Defining path directions on D*Lite - algorithm

I'm currently working on an implementation of the D*Lite algorithm from Sven Koenig.
http://idm-lab.org/bib/abstracts/papers/aaai02b.pdf. Basically I'm trying to understand all the details before starting to implement it. It seems that the algorithm works on directed graphs, that's the way to define the Pred and Succ functions.
How do I define the direction of the graphs and which the parameters decide the direction of the graphs. Should I use the value of some parameter like the g cost (which doesn't seem to be a good choice...since is the g cost along with the rhs value the one the algorithm updates) or the heuristic estimate of the distance?

D*, and D*-lite will both work on both directed and undirected graphs.
A graph is G = (V, E), where V is a list of configurations (or states) that can be reached. E is a list of the connections between vertices. In a directed graph, E is a set of edges which are ordered pairs (u, v), where both u and v are vertices. In an undirected graph, E is a set of unordered pairs.
Planning on an undirected graph is equivalent to planning on a directed graph, with a bidirectional edge. That is, if (u,v) is an edge (v, u) will also be an edge.
How you construct the graphs is application specific, and varies from simple grids to much more complex strategies like lattice approximations to forward kinematics.

Related

Difficulties understanding, bipartite graphs

I am looking back at some of my algorithms homework(exam soon haha), and I am having troubles understanding the solution to one of the questions.
The Question
Tutor Solution
I am having difficulties visualizing the solution, I understand that if you have an odd number of cycles than your graph cannot be bipartite. But as I stated, I don't understand the shortest path from s to u and v to s.
Let's say G is bipartite. Then the vertex set can be divided into V1 and V2 s.t. every edge of G includes a vertex from each set. Then the vertices of every path in G alternate between V1 and V2, so the parity of the length of every path between every pair of vertices is the same. I.e., if G is bipartite and v,w are two vertices of G, then the length of every path connecting v & w is either even or odd.
If there is an edge (u,v) connecting two vertices in the same layer then this is violated. The BFS path to v and u have the same length, so same parity, since v & u are in the same layer. The edge between v & u gives us a path longer by 1, so of a different parity. Contradiction.
The tutor's solution isn't as clear as it could be, since it talks about cycles, and the two paths don't necessarily form a cycle since they can share vertices. And the definition of bipartite graph is slightly wrong (or uses non-standard definitions of edges, cross-product etc. where the things aren't pairs but 2-element sets).
But instead of the definition as given, I'd just say that a graph is bipartite if the vertices can be coloured black or white, such that each edge goes between different-coloured vertices. (Equivalently you can simply say "the graph is 2-colourable").
From this definition, it follows that if there's an even length path between two vertices they must be the same colour, otherwise different colours. In the BFS on a bipartite graph, a vertex u is layer i has a path of length i from s to u, so all vertices in the same layer have the same colour. Thus there can be no edge between two vertices in the same layer.

All shortest paths in a graph using K reverse edges

Let's say i have a directed graph G(V,E) with positive integer weights at it's edges.What i need to do is find the shortest paths between all vertices using at most K(integer) reverse edges.What i mean by that is:If we are at edge u and there is only a directed edge from v to u we can use it as long as we have not used K reverse edges for this path.This has to be implemented in C++ and give the shortest paths as a result.
I thought about running dijkstra V times(something like Johnson's algorithm)but i am not sure how to take advantage of the reverse edge property.Any ideas?
The common approach to problems like this is usually described as "layering". You (conceptually) make K+1 copies of the graph, G0 to GK, and then connect a vertex ui in Gi to a vertex vi+1 in Gi+1 if there is an edge from v to u in G.
A path from s0 in G0 to ti in Gi then represents a path from s to t in G that uses i reverse edges, where i is at most K.
You can just use Dijkstra's algorithm on this new layered graph.
When you get used to this you can think about it in an even simpler way: you just use Dijkstra's algorithm, but instead of having states in the queue like [reached v, with cost c], you use states like [reached v, with cost c, having used i reverse edges]. Often, when we use Dijkstra's in real life, there is no actual graph given, so it helps to think of it as a search through states and their transitions.

