64 bit integer and 64 bit float homogeneous representation - algorithm

Assume we have some sequence as input. For performance reasons we may want to convert it in homogeneous representation. And in order to transform it into homogeneous representation we are trying to convert it to same type. Here lets consider only 2 types in input - int64 and float64 (in my simple code I will use numpy and python; it is not the matter of this question - one may think only about 64-bit integer and 64-bit floats).
First we may try to cast everything to float64.
So we want something like so as input:
31 1.2 -1234
be converted to float64. If we would have all int64 we may left it unchanged ("already homogeneous"), or if something else was found we would return "not homogeneous". Pretty straightforward.
But here is the problem. Consider a bit modified input:
31000000 1.2 -1234
Idea is clear - we need to check that our "caster" is able to handle large by absolute value int64 properly:
format(np.float64(31000000), '.0f') # just convert to float64 and print
'31000000'
Seems like not a problem at all. So lets go to the deal right away:
im = np.iinfo(np.int64).max # maximum of int64 type
format(np.float64(im), '.0f')
format(np.float64(im-100), '.0f')
'9223372036854775808'
'9223372036854775808'
Now its really undesired - we lose some information which maybe needed. I.e. we want to preserve all the information provided in the input sequence.
So our im and im-100 values cast to the same float64 representation. The reason of this is clear - float64 has only 53 significand of total 64 bits. That is why its precision enough to represent log10(2^53) ~= 15.95 i.e. about all 16-length int64 without any information loss. But int64 type contains up to 19 digits.
So we end up with about [10^16; 10^19] (more precisely [10^log10(53); int64.max]) range in which each int64 may be represented with information loss.
Q: What decision in such situation should one made in order to represent int64 and float64 homogeneously.
I see several options for now:
Just convert all int64 range to float64 and "forget" about possible information loss.
Motivation here is "majority of input barely will be > 10^16 int64 values".
EDIT: This clause was misleading. In clear formulation we don't consider such solutions (but left it for completeness).
Do not make such automatic conversions at all. Only if explicitly specified.
I.e. we agree with performance drawbacks. For any int-float arrays. Even with ones as in simplest 1st case.
Calculate threshold for performing conversion to float64 without possible information loss. And use it while making casting decision. If int64 above this threshold found - do not convert (return "not homogeneous").
We've already calculate this threshold. It is log10(2^53) rounded.
Create new type "fint64". This is an exotic decision but I'm considering even this one for completeness.
Motivation here consists of 2 points. First one: it is frequent situation when user wants to store int and float types together. Second - is structure of float64 type. I'm not quite understand why one will need ~308 digits value range if significand consists only of ~16 of them and other ~292 is itself a noise. So we might use one of float64 exponent bits to indicate whether its float or int is stored here. But for int64 it would be definitely drawback to lose 1 bit. Cause would reduce our integer range twice. But we would gain possibility freely store ints along with floats without any additional overhead.
EDIT: While my initial thinking of this was as "exotic" decision in fact it is just a variant of another solution alternative - composite type for our representation (see 5 clause). But need to add here that my 1st composition has definite drawback - losing some range for float64 and for int64. What we rather do - is not to subtract 1 bit but add one bit which represents a flag for int or float type stored in following 64 bits.
As proposed #Brendan one may use composite type consists of "combination of 2 or more primitive types". So using additional primitives we may cover our "problem" range for int64 for example and get homogeneous representation in this "new" type.
EDITs:
Because here question arisen I need to try be very specific: Devised application in question do following thing - convert sequence of int64 or float64 to some homogeneous representation lossless if possible. The solutions are compared by performance (e.g. total excessive RAM needed for representation). That is all. No any other requirements is considered here (cause we should consider a problem in its minimal state - not writing whole application). Correspondingly algo that represents our data in homogeneous state lossless (we are sure we not lost any information) fits into our app.
I've decided to remove words "app" and "user" from question - it was also misleading.

