Ada Digits Confusion - precision

I have been doing some reading, and I'm having a tough time understanding how to interpret something that is a "digits x".
I.E.
type something is digits 6
I get that it's 6 digits of precision, but I guess what has me mixed up is what does that mean.
1) Y.XXXXXX (6X's),
2) XXX.XXX (Any number of digits, just will always be 6 of them counting both fore and aft the mantissa)
...
I'm just trying to understand what a range of something that is digits 6 (or digits n to be more generic), is there a formula I can simply plug into to determine what my ranges are on a type that is some number of digits?

A type declared with digits is a floating-point type, similar to Float or Long_Float.
The 6 is "the minimum number of significant decimal digits required for
the floating point type". For example, all the following will be represented reasonably accurately (but not exactly):
type My_Real is digits 6;
X: My_Real := 1.23456;
Y: My_Real := 12345.6;
Z: My_Real := 1.23456E7;
In practice, there are usually just 2 or 3 underlying floating-point types on a given system. The compiler will choose an appropriate one as the underlying type for your declaration. In practice, two types declared with digits 2 and digits 6 will probably have exactly the same representation and precision.
Understanding the phrase "not exactly" requires an understanding of floating-point that's well beyond the scope of a single question, but if you're familiar with floating-point in other languages, it's the same general idea.
If you want a general understanding of what floating-point is and how it works, the Wikipedia Article isn't bad. A much more advanced treatment is David Goldberg's classic paper "What Every Computer Scientist Should Know About Floating-Point Arithmetic", available here as a web page and here as a PDF.

Related

Mathematica precision differs from other calculators

If I evaluate the following input in Mathematica 12:
SetPrecision[DecimalForm[123.432654/54.1122356, 130], 130]
The result is:
2.2810488724291406725797060062177479267120361328125000000000000000000000000000000000000000000000000000000000000000000000000000000000
When I run the same calculation in other calculators, the results are equal until the 15th digit of the Mathematica result: 2,281048872429140. However, as of the 16th digit, the other calculators show an equal result whereas Mathematica is showing a different result:
Windows Calculator:
2,281048872429140591633586101550
https://keisan.casio.com/calculator:
2.281048872429140591633586101550[.....]
https://www.mathsisfun.com/calculator-precision.html:
2.281048872429140591633586101550[.....]
Mathematica:
2.281048872429140672579706006217[.....].
Why is (only) Mathematica ending up with a different result?
Can Mathematica somehow end up with the same result as the other calculators (supposing that these unanimous results are the correct ones)?
Mathematica's model of approximate decimal numbers is different from almost everyone else's model of approximate decimal numbers.
Because of the number of digits you supplied for each of 123.432654 and 54.1122356 these are assumed to be and treated as MachinePrecision numbers. That means they have the usual "about 16 digits of precision as supplied by the CPU floating point hardware in your computer, but it is a little more complicated than that.
Because of precedence rules Mathematica first evaluated each of those numbers and converted them to the internal floating point form, with the limited accuracy and all the problems that brings and all the speed of being able to perform calculations in hardware instead of software.
Then it did the division using the internal floating point hardware which resulted in another MachinePrecision number with only about 16 digits of precision.
Then with DecimalForm you asked Mathematica to extrapolate that result with only about 16 good digits into a 130 digit display.
All, or almost all with some very subtle things in dark corners, of the *Form functions are intended to and only used to produce something that can be displayed and not used for further calculations. For example, new users routinely do m=MatrixForm[mymatrix] to see a pretty formatting of the matrix and then proceed to try to do calculations with m, which fails.
Then you asked Mathematica to perform the SetPrecision function on that display to try to turn that into a 130 bit precision number. I can't even guess what that really did internally.
It seems those other calculators assume that the precision of the entered numbers is infinite. WL does not. You can specify what precision the entered numbers have e.g.
123.432654`30/54.1122356`30
2.28104887242914059163358610155

