Flipping coins using Scala - algorithm

I am trying to solve the Flipping coins problem from codechef in scala. The problem statement is as follows:
There are N coins kept on the table, numbered from 0 to N - 1.
Initally, each coin is kept tails up. You have to perform two types of
operations : 1) Flip all coins numbered between A and B. This is
represented by the command "0 A B" 2) Answer how many coins numbered
between A and B are heads up. This is represented by the command "1 A
B". Input : The first line contains two integers, N and Q. Each of the
next Q lines are either of the form "0 A B" or "1 A B" as mentioned
above.
Output : Output 1 line for each of the queries of the form "1 A B"
containing the required answer for the corresponding query.
Sample Input :
4 7
1 0 3
0 1 2
1 0 1
1 0 0
0 0 3
1 0 3
1 3 3
Sample Output :
0
1
0
2
1
Constraints : 1 <= N <= 100000 1 <= Q <= 100000 0 <= A <= B <= N - 1
In the most simplistic way, I was thinking of initializing an Array of Ints in scala as follows:
var coins = new Array[Int](1000)
If I encounter the command 0 A B, I will simply set the index of A until B+1 to 1 as follows:
for(i <- 5 until 8){
coins(i) = 1
}
If I encounter the command 1 A B, I will take a slice of the array from A until B+1 and count the number of 1's in that given slice and I will do it as follows:
val headCount = coins.slice(5,8).count(x => x == 1)
It seems like this operation take O(n) in the worst case and apparently this can be optimized to be solved in logarithmic time.
Can somebody point out what I might be doing wrong here and how can this problem be solved in the most optimal manner.
Thanks

i don't know much about scala these days, but i can suggest an answer for the more general question about O(log(n)). typically such algorithms uses trees, and i think you could do so here.
if you construct a balanced tree, with the coins as leaves, then you could store in each node the total number of coins and the number of heads in the leaves below that node. you could imagine code that flips coins working out which leaves to visit from the node information, and working in O(n) time (you still need to flip coins). but if the flipping code also updated the node data then the number of heads would be O(log(n)) because you can use the node info - you don't need to go to the leaves.
so that gives you O(n) for one command and O(log(n)) for the other.
but you can go better than that. you can make the flip operation O(log(n)) too, i think. to do this you would add to each node a "flipped" flag. if set then all the nodes below that point are flipped. there are some book-keeping details, but the general idea is there.
and if you take this to its logical conclusion, you don't actually need to store the leaves, at least at the start. you just add nodes with the level of detail required as you process the commands. at this point you basically have the interval tree mentioned in the comments.

One clean way to model this is as a BitSet, where the integer values in the set represent the indices of the heads on the board. Then you can flip the coins in a range like this:
def flip(coins: BitSet, a: Int, b: Int) = coins ^ BitSet(a to b: _*)
You can count the heads in a range similarly:
def heads(coins: BitSet, a: Int, b: Int) = (coins & BitSet(a to b: _*)).size
Or the (probably faster) mutable java.util.BitSet versions:
import java.util.BitSet
def flip(coins: BitSet, a: Int, b: Int) { coins.flip(a, b + 1) }
def heads(coins: BitSet, a: Int, b: Int) = coins.get(a, b + 1).cardinality
This isn't necessarily optimal, but it's a fairly efficient approach, since you're just flipping bits.

Related

How to sort an array with minimum swaps of adjacent elements

I had an algorithm to solve the problem where professor has to sort the students by their class score like 1 for good and 0 for bad. in minimum number of swaps where only adjacent students can be swapped. For Example if Students are given in sequence [0,1,0,1] only one swap is required to do [0,0,1,1] or in case of [0,0,0,0,1,1,1,1] no swap is required.
From the problem description I immediately know that it was a classic min adjacent swap problem or count inversion problem that we can find in merge sort. I tried my own algorithm as well as the one listed here or this site but none passed all the tests.