When choosing a data type there are 3 requirements:
if values may have different signs
needed precision
needed range
Of course hardware doesn't provide a lot of types to choose from; so you'll need to select the next largest provided type. For example, if you want to store values ranging from 0 to 500 with 8 bits of precision; then hardware won't provide anything like that and you will need to use either 16-bit integer or 32-bit floating point.
When choosing a homogeneous representation there are 3 requirements:
if values may have different signs; determined from the requirements from all of the original types being represented
needed precision; determined from the requirements from all of the original types being represented
needed range; determined from the requirements from all of the original types being represented
For example, if you have integers from -10 to +10000000000 you need a 35 bit integer type that doesn't exist so you'll use a 64-bit integer, and if you need floating point values from -2 to +2 with 31 bits of precision then you'll need a 33 bit floating point type that doesn't exist so you'll use a 64-bit floating point type; and from the requirements of these two original types you'll know that a homogeneous representation will need a sign flag, a 33 bit significand (with an implied bit), and a 1-bit exponent; which doesn't exist so you'll use a 64-bit floating point type as the homogeneous representation.
However; if you don't know anything about the requirements of the original data types (and only know that whatever the requirements were they led to the selection of a 64-bit integer type and a 64-bit floating point type), then you'll have to assume "worst cases". This leads to needing a homogeneous representation that has a sign flag, 62 bits of precision (plus an implied 1 bit) and an 8 bit exponent. Of course this 71 bit floating point type doesn't exist, so you need to select the next largest type.
Also note that sometimes there is no "next largest type" that hardware supports. When this happens you need to resort to "composed types" - a combination of 2 or more primitive types. This can include anything up to and including "big rational numbers" (numbers represented by 3 big integers in "numerator / divisor * (1 << exponent)" form).
Of course if the original types (the 64-bit integer type and 64-bit floating point type) were primitive types and your homogeneous representation needs to use a "composed type"; then your "for performance reasons we may want to convert it in homogeneous representation" assumption is likely to be false (it's likely that, for performance reasons, you want to avoid using a homogeneous representation).
In other words:
If you don't know anything about the requirements of the original data types, it's likely that, for performance reasons, you want to avoid using a homogeneous representation.
Now...
Let's rephrase your question as "How to deal with design failures (choosing the wrong types which don't meet requirements)?". There is only one answer, and that is to avoid the design failure. Run-time checks (e.g. throwing an exception if the conversion to the homogeneous representation caused precision loss) serve no purpose other than to notify developers of design failures.

It is actually very basic: use 64 bits floating point. Floating point is an approximation, and you will loose precision for many ints. But there are no uncertainties other than "might this originally have been integral" and "does the original value deviates more than 1.0".
I know of one non-standard floating point representation that would be more powerfull (to be found in the net). That might (or might not) help cover the ints.
The only way to have an exact int mapping, would be to reduce the int range, and guarantee (say) 60 bits ints to be precise, and the remaining range approximated by floating point. Floating point would have to be reduced too, either exponential range as mentioned, or precision (the mantissa).

Related

It it safe to convert from int64 to float64?

As far as I know int64 can be converted in float64 in Go, the language allows this with float64(some_int64_variable), but I also know that not all 64 bit signed integers can be represented in double (because of IEE754 approximations).
We have some code which receives the price of an item in cents using int64 and does something like
const TB = 1 << 40
func ComputeSomething(numBytes int64) {
Terabytes := float64(numBytes) / float64(TB)
I'm wondering how safe this is, since not all integers can be represented with doubles.
Depends on what you mean by "safe".
Yes, precision can be lost here in some cases. float64 cannot represent all values of int64 precisely (since it only has 53 bits of mantissa). So if you need a completely accurate result, this function is not "safe"; if you want to represent money in float64 you may get into trouble.
On the other hand, do you really need the number of terabytes with absolute precision? Will numBytes actually divide by TB accurately? That's pretty unlikely, but it all depends on your specification and needs. If your code has a counter of bytes and you want to display approximately how many TB it is (e.g. 0.05 TB or 2.124 TB) then this calculation is fine.
Answering "is it safe" really requires a better understanding of your needs, and what exactly you do with these numbers. So let's ask a related but more precise question that we can answer with certainty:
What is the minimum positive integer value that float64 cannot exactly represent?
For int64, this number turns out to be 9007199254740993. This is the first integer that float64 "skips" over.
This might look quite large, and perhaps not so alarming. (If these are "cents", then I believe it's about 90 trillion dollars or so.) But if you use a single-precision float, the answer might surprise you. If you use float32, that number is: 16777217. about 168 thousand dollars, if interpreted as cents. Good thing you're not using single-precision floats!
As a rule of thumb, you should never use float types (whatever precision it might be) for dealing with money. Floats are really not designed for "money" like discrete quantities, but rather dealing with fractional values that arise in scientific applications. Rounding errors can creep up, throwing off your calculations. Use big-integer representations instead. Big integer implementations might be slower since they are mostly realized in software, but if you're dealing with money computations, I'd hazard a guess that you don't really need the speed of floating-point computation that the hardware can provide.

