Given a non-negative integer n and an arbitrary set of inequalities that are user-defined (in say an external text file), I want to determine whether n satisfies any inequality, and if so, which one(s).
Here is a points list.
n = 0: 1
n < 5: 5
n = 5: 10
If you draw a number n that's equal to 5, you get 10 points.
If n less than 5, you get 5 points.
If n is 0, you get 1 point.
The stuff left of the colon is the "condition", while the stuff on the right is the "value".
All entries will be of the form:
n1 op n2: val
In this system, equality takes precedence over inequality, so the order that they appear in will not matter in the end. The inputs are non-negative integers, though intermediary and results may not be non-negative. The results may not even be numbers (eg: could be strings). I have designed it so that will only accept the most basic inequalities, to make it easier for writing a parser (and to see whether this idea is feasible)
My program has two components:
a parser that will read structured input and build a data structure to store the conditions and their associated results.
a function that will take an argument (a non-negative integer) and return the result (or, as in the example, the number of points I receive)
If the list was hardcoded, that is an easy task: just use a case-when or if-else block and I'm done. But the problem isn't as easy as that.
Recall the list at the top. It can contain an arbitrary number of (in)equalities. Perhaps there's only 3 like above. Maybe there are none, or maybe there are 10, 20, 50, or even 1000000. Essentially, you can have m inequalities, for m >= 0
Given a number n and a data structure containing an arbitrary number of conditions and results, I want to be able to determine whether it satisfies any of the conditions and return the associated value. So as with the example above, if I pass in 5, the function will return 10.
They condition/value pairs are not unique in their raw form. You may have multiple instances of the same (in)equality but with different values. eg:
n = 0: 10
n = 0: 1000
n > 0: n
Notice the last entry: if n is greater than 0, then it is just whatever you got.
If multiple inequalities are satisfied (eg: n > 5, n > 6, n > 7), all of them should be returned. If that is not possible to do efficiently, I can return just the first one that satisfied it and ignore the rest. But I would like to be able to retrieve the entire list.
I've been thinking about this for a while and I'm thinking I should use two hash tables: the first one will store the equalities, while the second will store the inequalities.
Equality is easy enough to handle: Just grab the condition as a key and have a list of values. Then I can quickly check whether n is in the hash and grab the appropriate value.
However, for inequality, I am not sure how it will work. Does anyone have any ideas how I can solve this problem in as little computational steps as possible? It's clear that I can easily accomplish this in O(n) time: just run it through each (in)equality one by one. But what happens if this checking is done in real-time? (eg: updated constantly)
For example, it is pretty clear that if I have 100 inequalities and 99 of them check for values > 100 while the other one checks for value <= 100, I shouldn't have to bother checking those 99 inequalities when I pass in 47.
You may use any data structure to store the data. The parser itself is not included in the calculation because that will be pre-processed and only needs to be done once, but if it may be problematic if it takes too long to parse the data.
Since I am using Ruby, I likely have more flexible options when it comes to "messing around" with the data and how it will be interpreted.
class RuleSet
Rule = Struct.new(:op1,:op,:op2,:result) do
def <=>(r2)
# Op of "=" sorts before others
[op=="=" ? 0 : 1, op2.to_i] <=> [r2.op=="=" ? 0 : 1, r2.op2.to_i]
end
def matches(n)
#op2i ||= op2.to_i
case op
when "=" then n == #op2i
when "<" then n < #op2i
when ">" then n > #op2i
end
end
end
def initialize(text)
#rules = text.each_line.map do |line|
Rule.new *line.split(/[\s:]+/)
end.sort
end
def value_for( n )
if rule = #rules.find{ |r| r.matches(n) }
rule.result=="n" ? n : rule.result.to_i
end
end
end
set = RuleSet.new( DATA.read )
-1.upto(8) do |n|
puts "%2i => %s" % [ n, set.value_for(n).inspect ]
end
#=> -1 => 5
#=> 0 => 1
#=> 1 => 5
#=> 2 => 5
#=> 3 => 5
#=> 4 => 5
#=> 5 => 10
#=> 6 => nil
#=> 7 => 7
#=> 8 => nil
__END__
n = 0: 1
n < 5: 5
n = 5: 10
n = 7: n
I would parse the input lines and separate them into predicate/result pairs and build a hash of callable procedures (using eval - oh noes!). The "check" function can iterate through each predicate and return the associated result when one is true:
class PointChecker
def initialize(input)
#predicates = Hash[input.split(/\r?\n/).map do |line|
parts = line.split(/\s*:\s*/)
[Proc.new {|n| eval(parts[0].sub(/=/,'=='))}, parts[1].to_i]
end]
end
def check(n)
#predicates.map { |p,r| [p.call(n) ? r : nil] }.compact
end
end
Here is sample usage:
p = PointChecker.new <<__HERE__
n = 0: 1
n = 1: 2
n < 5: 5
n = 5: 10
__HERE__
p.check(0) # => [1, 5]
p.check(1) # => [2, 5]
p.check(2) # => [5]
p.check(5) # => [10]
p.check(6) # => []
Of course, there are many issues with this implementation. I'm just offering a proof-of-concept. Depending on the scope of your application you might want to build a proper parser and runtime (instead of using eval), handle input more generally/gracefully, etc.