The most number of test cases were passed when I try to sort the array in reverse order. I also tried to sort the array in the order based on whether the first element of the array is 0 or 1. For example is the first element is 1 then I should sort the array in descending order else in ascending order as the students can be in any grouping, still none worked. Some test cases always failed. The thing was when I sort it in ascending order the one test case that was failing in case of reverse sorting passed along with some others but not all. So I don't know what I was doing wrong.
It feels to me that term "sorting" is an exaggeration when it comes to an array of 0's and 1's. You can simply count 0's and 1's in O(n) and produce an output.
To address "minimal swaps" part, I constructed a toy example; two ideas came to my mind. So, the example. We're sorting students a...f:
a b c d e f
0 1 0 0 1 1
a c d b e f
0 0 0 1 1 1
As you see, there isn't much of a sorting here. Three 0's, three 1's.
First, I framed this as an edit distance problem. I. e. you need to convert abcdef into acdbef using only "swap" operation. But how does you come up with acdbef in the first place? My hypothesis here is that you merely need to drag 0's and 1's to opposite sides of an array without disturbing their order. E. g.
A B C D
0 0 ... 0 ... 1 ... 0 ... 1 ... 1 1
0 0 0 0 ... 1 1 1 1
A C B D
I'm not 100% sure if it works and really yields you minimal swaps. But it seems reasonable - why would you spend an additional swap for e. g. A and C?
Regarding if you should place 0's first or last - I don't see an issue with running the same algorithm twice and comparing the amount of swaps.
Regarding how to find the amount of swaps, or even the sequence of swaps - thinking in terms of edit distances can help you with the latter. Finding just numbers of swaps can be a simplified form of edit distance too. Or perhaps something even more simple - e. g. find something (a 0 or 1) that is nearest to its "cluster", and move it. Then repeat until the array is sorted.
If we had to sort the zeros before the ones, this would be straightforward inversion counting.
def count(lst):
total = 0
ones = 0
for x in lst:
if x:
ones += 1
else:
total += ones
return total
Since sorting the ones before the zeros is also an option, we just need to run this algorithm twice, once interchanging the roles of zeros and ones, and take the minimum.

In how many ways you can count till N using the numbers <= with N [duplicate]

This question already has answers here:
What is the fastest (known) algorithm to find the n-th Catalan number mod m?
(2 answers)
Closed 8 years ago.
in how many ways you can sum the numbers less or equal with N to be equal with n. What is the algorithm to solve that?
Example:
lets say that we have
n =10;
so there are a lot of combinations but for example we can do:
1+1+1+1+1+1+1+1+1+1 = 10
1+2+1+1+1+1+1+1+1=10
1+1+2+1+1+1+1+1+1=10
.....
1+9=10
10=10
8+2=10
and so on.
If you think is the Catalan questions, the answer is: the problem seems to be Catalan problem but is not. If you take a look to the results you will see that lets say for N=5 In Catalan algorithm you have 14 possibilities. But in right answer you have 2^4=16 possibilities if you count all, or the Fibonacci array if you keep only the unique combinations. Eg N=5 we have 8 possibilities, so the Catalan algorithm doesn't verify.
This was a question received by me in a quiz done for fun, at that time i thought that the solution is a well known formula, so i lost a lot of time trying to remember it :)
I found 2 solutions for this problem and 1 more if you are considering only the unique combinations. Eg 2+8 is the same as 8+2, you are considering only 1 of them.
So what is the algorithm to solve it?
