
else
{
std::cout << "Target object no longer exists!\n";
}
} );
}
This is a variant of the self = shared_from_this() idiom often seen in Boost.Asio examples, where a pending asynchronous handler will not prolong the lifetime of the target object, yet is still safe if the target object is deleted.
shared_ptr : holds the real object.
weak_ptr : uses lock to connect to the real owner or returns a NULL shared_ptr otherwise.
Roughly speaking, weak_ptr role is similar to the role of housing agency. Without agents, to get a house on rent we may have to check random houses in the city. The agents make sure that we visit only those houses which are still accessible and available for rent.
weak_ptr is also good to check the correct deletion of an object - especially in unit tests. Typical use case might look like this:
std::weak_ptr<X> weak_x{ shared_x };
shared_x.reset();
BOOST_CHECK(weak_x.lock());
... //do something that should remove all other copies of shared_x and hence destroy x
BOOST_CHECK(!weak_x.lock());
Apart from the other already mentioned valid use cases std::weak_ptr is an awesome tool in a multithreaded environment, because
It doesn't own the object and so can't hinder deletion in a different thread
std::shared_ptr in conjunction with std::weak_ptr is safe against dangling pointers - in opposite to std::unique_ptr in conjunction with raw pointers
std::weak_ptr::lock() is an atomic operation (see also About thread-safety of weak_ptr)
Consider a task to load all images of a directory (~10.000) simultaneously into memory (e.g. as a thumbnail cache). Obviously the best way to do this is a control thread, which handles and manages the images, and multiple worker threads, which load the images. Now this is an easy task. Here's a very simplified implementation (join() etc is omitted, the threads would have to be handled differently in a real implementation etc)
// a simplified class to hold the thumbnail and data
struct ImageData {
std::string path;
std::unique_ptr<YourFavoriteImageLibData> image;
};
// a simplified reader fn
void read( std::vector<std::shared_ptr<ImageData>> imagesToLoad ) {
for( auto& imageData : imagesToLoad )
imageData->image = YourFavoriteImageLib::load( imageData->path );
}
// a simplified manager
class Manager {
std::vector<std::shared_ptr<ImageData>> m_imageDatas;
std::vector<std::unique_ptr<std::thread>> m_threads;
public:
void load( const std::string& folderPath ) {
std::vector<std::string> imagePaths = readFolder( folderPath );
m_imageDatas = createImageDatas( imagePaths );
const unsigned numThreads = std::thread::hardware_concurrency();
std::vector<std::vector<std::shared_ptr<ImageData>>> splitDatas =
splitImageDatas( m_imageDatas, numThreads );
for( auto& dataRangeToLoad : splitDatas )
m_threads.push_back( std::make_unique<std::thread>(read, dataRangeToLoad) );
}
};
But it becomes much more complicated, if you want to interrupt the loading of the images, e.g. because the user has chosen a different directory. Or even if you want to destroy the manager.
You'd need thread communication and have to stop all loader threads, before you may change your m_imageDatas field. Otherwise the loaders would carry on loading until all images are done - even if they are already obsolete. In the simplified example, that wouldn't be too hard, but in a real environment things can be much more complicated.
The threads would probably be part of a thread pool used by multiple managers, of which some are being stopped, and some aren't etc. The simple parameter imagesToLoad would be a locked queue, into which those managers push their image requests from different control threads with the readers popping the requests - in an arbitrary order - at the other end. And so the communication becomes difficult, slow and error-prone. A very elegant way to avoid any additional communication in such cases is to use std::shared_ptr in conjunction with std::weak_ptr.
// a simplified reader fn
void read( std::vector<std::weak_ptr<ImageData>> imagesToLoad ) {
for( auto& imageDataWeak : imagesToLoad ) {
std::shared_ptr<ImageData> imageData = imageDataWeak.lock();
if( !imageData )
continue;
imageData->image = YourFavoriteImageLib::load( imageData->path );
}
}
// a simplified manager
class Manager {
std::vector<std::shared_ptr<ImageData>> m_imageDatas;
std::vector<std::unique_ptr<std::thread>> m_threads;
public:
void load( const std::string& folderPath ) {
std::vector<std::string> imagePaths = readFolder( folderPath );
m_imageDatas = createImageDatas( imagePaths );
const unsigned numThreads = std::thread::hardware_concurrency();
std::vector<std::vector<std::weak_ptr<ImageData>>> splitDatas =
splitImageDatasToWeak( m_imageDatas, numThreads );
for( auto& dataRangeToLoad : splitDatas )
m_threads.push_back( std::make_unique<std::thread>(read, dataRangeToLoad) );
}
};
This implementation is nearly as easy as the first one, doesn't need any additional thread communication, and could be part of a thread pool/queue in a real implementation. Since the expired images are skipped, and non-expired images are processed, the threads never would have to be stopped during normal operation.
You could always safely change the path or destroy your managers, since the reader fn checks, if the owning pointer isn't expired.
I see a lot of interesting answers that explain reference counting etc., but I am missing a simple example that demonstrates how you prevent memory leak using weak_ptr. In first example I use shared_ptr in cyclically referenced classes. When the classes go out of scope they are NOT destroyed.