What is the purpose of arbitrary precision constants in Go?

Go features untyped exact numeric constants with arbitrary size and precision. The spec requires all compilers to support integers to at least 256 bits, and floats to at least 272 bits (256 bits for the mantissa and 16 bits for the exponent). So compilers are required to faithfully and exactly represent expressions like this:
const (
PI = 3.1415926535897932384626433832795028841971
Prime256 = 84028154888444252871881479176271707868370175636848156449781508641811196133203
)
This is interesting...and yet I cannot find any way to actually use any such constant that exceeds the maximum precision of the 64 bit concrete types int64, uint64, float64, complex128 (which is just a pair of float64 values). Even the standard library big number types big.Int and big.Float cannot be initialized from large numeric constants -- they must instead be deserialized from string constants or other expressions.
The underlying mechanics are fairly obvious: the constants exist only at compile time, and must be coerced to some value representable at runtime to be used at runtime. They are a language construct that exists only in code and during compilation. You cannot retrieve the raw value of a constant at runtime; it is is not stored at some address in the compiled program itself.
So the question remains: Why does the language make such a point of supporting enormous constants when they cannot be used in practice?
TLDR; Go's arbitrary precision constants give you the possibility to work with "real" numbers and not with "boxed" numbers, so "artifacts" like overflow, underflow, infinity corner cases are relieved. You have the possibility to work with higher precision, and only the result have to be converted to limited-precision, mitigating the effect of intermediate errors.
The Go Blog: Constants: (emphasizes are mine answering your question)
Numeric constants live in an arbitrary-precision numeric space; they are just regular numbers. But when they are assigned to a variable the value must be able to fit in the destination. We can declare a constant with a very large value:
const Huge = 1e1000
—that's just a number, after all—but we can't assign it or even print it. This statement won't even compile:
fmt.Println(Huge)
The error is, "constant 1.00000e+1000 overflows float64", which is true. But Huge might be useful: we can use it in expressions with other constants and use the value of those expressions if the result can be represented in the range of a float64. The statement,
fmt.Println(Huge / 1e999)
prints 10, as one would expect.
In a related way, floating-point constants may have very high precision, so that arithmetic involving them is more accurate. The constants defined in the math package are given with many more digits than are available in a float64. Here is the definition of math.Pi:
Pi = 3.14159265358979323846264338327950288419716939937510582097494459
When that value is assigned to a variable, some of the precision will be lost; the assignment will create the float64 (or float32) value closest to the high-precision value. This snippet
pi := math.Pi
fmt.Println(pi)
prints 3.141592653589793.
Having so many digits available means that calculations like Pi/2 or other more intricate evaluations can carry more precision until the result is assigned, making calculations involving constants easier to write without losing precision. It also means that there is no occasion in which the floating-point corner cases like infinities, soft underflows, and NaNs arise in constant expressions. (Division by a constant zero is a compile-time error, and when everything is a number there's no such thing as "not a number".)
See related: How does Go perform arithmetic on constants?

Is using integers as fractional coefficients instead of floats a good idea for a monetary application?