This is an interesting problem. I do not have the solution (yet), but I think this can be done in a divide-and-conquer way. If you think of the problem space as a binary tree, you can generate it like this:
The root is the whole number n
Its children are floor(n/2) and ceil(n/2)
Example:
n=5
5
/ \
2 3
/ \ / \
1 1 1 2
/ \
1 1
If you do this recursively, you get a binary tree. If can then traverse the tree in this manner to get all the possible combinations of summing up to n:
get_combinations(root_node)
{
combinations=[]
combine(combinations, root_node.child_left, root_node.child_right)
}
combine(combinations, nodeA, nodeB)
{
new_combi = "nodeA" + "+nodeB"
combinations.add(new_combi)
if nodeA.has_children(): combinations.add( combine(combinations, nodeA.child_left, nodeA.child_right) + "+nodeB" )
if nodeB.has_children(): combinations.add( "nodeA+" + combine(combinations, nodeB.child_left, nodeB.child_right) )
return new_combi
}
This is just a draft. Of yourse you don't have to explicitly generate the tree beforehand, but you can do that along the way. Maybe I can come up with a nicer algorithm if I find the time.
EDIT:
OK, I didn't quite answer OPs question to the point, but I don't like to leave stuff unfinished, so here I present my solution as a working python program:
import math
def print_combinations(n):
for calc in combine(n):
line = ""
count = 0
for op in calc:
line += str(int(op))
count += 1
if count < len(calc):
line += "+"
print line
def combine(n):
p_comb = []
if n >= 1: p_comb.append([n])
if n >1:
comb_left = combine(math.floor(n/float(2)))
comb_right = combine(math.ceil(n/float(2)))
for l in comb_left:
for r in comb_right:
lr_merge = []
lr_merge.extend(l)
lr_merge.extend(r)
p_comb.append(lr_merge)
return p_comb
You can now generate all possible ways of summing up n with numbers <= n. For example if you want to do that for n=5 you call this: print_combinations(5)
Have fun, be aware though that you run into memory issues pretty fast (dynamic programming to the rescue!) and that you can have equivalent calculations (e.g. 1+2 and 2+1).
All the 3 solutions that I fount use Math induction:
solution 1:
if n =0 comb =1
if n =1 comb = 1
if n=2 there are 1+1, 2 comb =2 = comb(0)+comb(1)
if n=3 there are 1+1+1, 1+2, 2+1, 3 comb = 4 = comb(0)+comb(1)+comb(2)
if n=4 there are 1+1+1+1, 1+2+1,1+1+2,2+1+1,2+2,1+3,3+1,4 comb = 8 =comb(0)+comb(1)+comb(2)+comb(3)
Now we see a pattern here that says that:
at k value we have comb(k)= sum(comb(i)) where i between 0 and k-1
using math induction we can prove it for k+1 that:
comb(k+1)= sum(comb(i)) where is is between 0 and k
Solution number 2:
If we pay a little more attention to the solution 1 we can say that:
comb(0)=2^0
comb(1)=2^0
comb(2)=2^1
comb(3)=2^2
comb(4)=2^3
comb(k)=2^(k-1)
again using the math induction we can prove that
comb(k+1)=2^k
Solution number 3 (if we keep only the unique combinations) we can see that:
comb(0)=1
comb(1)=1
comb(2)= 1+1,2=2
comb(3)= 1+1+1, 1+2, 2+1, 3 we take out 1+2 because we have 2+1 and its the same comb(3)=3
comb(4) = 1+1+1+1, 1+2+1,1+1+2,2+1+1,2+2,1+3,3+1,4, here we take out the 1+2+1,,2+1+1 and 1+3 because we have them but in different order comb(4)= 5.
If we continue we can see that:
comb(5) = 8
comb(6)=13
we now can see the pattern that:
comb (k) = comb (k-1) + comb(k-2) the Fibonacci array
again using Math induction we can prove that for k+1
comb(k+1) = comb(k)+comb(k-1)
now it's easy to implement those solutions in a language using recursion for 2 of the solutions or just the non recursive method for the solution with 2^k.
And by the way this has serious connections with graph theory (how many sub-graphs you can build starting from a bigger graph - our number N, and sub-graphs being the ways to count )
Amazing isn't it?

How to implement Random(a,b) with only Random(0,1)? [duplicate]

This question already has answers here:
Closed 11 years ago.