#include<iostream>
#include<memory>
using namespace std;
class B;
class A
{
public:
shared_ptr<B>bptr;
A() {
cout << "A created" << endl;
}
~A() {
cout << "A destroyed" << endl;
}
};
class B
{
public:
shared_ptr<A>aptr;
B() {
cout << "B created" << endl;
}
~B() {
cout << "B destroyed" << endl;
}
};
int main()
{
{
shared_ptr<A> a = make_shared<A>();
shared_ptr<B> b = make_shared<B>();
a->bptr = b;
b->aptr = a;
}
// put breakpoint here
}
If you run the code snippet you will see as classes are created, but not destroyed:
A created
B created
Now we change shared_ptr's to weak_ptr:
class B;
class A
{
public:
weak_ptr<B>bptr;
A() {
cout << "A created" << endl;
}
~A() {
cout << "A destroyed" << endl;
}
};
class B
{
public:
weak_ptr<A>aptr;
B() {
cout << "B created" << endl;
}
~B() {
cout << "B destroyed" << endl;
}
};
int main()
{
{
shared_ptr<A> a = make_shared<A>();
shared_ptr<B> b = make_shared<B>();
a->bptr = b;
b->aptr = a;
}
// put breakpoint here
}
This time, when using weak_ptr we see proper class destruction:
A created
B created
B destroyed
A destroyed
I see std::weak_ptr<T> as a handle to a std::shared_ptr<T>: It allows me
to get the std::shared_ptr<T> if it still exists, but it will not extend its
lifetime. There are several scenarios when such point of view is useful:
// Some sort of image; very expensive to create.
std::shared_ptr< Texture > texture;
// A Widget should be able to quickly get a handle to a Texture. On the
// other hand, I don't want to keep Textures around just because a widget
// may need it.
struct Widget {
std::weak_ptr< Texture > texture_handle;
void render() {
if (auto texture = texture_handle.get(); texture) {
// do stuff with texture. Warning: `texture`
// is now extending the lifetime because it
// is a std::shared_ptr< Texture >.
} else {
// gracefully degrade; there's no texture.
}
}
};
Another important scenario is to break cycles in data structures.
// Asking for trouble because a node owns the next node, and the next node owns
// the previous node: memory leak; no destructors automatically called.
struct Node {
std::shared_ptr< Node > next;
std::shared_ptr< Node > prev;
};
// Asking for trouble because a parent owns its children and children own their
// parents: memory leak; no destructors automatically called.
struct Node {
std::shared_ptr< Node > parent;
std::shared_ptr< Node > left_child;
std::shared_ptr< Node > right_child;
};
// Better: break dependencies using a std::weak_ptr (but not best way to do it;
// see Herb Sutter's talk).
struct Node {
std::shared_ptr< Node > next;
std::weak_ptr< Node > prev;
};
// Better: break dependencies using a std::weak_ptr (but not best way to do it;
// see Herb Sutter's talk).
struct Node {
std::weak_ptr< Node > parent;
std::shared_ptr< Node > left_child;
std::shared_ptr< Node > right_child;
};
Herb Sutter has an excellent talk that explains the best use of language
features (in this case smart pointers) to ensure Leak Freedom by Default
(meaning: everything clicks in place by construction; you can hardly screw it
up). It is a must watch.
http://en.cppreference.com/w/cpp/memory/weak_ptr
std::weak_ptr is a smart pointer that holds a non-owning ("weak") reference to an object that is managed by std::shared_ptr. It must be converted to std::shared_ptr in order to access the referenced object.
std::weak_ptr models temporary ownership: when an object needs to be accessed only if it exists, and it may be deleted at any time by someone else, std::weak_ptr is used to track the object, and it is converted to std::shared_ptr to assume temporary ownership. If the original std::shared_ptr is destroyed at this time, the object's lifetime is extended until the temporary std::shared_ptr is destroyed as well.
In addition, std::weak_ptr is used to break circular references of std::shared_ptr.
There is a drawback of shared pointer:
shared_pointer can't handle the parent-child cycle dependency. Means if the parent class uses the object of child class using a shared pointer, in the same file if child class uses the object of the parent class. The shared pointer will be failed to destruct all objects, even shared pointer is not at all calling the destructor in cycle dependency scenario. basically shared pointer doesn't support the reference count mechanism.
This drawback we can overcome using weak_pointer.
When we does not want to own the object:
Ex:
class A
{
shared_ptr<int> sPtr1;
weak_ptr<int> wPtr1;
}
In the above class wPtr1 does not own the resource pointed by wPtr1. If the resource is got deleted then wPtr1 is expired.
To avoid circular dependency:
shard_ptr<A> <----| shared_ptr<B> <------
^ | ^ |
| | | |
| | | |
| | | |
| | | |
class A | class B |
| | | |
| ------------ |
| |
-------------------------------------
Now if we make the shared_ptr of the class B and A, the use_count of the both pointer is two.