Minimum sum of distances from sensor nodes to all others

Is there a way to compute (accurate or hevristics) this problem on medium sized (up to 1000 nodes) weighted graph?
Place n (for example 5) sensors in nodes of the graph in such way that the sum of distances from every other node to the closest sensor will be minimal.
I'll show that this problem is NP-hard by reduction from Vertex Cover. This applies even if the graph is unweighted (you don't say whether it's weighted or not).
Given an unweighted graph G = (V, E) and an integer k, the question asked by Vertex Cover is "Does there exist a set of at most k vertices such that every edge has at least one endpoint in this set?" We will build a new graph G' = (V', E), which is the same as G except that all isolated vertices have been discarded, solve your problem on G', and then use it to answer the original question about Vertex Cover.
Suppose there does exist such a set S of k vertices. If we consider this set S to be the locations to put sensors in your problem, then every vertex in S has a distance of 0, and every other vertex is at a distance of exactly 1 away from a vertex that is in S (because if there was some vertex u for which this wasn't true, it would mean that none of u's neighbours are in S, so for each such neighbour u, the edge uv is not covered by the vertex cover, which would be a contradiction.)
This type of problem is called graph clustering. One of the popular methods to solve it is the Markov Cluster (MCL) Algorithm. A web search should provide some implementation examples. However it does not generally provide the optimal solution.

Graph Has Two / Three Different Minimal Spanning Trees ?

I'm trying to find an efficient method of detecting whether a given graph G has two different minimal spanning trees. I'm also trying to find a method to check whether it has 3 different minimal spanning trees. The naive solution that I've though about is running Kruskal's algorithm once and finding the total weight of the minimal spanning tree. Later , removing an edge from the graph and running Kruskal's algorithm again and checking if the weight of the new tree is the weight of the original minimal spanning tree , and so for each edge in the graph. The runtime is O(|V||E|log|V|) which is not good at all, and I think there's a better way to do it.
Any suggestion would be helpful,
thanks in advance
You can modify Kruskal's algorithm to do this.
First, sort the edges by weight. Then, for each weight in ascending order, filter out all irrelevant edges. The relevant edges form a graph on the connected components of the minimum-spanning-forest-so-far. You can count the number of spanning trees in this graph. Take the product over all weights and you've counted the total number of minimum spanning trees in the graph.
You recover the same running time as Kruskal's algorithm if you only care about the one-tree, two-trees, and three-or-more-trees cases. I think you wind up doing a determinant calculation or something to enumerate spanning trees in general, so you likely wind up with an O(MM(n)) worst-case in general.
Suppose you have a MST T0 of a graph. Now, if we can get another MST T1, it must have at least one edge E different from the original MST. Throw away E from T1, now the graph is separated into two components. However, in T0, these two components must be connected, so there will be another edge across this two components that has exactly the same weight as E (or we could substitute the one with more weight with the other one and get a smaller ST). This means substitute this other edge with E will give you another MST.
What this implies is if there are more than one MSTs, we can always change just a single edge from a MST and get another MST. So if you are checking for each edge, try to substitute the edge with the ones with the same weight and if you get another ST it is a MST, you will get a faster algorithm.
Suppose G is a graph with n vertices and m edges; that the weight of any edge e is W(e); and that P is a minimal-weight spanning tree on G, weighing Cost(W,P).
Let δ = minimal positive difference between any two edge weights. (If all the edge weights are the same, then δ is indeterminate; but in this case, any ST is an MST so it doesn't matter.) Take ε such that δ > n·ε > 0.
Create a new weight function U() with U(e)=W(e)+ε when e is in P, else U(e)=W(e). Compute Q, an MST of G under U. If Cost(U,Q) < Cost(U,P) then Q≠P. But Cost(W,Q) = Cost(W,P) by construction of δ and ε. Hence P and Q are distinct MSTs of G under W. If Cost(U,Q) ≥ Cost(U,P) then Q=P and distinct MSTs of G under W do not exist.
The method above determines if there are at least two distinct MSTs, in time O(h(n,m)) if O(h(n,m)) bounds the time to find an MST of G.
I don't know if a similar method can treat whether three (or more) distinct MSTs exist; simple extensions of it fall to simple counterexamples.