Possible Duplicate:
how to get uniformed random between a, b by a known uniformed random function RANDOM(0,1)
In the book of Introduction to algorithms, there is an excise:
Describe an implementation of the procedure Random(a, b) that only makes calls to Random(0,1). What is the expected running time of your procedure, as a function of a and b? The probability of the result of Random(a,b) should be pure uniformly distributed, as Random(0,1)
For the Random function, the results are integers between a and b, inclusively. For e.g., Random(0,1) generates either 0 or 1; Random(a, b) generates a, a+1, a+2, ..., b
My solution is like this:
for i = 1 to b-a
r = a + Random(0,1)
return r
the running time is T=b-a
Is this correct? Are the results of my solutions uniformly distributed?
Thanks
What if my new solution is like this:
r = a
for i = 1 to b - a //including b-a
r += Random(0,1)
return r
If it is not correct, why r += Random(0,1) makes r not uniformly distributed?
Others have explained why your solution doesn't work. Here's the correct solution:
1) Find the smallest number, p, such that 2^p > b-a.
2) Perform the following algorithm:
r=0
for i = 1 to p
r = 2*r + Random(0,1)
3) If r is greater than b-a, go to step 2.
4) Your result is r+a
So let's try Random(1,3).
So b-a is 2.
2^1 = 2, so p will have to be 2 so that 2^p is greater than 2.
So we'll loop two times. Let's try all possible outputs:
00 -> r=0, 0 is not > 2, so we output 0+1 or 1.
01 -> r=1, 1 is not > 2, so we output 1+1 or 2.
10 -> r=2, 2 is not > 2, so we output 2+1 or 3.
11 -> r=3, 3 is > 2, so we repeat.
So 1/4 of the time, we output 1. 1/4 of the time we output 2. 1/4 of the time we output 3. And 1/4 of the time we have to repeat the algorithm a second time. Looks good.
Note that if you have to do this a lot, two optimizations are handy:
1) If you use the same range a lot, have a class that computes p once so you don't have to compute it each time.
2) Many CPUs have fast ways to perform step 1 that aren't exposed in high-level languages. For example, x86 CPUs have the BSR instruction.
No, it's not correct, that method will concentrate around (a+b)/2. It's a binomial distribution.
Are you sure that Random(0,1) produces integers? it would make more sense if it produced floating point values between 0 and 1. Then the solution would be an affine transformation, running time independent of a and b.
An idea I just had, in case it's about integer values: use bisection. At each step, you have a range low-high. If Random(0,1) returns 0, the next range is low-(low+high)/2, else (low+high)/2-high.
Details and complexity left to you, since it's homework.
That should create (approximately) a uniform distribution.
Edit: approximately is the important word there. Uniform if b-a+1 is a power of 2, not too far off if it's close, but not good enough generally. Ah, well it was a spontaneous idea, can't get them all right.
No, your solution isn't correct. This sum'll have binomial distribution.
However, you can generate a pure random sequence of 0, 1 and treat it as a binary number.
repeat
result = a
steps = ceiling(log(b - a))
for i = 0 to steps
result += (2 ^ i) * Random(0, 1)
until result <= b
KennyTM: my bad.
I read the other answers. For fun, here is another way to find the random number:
Allocate an array with b-a elements.
Set all the values to 1.
Iterate through the array. For each nonzero element, flip the coin, as it were. If it is came up 0, set the element to 0.
Whenever, after a complete iteration, you only have 1 element remaining, you have your random number: a+i where i is the index of the nonzero element (assuming we start indexing on 0). All numbers are then equally likely. (You would have to deal with the case where it's a tie, but I leave that as an exercise for you.)
This would have O(infinity) ... :)
On average, though, half the numbers would be eliminated, so it would have an average case running time of log_2 (b-a).
First of all I assume you are actually accumulating the result, not adding 0 or 1 to a on each step.
Using some probabilites you can prove that your solution is not uniformly distibuted. The chance that the resulting value r is (a+b)/2 is greatest. For instance if a is 0 and b is 7, the chance that you get a value 4 is (combination 4 of 7) divided by 2 raised to the power 7. The reason for that is that no matter which 4 out of the 7 values are 1 the result will still be 4.