My application requires a fractional quantity multiplied by a monetary value.
For example, $65.50 × 0.55 hours = $36.025 (rounded to $36.03).
I know that floats should not be used to represent money, so I'm storing all of my monetary values as cents. $65.50 in the above equation is stored as 6550 (integer).
For the fractional coefficient, my issue is that 0.55 does not have a 32-bit float representation. In the use case above, 0.55 hours == 33 minutes, so 0.55 is an example of a specific value that my application will need to account for exactly. The floating point representation of 0.550000012 is insufficient, because the user will not understand where the additional 0.000000012 came from. I cannot simply call a rounding function on 0.550000012 because it will round to the whole number.
Multiplication solution
To solve this, my first idea was to store all quantities as integers and multiply × 1000. So 0.55 entered by the user would become 550 (integer) when stored. All calculations would happen without floats, and then simply divide by 1000 (integer division, not float) when presenting the result to the user.
I realize that this would permanently limit me to 3 decimal places of
precision. If I decide that 3 is adequate for the lifetime of my
application, does this approach make sense?
Are there potential rounding issues if I were to use integer division?
Is there a name for this process? EDIT: As indicated by #SergGr, this is fixed-point arithmetic.
Is there a better approach?
EDIT:
I should have clarified, this is not time-specific. It is for generic quantities like 1.256 pounds of flour, 1 sofa, or 0.25 hours (think invoices).
What I'm trying to replicate here is a more exact version of Postgres's extra_float_digits = 0 functionality, where if the user enters 0.55 (float32), the database stores 0.550000012 but when queried for the result returns 0.55 which appears to be exactly what the user typed.
I am willing to limit this application's precision to 3 decimal places (it's business, not scientific), so that's what made me consider the × 1000 approach.
I'm using the Go programming language, but I'm interested in generic cross-language solutions.
Another solution to store the result is using the rational form of the value. You can explain the number by two integer value which the number is equal p/q, such that both p and q are integers. Hence, you can have more precision for your numbers and do some math with the rational numbers in the format of two integers.
Note: This is an attempt to merge different comments into one coherent answer as was requested by Matt.
TL;DR
Yes, this approach makes sense but most probably is not the best choice
Yes, there are rounding issues but there inevitably will be some no matter what representation you use
What you suggest using is called Decimal fixed point numbers
I'd argue yes, there is a better approach and it is to use some standard or popular decimal floating point numbers library for your language (Go is not my native language so I can't recommend one)
In PostgreSQL it is better to use Numeric (something like Numeric(15,3) for example) rather than a combination of float4/float8 and extra_float_digits. Actually this is what the first item in the PostgreSQL doc on Floating-Point Types suggests:
If you require exact storage and calculations (such as for monetary amounts), use the numeric type instead.
Some more details on how non-integer numbers can be stored
First of all there is a fundamental fact that there are infinitely many numbers in the range [0;1] so you obviously can't store every number there in any finite data structure. It means you have to make some compromises: no matter what way you choose, there will be some numbers you can't store exactly so you'll have to round.
Another important point is that people are used to 10-based system and in that system only results of division by numbers in a form of 2^a*5^b can be represented using a finite number of digits. For every other rational number even if you somehow store it in the exact form, you will have to do some truncation and rounding at the formatting for human usage stage.
Potentially there are infinitely many ways to store numbers. In practice only a few are widely used:
floating point numbers with two major branches of binary (this is what most today's hardware natively implements and what is support by most of the languages as float or double) and decimal. This is the format that store mantissa and exponent (can be negative), so the number is mantissa * base^exponent (I omit sign and just say it is logically a part of the mantissa although in practice it is usually stored separately). Binary vs. decimal is specified by the base. For example 0.5 will be stored in binary as a pair (1,-1) i.e. 1*2^-1 and in decimal as a pair (5,-1) i.e. 5*10^-1. Theoretically you can use any other base as well but in practice only 2 and 10 make sense as the bases.
fixed point numbers with the same division in binary and decimal. The idea is the same as in floating point numbers but some fixed exponent is used for all the numbers. What you suggests is actually a decimal fixed point number with the exponent fixed at -3. I've seen a usage of binary fixed-point numbers on some embedded hardware where there is no built-in support of floating point numbers, because binary fixed-point numbers can be implemented with reasonable efficiency using integer arithmetic. As for decimal fixed-point numbers, in practice they are not much easier to implement that decimal floating-point numbers but provide much less flexibility.
rational numbers format i.e. the value is stored as a pair of (p, q) which represents p/q (and usually q>0 so sign stored in p and either p=0, q=1 for 0 or gcd(p,q) = 1 for every other number). Usually this requires some big integer arithmetic to be useful in the first place (here is a Go example of math.big.Rat). Actually this might be an useful format for some problems and people often forget about this possibility, probably because it is often not a part of a standard library. Another obvious drawback is that as I said people are not used to think in rational numbers (can you easily compare which is greater 123/456 or 213/789?) so you'll have to convert the final results to some other form. Another drawback is that if you have a long chain of computations, internal numbers (p and q) might easily become very big values so computations will be slow. Still it may be useful to store intermediate results of calculations.
In practical terms there is also a division into arbitrary length and fixed length representations. For example:
IEEE 754 float or double are fixed length floating-point binary representations,
Go math.big.Float is an arbitrary length floating-point binary representations
.Net decimal is a fixed length floating-point decimal representations
Java BigDecimal is an arbitrary length floating-point decimal representations
In practical terms I'd says that the best solution for your problem is some big enough fixed length floating point decimal representations (like .Net decimal). An arbitrary length implementation would also work. If you have to make an implementation from scratch, than your idea of a fixed length fixed point decimal representation might be OK because it is the easiest thing to implement yourself (a bit easier than the previous alternatives) but it may become a burden at some point.
As mentioned in the comments, it would be best to use some builtin Decimal module in your language to handle exact arithmetic. However, since you haven't specified a language, we cannot be certain that your language may even have such a module. If it does not, here is how to go about doing so.
Consider using Binary Coded Decimal to store your values. The way it works is by restricting the values that can be stored per byte to 0 through 9 (inclusive), "wasting" the rest. You can encode a decimal representation of a number byte by byte that way. For example, 613 would become
6 -> 0000 0110
1 -> 0000 0001
3 -> 0000 0011
613 -> 0000 0110 0000 0001 0000 0011
Where each grouping of 4 digits above is a "nibble" of a byte. In practice, a packed variant is used, where two decimal digits are packed into a byte (one per nibble) to be less "wasteful". You can then implement a few methods to do your basic addition, subtract, multiplication, etc. Just iterate over an array of bytes, and perform your classic grade school addition / multiplication algorithms (keep in mind for the packed variant that you may need to pad a zero to get an even number of nibbles). You just need to keep a variable to store where the decimal point is, and remember to carry where necessary to preserve the encoding.