64 bit integer and 64 bit float homogeneous representation

Assume we have some sequence as input. For performance reasons we may want to convert it in homogeneous representation. And in order to transform it into homogeneous representation we are trying to convert it to same type. Here lets consider only 2 types in input - int64 and float64 (in my simple code I will use numpy and python; it is not the matter of this question - one may think only about 64-bit integer and 64-bit floats).
First we may try to cast everything to float64.
So we want something like so as input:
31 1.2 -1234
be converted to float64. If we would have all int64 we may left it unchanged ("already homogeneous"), or if something else was found we would return "not homogeneous". Pretty straightforward.
But here is the problem. Consider a bit modified input:
31000000 1.2 -1234
Idea is clear - we need to check that our "caster" is able to handle large by absolute value int64 properly:
format(np.float64(31000000), '.0f') # just convert to float64 and print
'31000000'
Seems like not a problem at all. So lets go to the deal right away:
im = np.iinfo(np.int64).max # maximum of int64 type
format(np.float64(im), '.0f')
format(np.float64(im-100), '.0f')
'9223372036854775808'
'9223372036854775808'
Now its really undesired - we lose some information which maybe needed. I.e. we want to preserve all the information provided in the input sequence.
So our im and im-100 values cast to the same float64 representation. The reason of this is clear - float64 has only 53 significand of total 64 bits. That is why its precision enough to represent log10(2^53) ~= 15.95 i.e. about all 16-length int64 without any information loss. But int64 type contains up to 19 digits.
So we end up with about [10^16; 10^19] (more precisely [10^log10(53); int64.max]) range in which each int64 may be represented with information loss.
Q: What decision in such situation should one made in order to represent int64 and float64 homogeneously.
I see several options for now:
Just convert all int64 range to float64 and "forget" about possible information loss.
Motivation here is "majority of input barely will be > 10^16 int64 values".
EDIT: This clause was misleading. In clear formulation we don't consider such solutions (but left it for completeness).
Do not make such automatic conversions at all. Only if explicitly specified.
I.e. we agree with performance drawbacks. For any int-float arrays. Even with ones as in simplest 1st case.
Calculate threshold for performing conversion to float64 without possible information loss. And use it while making casting decision. If int64 above this threshold found - do not convert (return "not homogeneous").
We've already calculate this threshold. It is log10(2^53) rounded.
Create new type "fint64". This is an exotic decision but I'm considering even this one for completeness.
Motivation here consists of 2 points. First one: it is frequent situation when user wants to store int and float types together. Second - is structure of float64 type. I'm not quite understand why one will need ~308 digits value range if significand consists only of ~16 of them and other ~292 is itself a noise. So we might use one of float64 exponent bits to indicate whether its float or int is stored here. But for int64 it would be definitely drawback to lose 1 bit. Cause would reduce our integer range twice. But we would gain possibility freely store ints along with floats without any additional overhead.
EDIT: While my initial thinking of this was as "exotic" decision in fact it is just a variant of another solution alternative - composite type for our representation (see 5 clause). But need to add here that my 1st composition has definite drawback - losing some range for float64 and for int64. What we rather do - is not to subtract 1 bit but add one bit which represents a flag for int or float type stored in following 64 bits.
As proposed #Brendan one may use composite type consists of "combination of 2 or more primitive types". So using additional primitives we may cover our "problem" range for int64 for example and get homogeneous representation in this "new" type.
EDITs:
Because here question arisen I need to try be very specific: Devised application in question do following thing - convert sequence of int64 or float64 to some homogeneous representation lossless if possible. The solutions are compared by performance (e.g. total excessive RAM needed for representation). That is all. No any other requirements is considered here (cause we should consider a problem in its minimal state - not writing whole application). Correspondingly algo that represents our data in homogeneous state lossless (we are sure we not lost any information) fits into our app.
I've decided to remove words "app" and "user" from question - it was also misleading.
When choosing a data type there are 3 requirements:
if values may have different signs
needed precision
needed range
Of course hardware doesn't provide a lot of types to choose from; so you'll need to select the next largest provided type. For example, if you want to store values ranging from 0 to 500 with 8 bits of precision; then hardware won't provide anything like that and you will need to use either 16-bit integer or 32-bit floating point.
When choosing a homogeneous representation there are 3 requirements:
if values may have different signs; determined from the requirements from all of the original types being represented
needed precision; determined from the requirements from all of the original types being represented
needed range; determined from the requirements from all of the original types being represented
For example, if you have integers from -10 to +10000000000 you need a 35 bit integer type that doesn't exist so you'll use a 64-bit integer, and if you need floating point values from -2 to +2 with 31 bits of precision then you'll need a 33 bit floating point type that doesn't exist so you'll use a 64-bit floating point type; and from the requirements of these two original types you'll know that a homogeneous representation will need a sign flag, a 33 bit significand (with an implied bit), and a 1-bit exponent; which doesn't exist so you'll use a 64-bit floating point type as the homogeneous representation.
However; if you don't know anything about the requirements of the original data types (and only know that whatever the requirements were they led to the selection of a 64-bit integer type and a 64-bit floating point type), then you'll have to assume "worst cases". This leads to needing a homogeneous representation that has a sign flag, 62 bits of precision (plus an implied 1 bit) and an 8 bit exponent. Of course this 71 bit floating point type doesn't exist, so you need to select the next largest type.
Also note that sometimes there is no "next largest type" that hardware supports. When this happens you need to resort to "composed types" - a combination of 2 or more primitive types. This can include anything up to and including "big rational numbers" (numbers represented by 3 big integers in "numerator / divisor * (1 << exponent)" form).
Of course if the original types (the 64-bit integer type and 64-bit floating point type) were primitive types and your homogeneous representation needs to use a "composed type"; then your "for performance reasons we may want to convert it in homogeneous representation" assumption is likely to be false (it's likely that, for performance reasons, you want to avoid using a homogeneous representation).
In other words:
If you don't know anything about the requirements of the original data types, it's likely that, for performance reasons, you want to avoid using a homogeneous representation.
Now...
Let's rephrase your question as "How to deal with design failures (choosing the wrong types which don't meet requirements)?". There is only one answer, and that is to avoid the design failure. Run-time checks (e.g. throwing an exception if the conversion to the homogeneous representation caused precision loss) serve no purpose other than to notify developers of design failures.
It is actually very basic: use 64 bits floating point. Floating point is an approximation, and you will loose precision for many ints. But there are no uncertainties other than "might this originally have been integral" and "does the original value deviates more than 1.0".
I know of one non-standard floating point representation that would be more powerfull (to be found in the net). That might (or might not) help cover the ints.
The only way to have an exact int mapping, would be to reduce the int range, and guarantee (say) 60 bits ints to be precise, and the remaining range approximated by floating point. Floating point would have to be reduced too, either exponential range as mentioned, or precision (the mantissa).