I'm not spending a lot of time on your problem, but here's my quick thought:
Since the points list is always in the format n1 op n2: val, I'd just model the points as an array of hashes.
So first step is to parse the input point list into the data structure, an array of hashes.
Each hash would have values n1, op, n2, value
Then, for each data input you run through all of the hashes (all of the points) and handle each (determining if it matches to the input data or not).
Some tricks of the trade
Spend time in your parser handling bad input. Eg
n < = 1000 # no colon
n < : 1000 # missing n2
x < 2 : 10 # n1, n2 and val are either number or "n"
n # too short, missing :, n2, val
n < 1 : 10x # val is not a number and is not "n"
etc
Also politely handle non-numeric input data
Added
Re: n1 doesn't matter. Be careful, this could be a trick. Why wouldn't
5 < n : 30
be a valid points list item?
Re: multiple arrays of hashes, one array per operator, one hash per point list item -- sure that's fine. Since each op is handled in a specific way, handling the operators one by one is fine. But....ordering then becomes an issue:
Since you want multiple results returned from multiple matching point list items, you need to maintain the overall order of them. Thus I think one array of all the point lists would be the easiest way to do this.
Related
This question already has answers here:
What is the Ruby <=> (spaceship) operator?
(6 answers)
Closed 4 years ago.
I don't quite understand how this works. I guess a large part of it is because I'm used to C and its low-level data structures, and programming at a higher level of abstraction takes some getting used to. Anyway, I was reading The Ruby Programming Language, and I came to the section about ranges and how you can use the <=> operator as sort of a shorthand for what in C you would have to implement as a sequence of if-else statements. It returns either -1, 0, or 1 depending on the results of the comparison. I decided to try it out with the following statement:
range = 1..100
r = (100 <=> range)
print( r )
The result is an empty string. So my question is, how does this operator work; what data type does it return (I assume the return value is an integer type but I can't say for sure); and finally what is the proper way to use it? Thanks for your time, and sorry if this was already answered (I didn't see it in the listing).
The <=> operator is meant to compare two values that can be compared directly, as in strings to strings or numbers to numbers. It can't magically compare two different things, Ruby doesn't convert for you like that.
As such you need to use it in the right context:
1 <=> 2
# => -1
2 <=> 1
# => 1
1 <=> 1
# => 0
When the two things can't be compared you get nil. Note that this is different from "empty string":
1 <=> '1'
# => nil
That means "invalid comparison". The <=> operator is being nice here because in other situations you get an exception:
1 < '1'
# => ArgumentError: comparison of Integer with String failed
You can also use this operator to make your own Comparable compatible class:
class Ordered
include Comparable
attr_reader :sequence
def initialize(sequence)
#sequence = sequence
end
def <=>(other)
self.sequence <=> other.sequence
end
end
Then you can do this:
a = Ordered.new(10)
b = Ordered.new(2)
[ a, b ].sort
# => [#<Ordered:0x00007ff1c6822b60 #sequence=2>, #<Ordered:0x00007ff1c6822b88 #sequence=10>]
Where those come out in order. The <=> implementation handles how these are sorted, and you can finesse that depending on how complex your sorting rules are.
Using the return values -1, 0, and 1 only as labels describing different states, you can write a condition that depends on the order between two numbers:
case a <=> b
when -1 then # a is smaller than b. Do something accordingly
when 0 then # a equals b. Do something accordingly
when 1 then # a is larger than b. Do something accordingly
end
Or, a use case where you can make use of the values -1, 0, and 1, is when you want to get the (non-negative) difference between two numbers a and b without using the abs method. The following:
(a - b) * (a <=> b)
will give the difference.
Add to the other answers this snippet: The "spaceship operator" returns -1, 0, or 1 so you can use it when comparing items in a .sort call:
events.sort {|x, y| y.event_datetime <=> x.event_datetime}
0 means the two items are the same, 1 means they are different but in the correct sort order, and -1 means they are out of order. The above example reverses x and y to sort into descending order.