The running time you estimate is correct.
Your solution's pseudocode should look like:
r=a
for i = 0 to b-a
r+=Random(0,1)
return r
As for uniform distribution, assuming that the random implementation this random number generator is based on is perfectly uniform the odds of getting 0 or 1 are 50%. Therefore getting the number you want is the result of that choice made over and over again.
So for a=1, b=5, there are 5 choices made.
The odds of getting 1 involves 5 decisions, all 0, the odds of that are 0.5^5 = 3.125%
The odds of getting 5 involves 5 decisions, all 1, the odds of that are 0.5^5 = 3.125%
As you can see from this, the distribution is not uniform -- the odds of any number should be 20%.
In the algorithm you created, it is really not equally distributed.
The result "r" will always be either "a" or "a+1". It will never go beyond that.
It should look something like this:
r=0;
for i=0 to b-a
r = a + r + Random(0,1)
return r;
By including "r" into your computation, you are including the "randomness" of all the previous "for" loop runs.

Can we compute this in less than O(n*n) ...( nlogn or n)

This is a question asked to me by a very very famous MNC. The question is as follows ...
Input an 2D N*N array of 0's and 1's. If A(i,j) = 1, then all the values corresponding to the ith row and the jth column are going to be 1. If there is a 1 already, it remains as a 1.
As an example , if we have the array
1 0 0 0 0
0 1 1 0 0
0 0 0 0 0
1 0 0 1 0
0 0 0 0 0
we should get the output as
1 1 1 1 1
1 1 1 1 1
1 1 1 1 0
1 1 1 1 1
1 1 1 1 0
The input matrix is sparsely populated.
Is this possible in less than O(N^2)?
No additional space is provided was another condition. I would like to know if there's a way to achieve the complexity using a space <= O(N).
P.S : I don't need answers that give me a complexity of O(N*N). This is not a homework problem. I have tried much and couldn't get a proper solution and thought I could get some ideas here.Leave the printing aside for the complexity
My rough idea was to may be dynamically eliminate the number of elements traversed restricting them to around 2N or so. But I couldn't get a proper idea.
In the worst case, you may need to toggle N * N - N bits from 0 to 1 to generate the output. It would seem you're pretty well stuck with O(N*N).
I would imagine that you can optimize it for the best case, but I'm tempted to say that your worst case is still O(N*N): Your worst case will be an array of all 0s, and you will have to examine every single element.
The optimization would involve skipping a row or column as soon as you found a "1" (I can provide details, but you said you don't care about O(N*N)", but unless you have metadata to indicate that an entire row/column is empty, or unless you have a SIMD-style way to check multiple fields at once (say, if every row is aligned by 4, and you can read 32 bits worth data, or if your data is in form of a bitmask), you will always have to deal with the problem of an all-zero array.
Clearly, nor the output matrix nor its negated version has to be sparse (take a matrix with half of the first row set to 1 and anything else to 0 to see), so time depends on what format you are allowed to use for the output. (I'm assuming the input is a list of elements or something equivalent, since otherwise you couldn't take advantage of the matrix being sparse.)
A simple solution for O(M+N) space and time (M is the number of ones in the input matrix): take two arrays of length N filled with ones, iterate through all ones in the input, and for each drop the X coordinate from the first array and the Y from the second one. The output is the two arrays, which clearly define the result matrix: its (X,Y) coordinate is 0 iff the X coordinate of the first array and the Y coordinate of the second are 0.
Update: depending on the language, you could use some trickery to return a normal 2D array by referencing the same row multiple times. For example in PHP:
// compute N-length arrays $X and $Y which have 1 at the column
// and row positions which had no 1's in the input matrix
// this is O(M+N)
$result = array();
$row_one = array_fill(0,N,1);
for ($i=0; $i<N; $i++) {
if ($Y[$i]) {
$result[$i] = &$row_one;
} else {
$result[$i] = &$X;
}
}
return $result;
Of course this is a normal array only as long as you don't try to write it.