Go Protobuf Precision Decimals

What is the correct scalar type to use in my protobuf definition file, if I want to transmit an arbitrary-precision decimal value?
I am using shopspring/decimal instead of a float64 in my Go code to prevent math errors. When writing my protobuf file with the intention of transmitting these values over gRPC, I could use:
double which translates to a float64
string which would certainly be precise in its own way but strikes me as clunky
Something like decimal from mgravell/protobuf-net?
Conventional wisdom has taught me to skirt floats in monetary applications, but I may be over-careful since it's a point of serialization.
If you really need arbitrary precision, I fear there is no correct answer right now. There is https://github.com/protocolbuffers/protobuf/issues/4406 open, but it does not seem to be very active. Without built-in support, you will really need to perform the serialization manually and then use either string or bytes to store the result. Which one to use between string and bytes likely depends on whether you need cross-platform/cross-library compatibility: if you need compatibility, use string and parse the decimal representation in the string using the appropriate arbitrary precision type in the reader; if you don't need it and you're going to read the data using the same cpu architecture and library you can probably just use the binary serialization provided by that library (MarshalBinary/UnmarshalBinary) and use bytes.
On the other hand, if you just need to send monetary values with an appropriate precision and do not need arbitrary precision, you can probably just use sint64/uint64 and use an appropriate unit (these are commonly called fixed-point numbers). To give an example, if you need to represent a monetary value in dollars with 4 decimal digits, your unit would be 1/10000th of a dollar so that e.g. the value 1 represents $0.0001, the value 19900 represents $1.99, -500000 represents $-50, and so on. With such a unit you can represent the range $-922,337,203,685,477.5808 to $922,337,203,685,477.5807 - that should likely be sufficient for most purposes. You will still need to perform the scaling manually, but it should be fairly trivial and portable. Given the range above, I would suggest using sint64 is preferable as it allows you also to represent negative values; uint64 should be considered only if you need the extra positive range and don't need negative values.
Alternatively, if you don't mind importing another package, you may want to take a look at https://github.com/googleapis/googleapis/blob/master/google/type/money.proto or https://github.com/googleapis/googleapis/blob/master/google/type/decimal.proto (that incidentally implement something very similar to the two models described above), and the related utility functions at https://pkg.go.dev/github.com/googleapis/go-type-adapters/adapters
As a side note, you are completely correct that you should almost never use floating point for monetary values.