In C, the function strcmp() has roughly the same behavior, to fit with qsort(), with the same semantics.
I am trying to create a method complex_check(n), which will do the following:
Create an array of integers ascending from 0 to n
Check each element of that array against complex criteria.
For example, I have an array from 0..n, and I want to know which elements of the array are both evenly divisible by 3 and not divisible by 4. I can index through to check for single criteria like odd?, etc., but is there a compact way to check each integer against multiple criteria?
This is the best I could come up with, I think this is sort of what you're trying to do:
def complex_check(n)
check_array = (0..n).to_a
check_array.select { |num|
num % 3 == 0 &&
num % 4 != 0
}
end
Then using it:
complex_check(15)
=> [3, 6, 9, 15]
One of the things Ruby is very good at is processing through lists and other regular data structures. The Enumerable extensions common to many things including Array allow you to quickly filter, split, chunk, and otherwise completely rework the data you're dealing with. Often a few quick alterations can do the job.
In this case select can be used to filter out undesirable values from your potential candidates in the range 0 to n:
def complex_check(n)
(0..n).select do |v|
v % 3 == 0 and v % 4 != 0
end
end
The key here is using select where any block that returns a logically true value will be a signal to include the element, and otherwise to exclude it. The opposite of this is reject which works on the same principle, just with inverted logic.
You could also pass these filters in dynamically:
def complex_check(n, *tests)
tests.each_with_object((0..n).to_a) do |test, a|
a.select!(&test)
end
end
Where your test code ends up looking like this:
complex_check(
50,
-> (v) { v % 3 == 0 },
-> (v) { v % 4 != 0 }
)
Then you can plug in tests using lambdas which are little reusable blocks.
create an array of integers ascending from 0 to n
Don't do this if you don't have to, which is almost never.
Use a Range or an Enumerator. They are real easy:
0.upto(n).select do |i| #0.upto(n) results in a Enumerator
#complex criteria
end
#or
def complex_check(n)
0.step(n,3).reject{|n| (n%4).zero?} #0.step(n,3) is an Enumerator
end
p complex_check(15) #= [3, 6, 9, 15]
I have an array with 12 entries.
When doing 12+1, I want to get the entry 1 of the array
When doing 12+4, I want to get the entry 4 of the array
etc...
I'm done with
cases_to_increment.each do |k|
if k > 12
k = k-12
end
self.inc(:"case#{k}", 1)
end
I found a solution with modulo
k = 13%12 = 1
k = 16%12 = 4
I like the modulo way but 12%12 return 0 and I need only numbers between 1..12
There is a way to do that without condition ?
You almost had the solution there yourself. Instead of a simple modulo, try:
index = (number % 12) + 1
Edit: njzk2 is correct, modulo is a very expensive function if you are using it with a value that is not a power of two. If, however, your total number of elements (the number you are modulo-ing with) is a power of 2, the calculation is essentially free.
I'm taking my first steps into recursion and dynamic programming and have a question about forming subproblems to model the recursion.
Problem:
How many different ways are there to
flip a fair coin 5 times and not have
three or more heads in a row?
If some could put up some heavily commented code (Ruby preferred but not essential) to help me get there. I am not a student if that matters, this is a modification of a Project Euler problem to make it very simple for me to grasp. I just need to get the hang of writing recursion formulas.
If you would like to abstract the problem into how many different ways are there to flip a fair coin Y times and not have Z or more heads in a row, that may be beneficial as well. Thanks again, this website rocks.
You can simply create a formula for that:
The number of ways to flip a coin 5 times without having 3 heads in a row is equal to the number of combinations of 5 coin flips minus the combinations with at least three heads in a row. In this case:
HHH-- (4 combinations)
THHH- (2 combinations)
TTHHH (1 combination)
The total number of combinations = 2^5 = 32. And 32 - 7 = 25.
If we flip a coin N times without Q heads in a row, the total amount is 2^N and the amount with at least Q heads is 2^(N-Q+1)-1. So the general answer is:
Flip(N,Q) = 2^N - 2^(N-Q+1) +1
Of course you can use recursion to simulate the total amount:
flipme: N x N -> N
flipme(flipsleft, maxhead) = flip(flipsleft, maxhead, 0)
flip: N x N x N -> N
flip(flipsleft, maxhead, headcount) ==
if flipsleft <= 0 then 0
else if maxhead<=headcount then 0
else
flip(flipsleft - 1, maxhead, headcount+1) + // head
flip(flipsleft - 1, maxhead, maxhead) // tail
Here's my solution in Ruby
def combination(length=5)
return [[]] if length == 0
combination(length-1).collect {|c| [:h] + c if c[0..1]!= [:h,:h]}.compact +
combination(length-1).collect {|c| [:t] + c }
end
puts "There are #{combination.length} ways"
All recursive methods start with an early out for the end case.
return [[]] if length == 0
This returns an array of combinations, where the only combination of zero length is []
The next bit (simplified) is...
combination(length-1).collect {|c| [:h] + c } +
combination(length-1).collect {|c| [:t] + c }
So.. this says.. I want all combinations that are one shorter than the desired length with a :head added to each of them... plus all the combinations that are one shorter with a tail added to them.