Since every entry of the matrix has to be checked, your worst case is always going to be N*N.
With a small 2*N extra storage, you can perform the operation in O(N*N). Just create a mask for each row and another for each column - scan the array and update the masks as you go. Then scan again to populate the result matrix based on the masks.
If you're doing something where the input matrix is changing, you could store a count of non-zero entries for each row and column of the input (rather than a simple mask). Then when an entry in the input changes, you update the counts accordingly. At that point, I would drop the output matrix entirely and query the masks/counts directly rather than even maintaining the output matrix (which could also be updated as thing change in less than NN time if you really wanted to keep it around). So loading the initial matrix would still be O(NN) but updates could be much less.
The input matrix may be sparse, but unless you can get it in a sparse format (i.e. a list of (i,j) pairs that are initially set), just reading your input will consume Ω(n^2) time. Even with sparse input, it's easy to end up with O(n^2) output to write. As a cheat, if you were allowed to output a list of set rows and set columns, then you could get down to linear time. There's no magic to be had when your algorithm actually has to produce a result more substantial than 'yes' or 'no'.
Mcdowella's comment on another answer suggests another alternative input format: run-length encoding. For a sparse input, that clearly requires no more than O(n) time to read it (consider how many transitions there are between 0 and 1). However, from there it breaks down. Consider an input matrix structured as follows:
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 . . .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .
. .
. .
. .
That is, alternating 0 and 1 on the first row, 0 everywhere else. Clearly sparse, since there are n/2 ones in total. However, the RLE output has to repeat this pattern in every row, leading to O(n^2) output.
You say:
we should get the output as...
So you need to output the entire matrix, which has N^2 elements. This is O(N*N).
The problem itself is not O(N*N): you dont have to compute and store the entire matrix: you only need two vectors, L and C, each of size N:
L[x] is 1 if line x is a line of ones, 0 otherwise;
C[x] is 1 if line x is a line of ones, 0 otherwise;
You can construct these vectors in O(N), because the initial matrix is sparse; your input data will not be a matrix, but a list containing the coordinates(line,column) of each non-zero element. While reading this list, you set L[line]=1 and C[column]=1, and the problem is solved: M[l,c] == 1 if L[l]==1 OR C[c]==1
Hii guys ,
thanks to the comment from mb14 i think i could get it solved in less than O(NN) time...
The worst would take O(NN)...
Actually , we have the given array suppose
1 0 0 0 1
0 1 0 0 0
0 1 1 0 0
1 1 1 0 1
0 0 0 0 0
Lets have 2 arrays of size N (this would be the worst case) ... One is dedicated for indexing rows and other columns...
Put those with a[i][1] = 0 in one array and then a[1][j] =0 in another..
Then take those values only and check for the second row and colums...In this manner , we get the values of rows and colums where there are only 0;'s entirely...
The number of values in the row array gives number of 0's in the result array and the points a[row-array values][column array value] gives you those points ....
We could solve it in below O(NN) and worst is O(NN) ... As we can seee , the arrays ( of size N) diminishes ....
I did this for a few arrays and got the result for all of them ... :)
Please correct me if i am wrong anywhere...
Thanx for all your comments guys...You are all very helpful and i did learn quite a few things along the way ... :)
There is clearly up to O(N^2) work to do. In the matrix
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
all bits have to be set to 1, and N*(N-1) are not set to one (20, in this 5x5 case).
Conversely, you can come up with an algorithm that always does it in O(N^2) time: sum along the top row and let column, and if the row or column gets a nonzero answer, fill in the entire row or column; then solve the smaller (N-1)x(N-1) problem.
So there exist cases that must take at least N^2 and any case can be solved in N^2 without extra space.