Directed maximum weighted bipartite matching allowing sharing of start/end vertices

Let G (U u V, E) be a weighted directed bipartite graph (i.e. U and V are the two sets of nodes of the bipartite graph and E contains directed weighted edges from U to V or from V to U). Here is an example:
In this case:
U = {A,B,C}
V = {D,E,F}
E = {(A->E,7), (B->D,1), (C->E,3), (F->A,9)}
Definition: DirectionalMatching (I made up this term just to make things clearer): set of directed edges that may share the start or end vertices. That is, if U->V and U'->V' both belong to a DirectionalMatching then V /= U' and V' /= U but it may be that U = U' or V = V'.
My question: How to efficiently find a DirectionalMatching, as defined above, for a bipartite directional weighted graph which maximizes the sum of the weights of its edges?
By efficiently, I mean polynomial complexity or faster, I already know how to implement a naive brute force approach.
In the example above the maximum weighted DirectionalMatching is: {F->A,C->E,B->D}, with a value of 13.
Formally demonstrating the equivalence of this problem to any other well known problem in graph theory would also be valuable.
Thanks!
Note 1: This question is based on Maximum weighted bipartite matching _with_ directed edges but with the extra relaxation that it is allowed for edges in the matching to share the origin or destination. Since that relaxation makes a big difference, I created an independent question.
Note 2: This is a maximum weight matching. Cardinality (how many edges are present) and the number of vertices covered by the matching is irrelevant for a correct result. Only the maximum weight matters.
Note 2: During my research to solve the problem I found this paper, I think it would be helpful to others trying to find a solution: Alternating cycles and paths in edge-coloured
multigraphs: a survey
Note 3: In case it helps, you can also think of the graph as its equivalent 2-edge coloured undirected bipartite multigraph. The problem formulation would then turn into: Find the set of edges without colour-alternating paths or cycles which has maximum weight sum.
Note 4: I suspect that the problem might be NP-hard, but I am not that experienced with reductions so I haven't managed to prove it yet.
Yet another example:
Imagine you had
4 vertices: {u1, u2} {v1, v2}
4 edges: {u1->v1, u1->v2, u2->v1, v2->u2}
Then, regardless of their weights, u1->v2 and v2->u2 cannot be in the same DirectionalMatching, neither can v2->u2 and u2->v1. However u1->v1 and u1->v2 can, and so can u1->v1 and u2->v1.
Define a new undirected graph G' from G as follows.
G' has a node (A, B) with weight w for each directed edge (A, B) with weight w in G
G' has undirected edge ((A, B),(B, C)) if (A, B) and (B, C) are both directed edges in G
http://en.wikipedia.org/wiki/Line_graph#Line_digraphs
Now find a maximal (weighted) independent vertex set in G'.
http://en.wikipedia.org/wiki/Vertex_independent_set
Edit: stuff after this point only works if all of the edge weights are the same - when the edge weights have different values its a more difficult problem (google "maximum weight independent vertex set" for possible algorithms)
Typically this would be an NP-hard problem. However, G' is a bipartite graph -- it contains only even cycles. Finding the maximal (weighted) independent vertex set in a bipartite graph is not NP-hard.
The algorithm you will run on G' is as follows.
Find the connected components of G', say H_1, H_2, ..., H_k
For each H_i do a 2-coloring (say red and blue) of the nodes. The cookbook approach here is to do a depth-first search on H_i alternating colors. A simple approach would be to color each vertex in H_i based on whether the corresponding edge in G goes from U to V (red) or from V to U (blue).
The two options for which nodes to select from H_i are either all the red nodes or all the blue nodes. Choose the colored node set with higher weight. For example, the red node set has weight equal to H_i.nodes.where(node => node.color == red).sum(node => node.w). Call the higher-weight node set N_i.
Your maximal weighted independent vertex set is now union(N_1, N_2, ..., N_k).
Since each vertex in G' corresponds to one of the directed edges in G, you have your maximal DirectionalMatching.
This problem can be solved in polynomial time using the Hungarian Algorithm. The "proof" by Vor above is wrong.
The method of structuring the problem for the above example is as follows:
D E F
A # 7 9
B 1 # #
C # 3 #
where "#" means negative infinity. You then resolve the matrix using the Hungarian algorithm to determine the maximum matching. You can multiply the numbers by -1 if you want to find a minimum matching.

Resources