Is using integers as fractional coefficients instead of floats a good idea for a monetary application?

My application requires a fractional quantity multiplied by a monetary value.
For example, $65.50 × 0.55 hours = $36.025 (rounded to $36.03).
I know that floats should not be used to represent money, so I'm storing all of my monetary values as cents. $65.50 in the above equation is stored as 6550 (integer).
For the fractional coefficient, my issue is that 0.55 does not have a 32-bit float representation. In the use case above, 0.55 hours == 33 minutes, so 0.55 is an example of a specific value that my application will need to account for exactly. The floating point representation of 0.550000012 is insufficient, because the user will not understand where the additional 0.000000012 came from. I cannot simply call a rounding function on 0.550000012 because it will round to the whole number.
Multiplication solution
To solve this, my first idea was to store all quantities as integers and multiply × 1000. So 0.55 entered by the user would become 550 (integer) when stored. All calculations would happen without floats, and then simply divide by 1000 (integer division, not float) when presenting the result to the user.
I realize that this would permanently limit me to 3 decimal places of
precision. If I decide that 3 is adequate for the lifetime of my
application, does this approach make sense?
Are there potential rounding issues if I were to use integer division?
Is there a name for this process? EDIT: As indicated by #SergGr, this is fixed-point arithmetic.
Is there a better approach?
EDIT:
I should have clarified, this is not time-specific. It is for generic quantities like 1.256 pounds of flour, 1 sofa, or 0.25 hours (think invoices).
What I'm trying to replicate here is a more exact version of Postgres's extra_float_digits = 0 functionality, where if the user enters 0.55 (float32), the database stores 0.550000012 but when queried for the result returns 0.55 which appears to be exactly what the user typed.
I am willing to limit this application's precision to 3 decimal places (it's business, not scientific), so that's what made me consider the × 1000 approach.
I'm using the Go programming language, but I'm interested in generic cross-language solutions.
Another solution to store the result is using the rational form of the value. You can explain the number by two integer value which the number is equal p/q, such that both p and q are integers. Hence, you can have more precision for your numbers and do some math with the rational numbers in the format of two integers.
Note: This is an attempt to merge different comments into one coherent answer as was requested by Matt.
TL;DR
Yes, this approach makes sense but most probably is not the best choice
Yes, there are rounding issues but there inevitably will be some no matter what representation you use
What you suggest using is called Decimal fixed point numbers
I'd argue yes, there is a better approach and it is to use some standard or popular decimal floating point numbers library for your language (Go is not my native language so I can't recommend one)
In PostgreSQL it is better to use Numeric (something like Numeric(15,3) for example) rather than a combination of float4/float8 and extra_float_digits. Actually this is what the first item in the PostgreSQL doc on Floating-Point Types suggests:
If you require exact storage and calculations (such as for monetary amounts), use the numeric type instead.
Some more details on how non-integer numbers can be stored
First of all there is a fundamental fact that there are infinitely many numbers in the range [0;1] so you obviously can't store every number there in any finite data structure. It means you have to make some compromises: no matter what way you choose, there will be some numbers you can't store exactly so you'll have to round.
Another important point is that people are used to 10-based system and in that system only results of division by numbers in a form of 2^a*5^b can be represented using a finite number of digits. For every other rational number even if you somehow store it in the exact form, you will have to do some truncation and rounding at the formatting for human usage stage.
Potentially there are infinitely many ways to store numbers. In practice only a few are widely used:
floating point numbers with two major branches of binary (this is what most today's hardware natively implements and what is support by most of the languages as float or double) and decimal. This is the format that store mantissa and exponent (can be negative), so the number is mantissa * base^exponent (I omit sign and just say it is logically a part of the mantissa although in practice it is usually stored separately). Binary vs. decimal is specified by the base. For example 0.5 will be stored in binary as a pair (1,-1) i.e. 1*2^-1 and in decimal as a pair (5,-1) i.e. 5*10^-1. Theoretically you can use any other base as well but in practice only 2 and 10 make sense as the bases.
fixed point numbers with the same division in binary and decimal. The idea is the same as in floating point numbers but some fixed exponent is used for all the numbers. What you suggests is actually a decimal fixed point number with the exponent fixed at -3. I've seen a usage of binary fixed-point numbers on some embedded hardware where there is no built-in support of floating point numbers, because binary fixed-point numbers can be implemented with reasonable efficiency using integer arithmetic. As for decimal fixed-point numbers, in practice they are not much easier to implement that decimal floating-point numbers but provide much less flexibility.
rational numbers format i.e. the value is stored as a pair of (p, q) which represents p/q (and usually q>0 so sign stored in p and either p=0, q=1 for 0 or gcd(p,q) = 1 for every other number). Usually this requires some big integer arithmetic to be useful in the first place (here is a Go example of math.big.Rat). Actually this might be an useful format for some problems and people often forget about this possibility, probably because it is often not a part of a standard library. Another obvious drawback is that as I said people are not used to think in rational numbers (can you easily compare which is greater 123/456 or 213/789?) so you'll have to convert the final results to some other form. Another drawback is that if you have a long chain of computations, internal numbers (p and q) might easily become very big values so computations will be slow. Still it may be useful to store intermediate results of calculations.
In practical terms there is also a division into arbitrary length and fixed length representations. For example:
IEEE 754 float or double are fixed length floating-point binary representations,
Go math.big.Float is an arbitrary length floating-point binary representations
.Net decimal is a fixed length floating-point decimal representations
Java BigDecimal is an arbitrary length floating-point decimal representations
In practical terms I'd says that the best solution for your problem is some big enough fixed length floating point decimal representations (like .Net decimal). An arbitrary length implementation would also work. If you have to make an implementation from scratch, than your idea of a fixed length fixed point decimal representation might be OK because it is the easiest thing to implement yourself (a bit easier than the previous alternatives) but it may become a burden at some point.
As mentioned in the comments, it would be best to use some builtin Decimal module in your language to handle exact arithmetic. However, since you haven't specified a language, we cannot be certain that your language may even have such a module. If it does not, here is how to go about doing so.
Consider using Binary Coded Decimal to store your values. The way it works is by restricting the values that can be stored per byte to 0 through 9 (inclusive), "wasting" the rest. You can encode a decimal representation of a number byte by byte that way. For example, 613 would become
6 -> 0000 0110
1 -> 0000 0001
3 -> 0000 0011
613 -> 0000 0110 0000 0001 0000 0011
Where each grouping of 4 digits above is a "nibble" of a byte. In practice, a packed variant is used, where two decimal digits are packed into a byte (one per nibble) to be less "wasteful". You can then implement a few methods to do your basic addition, subtract, multiplication, etc. Just iterate over an array of bytes, and perform your classic grade school addition / multiplication algorithms (keep in mind for the packed variant that you may need to pad a zero to get an even number of nibbles). You just need to keep a variable to store where the decimal point is, and remember to carry where necessary to preserve the encoding.