If your matrix is sparse, the complexity depends much on the input encoding and its in particular not well measured in N N2 or something like that but in terms of N your input complexity Min and your output complexity Mout. I'd expect something like O(N + Min + Mout) but much depending on the encoding and the tricks that you can play with it.
That depends entirely of your input data structure. If you pass your matrix (1s and 0s) as a 2D array you need to traverse it and that is O(N^2). But as your data is sparse, if you only pass the 1's as input, you can do it so the ouptut is O(M), where M is not the number of cells but the number of 1 cells. It would be something similar to this (pseudocode below):
list f(list l) {
list rows_1;
list cols_1;
for each elem in l {
rows_1[elem.row] = 1;
cols_1[elem.col] = 1;
}
list result;
for each row in rows_1 {
for each col in cols_1 {
if (row == 1 || col == 1) {
add(result, new_elem(row, col));
}
}
}
return result;
}
Don't fill the center of the matrix when you're checking values. As you go through the elements, when you have 1 set the corresponding element in the first row and the first column. Then go back and fill down and across.
edit: Actually, this is the same as Andy's.
It depends on your data structure.
There are only two possible cases for rows:
A row i is filled with 1's if there is an element (i,_) in the input
All other rows are the same: i.e. the j-th element is 1 iff there is an element (_,j) in the input.
Hence the result could be represented compactly as an array of references to rows. Since we only need two rows the result would also only consume O(N) memory. As an example this could be implemented in python as follows:
def f(element_list, N):
A = [1]*N
B = [0]*N
M = [B]*N
for row, col in element_list:
M[row] = A
B[col] = 1
return M
A sample call would be
f([(1,1),(2,2),(4,3)],5)
with the result
[[0, 1, 1, 1, 0], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [0, 1, 1, 1, 0], [1, 1, 1, 1, 1]]
The important point is that the arrays are not copied here, i.e. M[row]=A is just an assignment of a reference. Hence the complexity is O(N+M), where M is the length of the input.
#include<stdio.h>
include
int main()
{
int arr[5][5] = { {1,0,0,0,0},
{0,1,1,0,0},
{0,0,0,0,0},
{1,0,0,1,0},
{0,0,0,0,0} };
int var1=0,var2=0,i,j;
for(i=0;i<5;i++)
var1 = var1 | arr[0][i];
for(i=0;i<5;i++)
var2 = var2 | arr[i][0];
for(i=1;i<5;i++)
for(j=1;j<5;j++)
if(arr[i][j])
arr[i][0] = arr[0][j] = 1;
for(i=1;i<5;i++)
for(j=1;j<5;j++)
arr[i][j] = arr[i][0] | arr[0][j];
for(i=0;i<5;i++)
arr[0][i] = var1;
for(i=0;i<5;i++)
arr[i][0] = var2;
for(i=0;i<5;i++)
{
printf("\n");
for(j=0;j<5;j++)
printf("%d ",arr[i][j]);
}
getch();
}
This program makes use of only 2 4 temporary variables (var1,var2,i and j) and hence runs in constant space with time complexity O(n^2).. I Think it is not possible at all to solve this problem in < O(n^2).

Algorithm to count the number of valid blocks in a permutation [duplicate]

This question already has answers here:
Closed 12 years ago.
Possible Duplicate:
Finding sorted sub-sequences in a permutation
Given an array A which holds a permutation of 1,2,...,n. A sub-block A[i..j]
of an array A is called a valid block if all the numbers appearing in A[i..j]
are consecutive numbers (may not be in order).
Given an array A= [ 7 3 4 1 2 6 5 8] the valid blocks are [3 4], [1,2], [6,5],
[3 4 1 2], [3 4 1 2 6 5], [7 3 4 1 2 6 5], [7 3 4 1 2 6 5 8]
So the count for above permutation is 7.
Give an O( n log n) algorithm to count the number of valid blocks.
Ok, I am down to 1 rep because I put 200 bounty on a related question: Finding sorted sub-sequences in a permutation
so I cannot leave comments for a while.