When the shared_ptr goes out od scope the count still remains 1 and hence the A and B object does not gets deleted.
class B;
class A
{
shared_ptr<B> sP1; // use weak_ptr instead to avoid CD
public:
A() { cout << "A()" << endl; }
~A() { cout << "~A()" << endl; }
void setShared(shared_ptr<B>& p)
{
sP1 = p;
}
};
class B
{
shared_ptr<A> sP1;
public:
B() { cout << "B()" << endl; }
~B() { cout << "~B()" << endl; }
void setShared(shared_ptr<A>& p)
{
sP1 = p;
}
};
int main()
{
shared_ptr<A> aPtr(new A);
shared_ptr<B> bPtr(new B);
aPtr->setShared(bPtr);
bPtr->setShared(aPtr);
return 0;
}
output:
A()
B()
As we can see from the output that A and B pointer are never deleted and hence memory leak.
To avoid such issue just use weak_ptr in class A instead of shared_ptr which makes more sense.
Inspired by #offirmo's response I wrote this code and then ran the visual studio diagnostic tool:
#include <iostream>
#include <vector>
#include <memory>
using namespace std;
struct Member;
struct Team;
struct Member {
int x = 0;
Member(int xArg) {
x = xArg;
}
shared_ptr<Team> teamPointer;
};
struct Team {
vector<shared_ptr<Member>> members;
};
void foo() {
auto t1 = make_shared<Team>();
for (int i = 0; i < 1000000; i++) {
t1->members.push_back(make_shared<Member>(i));
t1->members.back()->teamPointer = t1;
}
}
int main() {
foo();
while (1);
return 0;
}
When the member pointer to the team is shared_ptr teamPointer the memory is not free after foo() is done, i.e. it stays at around 150 MB.
But if it's changed to weak_ptr teamPointer in the diagnostic tool you'll see a peak and then memory usage returns to about 2MB.

Using struct causes kernel panic?

I'm taking my first crack at writing some linux kernel code, and I'm hitting a weird kernel panic.
I have a linked list I am maintaining with the kernel's built-in macros (include/linux/list.h). If the list is empty, I allocate an instance of the following structure:
struct time_span
{
struct timeval start;
struct timeval end;
};
and point to it with a pointer called "tmp". I add tmp to the list I'm maintaining with list_add_tail().
Later, if the list is not empty (I'm trying to test with one list item to simplify debugging), I point to the first item in the list with tmp and try to print out the contents of tmp->end.tv_sec. Unfortunately, this causes a kernel panic.
tmp is not NULL (I check at run-time) and neither is "tmp->end" (I am able to print both). It's only when I try to access one of the fields in "end" that I get a kernel panic. I've never seen something like this before -- does anyone have any ideas?
Thanks for any assistance!
-------EDIT------
Code example (this lives in a function that will be called repeatedly):
// .........
struct timeval now_tv;
do_gettimeofday(&now_tv);
if(!list_empty(&(my_list.time_list)))
{
tmp = list_first_entry(&(my_list.time_list), struct time_span, time_list);
if(tmp != NULL)
{
tmp->end.tv_sec = now_tv.tv_sec; // THIS BREAKS
// Attempting to print "tmp->end.tv_sec" also breaks.
tmp->end.tv_usec = now_tv.tv_usec;
}
}
// .........
if(list_empty(&(my_list.time_list)))
{
new_time_span = (struct time_span *) kmalloc(sizeof(struct time_span), GFP_KERNEL);
INIT_LIST_HEAD(&(new_time_span->time_list));
list_add_tail(&(new_time_span->time_list), &(my_list.time_list));
do_gettimeofday(&(new_time_span->start));
}
// ........
You're missing some fundamentals about Linux linked lists.
The following should change:
struct time_span
{
struct timeval start;
struct timeval end;
};
To:
struct time_span
{
struct timeval start;
struct timeval end;
struct list_head time_list;
}
When using Linux linked lists you should put the struct list_head inside your struct that you want a list of.
In the code below, you're allocating a type struct time_span and referencing a variable named time_list inside the allocated variable new_time_span... but you haven't added that to your struct above.
// .........
struct timeval now_tv;
do_gettimeofday(&now_tv);
if(!list_empty(&(my_list.time_list)))
{
tmp = list_first_entry(&(my_list.time_list), struct time_span, time_list);
if(tmp != NULL)
{
tmp->end.tv_sec = now_tv.tv_sec; // THIS BREAKS
// Attempting to print "tmp->end.tv_sec" also breaks.
tmp->end.tv_usec = now_tv.tv_usec;
}
}
Based on the information you've provided, I don't know why the above breaks. Maybe it's just that tmp is a pointer pointing to garbage and that's why it crashes? If you have a kernel debugger setup it's easy to verify.
// .........
if(list_empty(&(my_list.time_list)))
{
new_time_span = (struct time_span *) kmalloc(sizeof(struct time_span), GFP_KERNEL);
INIT_LIST_HEAD(&(new_time_span->time_list));
list_add_tail(&(new_time_span->time_list), &(my_list.time_list));
do_gettimeofday(&(new_time_span->start));
}
// ........
Here are some good articles that should help:
http://kernelnewbies.org/FAQ/LinkedLists
http://sumanadak.blogspot.com/2006/09/linux-kernel-linked-list.html

Resources