Fixed Point Multiplication for FFT

I’m writing a Radix-2 DIT FFT algorithm in VHDL, which requires some fractional multiplication of input data by Twiddle Factor (TF). I use Fixed Point arithmetic’s to achieve that, with every word being 16 bit long, where 1 bit is a sign bit and the rest is distributed between integer and fraction. Therefore my dilemma:
I have no idea, in what range my input data will be, so if I just decide that 4 bits go to integer and the rest 11 bits to fraction, in case I get integer numbers higher than 4 bits = 15 decimal, I’m screwed. The same applies if I do 50/50, like 7 bits to integer and the rest to fraction. If I get numbers, which are very small, I’m screwed because of truncation or rounding, i.e:
Let’s assume I have an integer "3"(0000 0011) on input and TF of "0.7071" ( 0.10110101 - 8 bit), and let’s assume, for simplicity, my data is 8 bit long, therefore:
3x0.7071 = 2.1213
3x0.7071 = 0000 0010 . 0001 1111 = 2.12109375 (for 16 bits).
Here comes the trick - I need to up/down round or truncate 16 bits to 8 bits, therefore, I get 0000 0010, i.e 2 - the error is way too high.
My questions are:
How would you solve this problem of range vs precision if you don’t know the range of your input data AND you would have numbers represented in fixed point?
Should I make a process, which decides after every multiplication where to put the comma? Wouldn’t it make the multiplication slower?
Xilinx IP Core has 3 different ways for Fixed Number Arithmetic’s – Unscaled (similar to what I want to do, just truncate in case overflow happens), Scaled fixed point (I would assume, that in that case it decides after each multiplication, where the comma should be and what should be rounded) and Block Floating Point(No idea what it is or how it works - would appreciate an explanation). So how does this IP Core decide where to put the comma? If the decision is made depending on the highest value in my dataset, then in case I have just 1 high peak and the rest of the data is low, the error will be very high.
I will appreciate any ideas or information on any known methods.
You don't need to know the fixed-point format of your input. You can safely treat it as normalized -1 to 1 range or full integer-range.
The reason is that your output will have the same format as the input. Or, more likely for FFT, a known relationship like 3 bits increase, which would the output has 3 more integer bits than the input.
It is the core user's burden to know where the decimal point will end up, you have to document the change to dynamic range of course.

Arithmetic in ruby

Why this code 7.30 - 7.20 in ruby returns 0.0999999999999996, not 0.10?
But if i'll write 7.30 - 7.16, for example, everything will be ok, i'll get 0.14.
What the problem, and how can i solve it?
What Every Computer Scientist Should Know About Floating-Point Arithmetic
The problem is that some numbers we can easily write in decimal don't have an exact representation in the particular floating point format implemented by current hardware. A casual way of stating this is that all the integers do, but not all of the fractions, because we normally store the fraction with a 2**e exponent. So, you have 3 choices:
Round off appropriately. The unrounded result is always really really close, so a rounded result is invariably "perfect". This is what Javascript does and lots of people don't even realize that JS does everything in floating point.
Use fixed point arithmetic. Ruby actually makes this really easy; it's one of the only languages that seamlessly shifts to Class Bignum from Fixnum as numbers get bigger.
Use a class that is designed to solve this problem, like BigDecimal
To look at the problem in more detail, we can try to represent your "7.3" in binary. The 7 part is easy, 111, but how do we do .3? 111.1 is 7.5, too big, 111.01 is 7.25, getting closer. Turns out, 111.010011 is the "next closest smaller number", 7.296875, and when we try to fill in the missing .003125 eventually we find out that it's just 111.010011001100110011... forever, not representable in our chosen encoding in a finite bit string.
The problem is that floating point is inaccurate. You can solve it by using Rational, BigDecimal or just plain integers (for example if you want to store money you can store the number of cents as an int instead of the number of dollars as a float).
BigDecimal can accurately store any number that has a finite number of digits in base 10 and rounds numbers that don't (so three thirds aren't one whole).
Rational can accurately store any rational number and can't store irrational numbers at all.
That is a common error from how float point numbers are represented in memory.
Use BigDecimal if you need exact results.
result=BigDecimal.new("7.3")-BigDecimal("7.2")
puts "%2.2f" % result
It is interesting to note that a number that has few decimals in one base may typically have a very large number of decimals in another. For instance, it takes an infinite number of decimals to express 1/3 (=0.3333...) in the base 10, but only one decimal in the base 3. Similarly, it takes many decimals to express the number 1/10 (=0.1) in the base 2.
Since you are doing floating point math then the number returned is what your computer uses for precision.
If you want a closer answer, to a set precision, just multiple the float by that (such as by 100), convert it to an int, do the math, then divide.
There are other solutions, but I find this to be the simplest since rounding always seems a bit iffy to me.
This has been asked before here, you may want to look for some of the answers given before, such as this one:
Dealing with accuracy problems in floating-point numbers

Resources