JDBC / Oracle Double value insertion fails [duplicate]

double r = 11.631;
double theta = 21.4;
In the debugger, these are shown as 11.631000000000000 and 21.399999618530273.
How can I avoid this?
These accuracy problems are due to the internal representation of floating point numbers and there's not much you can do to avoid it.
By the way, printing these values at run-time often still leads to the correct results, at least using modern C++ compilers. For most operations, this isn't much of an issue.
I liked Joel's explanation, which deals with a similar binary floating point precision issue in Excel 2007:
See how there's a lot of 0110 0110 0110 there at the end? That's because 0.1 has no exact representation in binary... it's a repeating binary number. It's sort of like how 1/3 has no representation in decimal. 1/3 is 0.33333333 and you have to keep writing 3's forever. If you lose patience, you get something inexact.
So you can imagine how, in decimal, if you tried to do 3*1/3, and you didn't have time to write 3's forever, the result you would get would be 0.99999999, not 1, and people would get angry with you for being wrong.
If you have a value like:
double theta = 21.4;
And you want to do:
if (theta == 21.4)
{
}
You have to be a bit clever, you will need to check if the value of theta is really close to 21.4, but not necessarily that value.
if (fabs(theta - 21.4) <= 1e-6)
{
}
This is partly platform-specific - and we don't know what platform you're using.
It's also partly a case of knowing what you actually want to see. The debugger is showing you - to some extent, anyway - the precise value stored in your variable. In my article on binary floating point numbers in .NET, there's a C# class which lets you see the absolutely exact number stored in a double. The online version isn't working at the moment - I'll try to put one up on another site.
Given that the debugger sees the "actual" value, it's got to make a judgement call about what to display - it could show you the value rounded to a few decimal places, or a more precise value. Some debuggers do a better job than others at reading developers' minds, but it's a fundamental problem with binary floating point numbers.
Use the fixed-point decimal type if you want stability at the limits of precision. There are overheads, and you must explicitly cast if you wish to convert to floating point. If you do convert to floating point you will reintroduce the instabilities that seem to bother you.
Alternately you can get over it and learn to work with the limited precision of floating point arithmetic. For example you can use rounding to make values converge, or you can use epsilon comparisons to describe a tolerance. "Epsilon" is a constant you set up that defines a tolerance. For example, you may choose to regard two values as being equal if they are within 0.0001 of each other.
It occurs to me that you could use operator overloading to make epsilon comparisons transparent. That would be very cool.
For mantissa-exponent representations EPSILON must be computed to remain within the representable precision. For a number N, Epsilon = N / 10E+14
System.Double.Epsilon is the smallest representable positive value for the Double type. It is too small for our purpose. Read Microsoft's advice on equality testing
I've come across this before (on my blog) - I think the surprise tends to be that the 'irrational' numbers are different.
By 'irrational' here I'm just referring to the fact that they can't be accurately represented in this format. Real irrational numbers (like π - pi) can't be accurately represented at all.
Most people are familiar with 1/3 not working in decimal: 0.3333333333333...
The odd thing is that 1.1 doesn't work in floats. People expect decimal values to work in floating point numbers because of how they think of them:
1.1 is 11 x 10^-1
When actually they're in base-2
1.1 is 154811237190861 x 2^-47
You can't avoid it, you just have to get used to the fact that some floats are 'irrational', in the same way that 1/3 is.
One way you can avoid this is to use a library that uses an alternative method of representing decimal numbers, such as BCD
If you are using Java and you need accuracy, use the BigDecimal class for floating point calculations. It is slower but safer.
Seems to me that 21.399999618530273 is the single precision (float) representation of 21.4. Looks like the debugger is casting down from double to float somewhere.
You cant avoid this as you're using floating point numbers with fixed quantity of bytes. There's simply no isomorphism possible between real numbers and its limited notation.
But most of the time you can simply ignore it. 21.4==21.4 would still be true because it is still the same numbers with the same error. But 21.4f==21.4 may not be true because the error for float and double are different.
If you need fixed precision, perhaps you should try fixed point numbers. Or even integers. I for example often use int(1000*x) for passing to debug pager.
Dangers of computer arithmetic
If it bothers you, you can customize the way some values are displayed during debug. Use it with care :-)
Enhancing Debugging with the Debugger Display Attributes
Refer to General Decimal Arithmetic
Also take note when comparing floats, see this answer for more information.
According to the javadoc
"If at least one of the operands to a numerical operator is of type double, then the
operation is carried out using 64-bit floating-point arithmetic, and the result of the
numerical operator is a value of type double. If the other operand is not a double, it is
first widened (§5.1.5) to type double by numeric promotion (§5.6)."
Here is the Source

Resources