The way to think about recursion is.. "assuming I had a method to do the n-1 case.. what would I have to add to make it cover the n case". To me it feels like proof by induction.
This code would generate all combinations of heads and tails up to the given length.
We don't want ones that have :h :h :h. That can only happen where we have :h :h and we are adding a :h. So... I put an if c[0..1] != [:h,:h] on the adding of the :h so it will return nil instead of an array when it was about to make an invalid combination.
I then had to compact the result to ignore all results that are just nil
Isn't this a matter of taking all possible 5 bit sequences and removing the cases where there are three sequential 1 bits (assuming 1 = heads, 0 = tails)?
Here's one way to do it in Python:
#This will hold all possible combinations of flipping the coins.
flips = [[]]
for i in range(5):
#Loop through the existing permutations, and add either 'h' or 't'
#to the end.
for j in range(len(flips)):
f = flips[j]
tails = list(f)
tails.append('t')
flips.append(tails)
f.append('h')
#Now count how many of the permutations match our criteria.
fewEnoughHeadsCount = 0
for flip in flips:
hCount = 0
hasTooManyHeads = False
for c in flip:
if c == 'h': hCount += 1
else: hCount = 0
if hCount >= 3: hasTooManyHeads = True
if not hasTooManyHeads: fewEnoughHeadsCount += 1
print 'There are %s ways.' % fewEnoughHeadsCount
This breaks down to:
How many ways are there to flip a fair coin four times when the first flip was heads + when the first flip was tails:
So in python:
HEADS = "1"
TAILS = "0"
def threeOrMoreHeadsInARow(bits):
return "111" in bits
def flip(n = 5, flips = ""):
if threeOrMoreHeadsInARow(flips):
return 0
if n == 0:
return 1
return flip(n - 1, flips + HEADS) + flip(n - 1, flips + TAILS)
Here's a recursive combination function using Ruby yield statements:
def combinations(values, n)
if n.zero?
yield []
else
combinations(values, n - 1) do |combo_tail|
values.each do |value|
yield [value] + combo_tail
end
end
end
end
And you could use regular expressions to parse out three heads in a row:
def three_heads_in_a_row(s)
([/hhh../, /.hhh./, /..hhh/].collect {|pat| pat.match(s)}).any?
end
Finally, you would get the answer using something like this:
total_count = 0
filter_count = 0
combinations(["h", "t"], 5) do |combo|
count += 1
unless three_heads_in_a_row(combo.join)
filter_count += 1
end
end
puts "TOTAL: #{ total_count }"
puts "FILTERED: #{ filter_count }"
So that's how I would do it :)
I need to make a random list of permutations. The elements can be anything but assume that they are the integers 0 through x-1. I want to make y lists, each containing z elements. The rules are that no list may contain the same element twice and that over all the lists, the number of times each elements is used is the same (or as close as possible). For instance, if my elements are 0,1,2,3, y is 6, and z is 2, then one possible solution is:
0,3
1,2
3,0
2,1
0,1
2,3
Each row has only unique elements and no element has been used more than 3 times. If y were 7, then 2 elements would be used 4 times, the rest 3.
This could be improved, but it seems to do the job (Python):
import math, random
def get_pool(items, y, z):
slots = y*z
use_each_times = slots/len(items)
exceptions = slots - use_each_times*len(items)
if (use_each_times > y or
exceptions > 0 and use_each_times+1 > y):
raise Exception("Impossible.")
pool = {}
for n in items:
pool[n] = use_each_times
for n in random.sample(items, exceptions):
pool[n] += 1
return pool
def rebalance(ret, pool, z):
max_item = None
max_times = None
for item, times in pool.items():
if times > max_times:
max_item = item
max_times = times
next, times = max_item, max_times
candidates = []
for i in range(len(ret)):
item = ret[i]
if next not in item:
candidates.append( (item, i) )
swap, swap_index = random.choice(candidates)
swapi = []
for i in range(len(swap)):
if swap[i] not in pool:
swapi.append( (swap[i], i) )
which, i = random.choice(swapi)
pool[next] -= 1
pool[swap[i]] = 1
swap[i] = next
ret[swap_index] = swap
def plist(items, y, z):
pool = get_pool(items, y, z)
ret = []
while len(pool.keys()) > 0:
while len(pool.keys()) < z:
rebalance(ret, pool, z)
selections = random.sample(pool.keys(), z)
for i in selections:
pool[i] -= 1
if pool[i] == 0:
del pool[i]
ret.append( selections )
return ret
print plist([0,1,2,3], 6, 2)
Ok, one way to approximate that:
1 - shuffle your list
2 - take the y first elements to form the next row
4 - repeat (2) as long as you have numbers in the list
5 - if you don't have enough numbers to finish the list, reshuffle the original list and take the missing elements, making sure you don't retake numbers.
6 - Start over at step (2) as long as you need rows
I think this should be as random as you can make it and will for sure follow your criteria. Plus, you have very little tests for duplicate elements.
First, you can always randomly sort the list in the end, so let's not worry about making "random permutations" (hard); and just worry about 1) making permutations (easy) and 2) randomizing them (easy).
If you want "truly" random groups, you have to accept that randomization by nature doesn't really allow for the constraint of "even distribution" of results -- you may get that or you may get a run of similar-looking ones. If you really want even distribution, first make the sets evenly distributed, and then randomize them as a group.
Do you have to use each element in the set x evenly? It's not clear from the rules that I couldn't just make the following interpretation:
Note the following: "over all the lists, the number of times each elements is used is the same (or as close as possible)"
Based on this criteria, and the rule that z < x*, I postulate that you can simply enumerate all the items over all the lists. So you automatically make y list of the items enumerated to position z. Your example doesn't fulfill the rule above as closely as my version will. Using your example of x={0,1,2,3} y=6 and z=2, I get:
0,1 0,1 0,1 0,1 0,1 0,1
Now I didn't use 2 or 3, but you didn't say I had to use them all. If I had to use them all and I don't care to be able to prove that I am "as close as possible" to even usage, I would just enumerate across all the items through the lists, like this:
0,1 2,3 0,1 2,3 0,1 2,3
Finally, suppose I really do have to use all the elements. To calculate how many times each element can repeat, I just take (y*z)/(count of x). That way, I don't have to sit and worry about how to divide up the items in the list. If there is a remainder, or the result is less than 1, then I know that I will not get an exact number of repeats, so in those cases, it doesn't much matter to try to waste computational energy to make it perfect. I contend that the fastest result is still to just enumerate as above, and use the calculation here to show why either a perfect result was or wasn't achieved. A fancy algorithm to extract from this calculation how many positions will be duplicates could be achieved, but "it's too long to fit here in the margin".
*Each list has the same z number of elements, so it will be impossible to make lists where z is greater than x and still fulfill the rule that no list may contain the same element twice. Therefore, this rule demands that z cannot be greater than x.
Based on new details in the comments, the solution may simply be an implementation of a standard random permutation generation algorithm. There is a lengthy discussion of random permutation generation algorithms here:
http://www.techuser.net/randpermgen.html
(From Google search: random permutation generation)
This works in Ruby:
# list is the elements to be permuted
# y is the number of results desired
# z is the number of elements per result
# equalizer keeps track of who got used how many times
def constrained_permutations list, y, z
list.uniq! # Never trust the user. We want no repetitions.
equalizer = {}
list.each { |element| equalizer[element] = 0 }
results = []
# Do this until we get as many results as desired
while results.size < y
pool = []
puts pool
least_used = equalizer.each_value.min
# Find how used the least used element was
while pool.size < z
# Do this until we have enough elements in this resultset
element = nil
while element.nil?
# If we run out of "least used elements", then we need to increment
# our definition of "least used" by 1 and keep going.
element = list.shuffle.find do |x|
!pool.include?(x) && equalizer[x] == least_used
end
least_used += 1 if element.nil?
end
equalizer[element] += 1
# This element has now been used one more time.
pool << element
end
results << pool
end
return results
end
Sample usage:
constrained_permutations [0,1,2,3,4,5,6], 6, 2
=> [[4, 0], [1, 3], [2, 5], [6, 0], [2, 5], [3, 6]]
constrained_permutations [0,1,2,3,4,5,6], 6, 2
=> [[4, 5], [6, 3], [0, 2], [1, 6], [5, 4], [3, 0]]
enter code here
http://en.wikipedia.org/wiki/Fisher-Yates_shuffle