I have an idea:
1) Locate all permutation groups. They are: (78), (34), (12), (65). Unlike in group theory, their order and position, and whether they are adjacent matters. So, a group (78) can be represented as a structure (7, 8, false), while (34) would be (3,4,true). I am using Python's notation for tuples, but it is actually might be better to use a whole class for the group. Here true or false means contiguous or not. Two groups are "adjacent" if (max(gp1) == min(gp2) + 1 or max(gp2) == min(gp1) + 1) and contigous(gp1) and contiguos(gp2). This is not the only condition, for union(gp1, gp2) to be contiguous, because (14) and (23) combine into (14) nicely. This is a great question for algo class homework, but a terrible one for interview. I suspect this is homework.
Just some thoughts:
At first sight, this sounds impossible: a fully sorted array would have O(n2) valid sub-blocks.
So, you would need to count more than one valid sub-block at a time. Checking the validity of a sub-block is O(n). Checking whether a sub-block is fully sorted is O(n) as well. A fully sorted sub-block contains n·(n - 1)/2 valid sub-blocks, which you can count without further breaking this sub-block up.
Now, the entire array is obviously always valid. For a divide-and-conquer approach, you would need to break this up. There are two conceivable breaking points: the location of the highest element, and that of the lowest element. If you break the array into two at one of these points, including the extremum in the part that contains the second-to-extreme element, there cannot be a valid sub-block crossing this break-point.
By always choosing the extremum that produces a more even split, this should work quite well (average O(n log n)) for "random" arrays. However, I can see problems when your input is something like (1 5 2 6 3 7 4 8), which seems to produce O(n2) behaviour. (1 4 7 2 5 8 3 6 9) would be similar (I hope you see the pattern). I currently see no trick to catch this kind of worse case, but it seems that it requires other splitting techniques.
This question does involve a bit of a "math trick" but it's fairly straight forward once you get it. However, the rest of my solution won't fit the O(n log n) criteria.
The math portion:
For any two consecutive numbers their sum is 2k+1 where k is the smallest element. For three it is 3k+3, 4 : 4k+6 and for N such numbers it is Nk + sum(1,N-1). Hence, you need two steps which can be done simultaneously:
Create the sum of all the sub-arrays.
Determine the smallest element of a sub-array.
The dynamic programming portion
Build two tables using the results of the previous row's entries to build each successive row's entries. Unfortunately, I'm totally wrong as this would still necessitate n^2 sub-array checks. Ugh!
My proposition
STEP = 2 // amount of examed number
B [0,0,0,0,0,0,0,0]
B [1,1,0,0,0,0,0,0]
VALID(A,B) - if not valid move one
B [0,1,1,0,0,0,0,0]
VALID(A,B) - if valid move one and step
B [0,0,0,1,1,0,0,0]
VALID (A,B)
B [0,0,0,0,0,1,1,0]
STEP = 3
B [1,1,1,0,0,0,0,0] not ok
B [0,1,1,1,0,0,0,0] ok
B [0,0,0,0,1,1,1,0] not ok
STEP = 4
B [1,1,1,1,0,0,0,0] not ok
B [0,1,1,1,1,0,0,0] ok
.....
CON <- 0
STEP <- 2
i <- 0
j <- 0
WHILE(STEP <= LEN(A)) DO
j <- STEP
WHILE(STEP <= LEN(A) - j) DO
IF(VALID(A,i,j)) DO
CON <- CON + 1
i <- j + 1
j <- j + STEP
ELSE
i <- i + 1
j <- j + 1
END
END
STEP <- STEP + 1
END
The valid method check that all elements are consecutive
Never tested but, might be ok
The original array doesn't contain duplicates so must itself be a consecutive block. Lets call this block (1 ~ n). We can test to see whether block (2 ~ n) is consecutive by checking if the first element is 1 or n which is O(1). Likewise we can test block (1 ~ n-1) by checking whether the last element is 1 or n.
I can't quite mould this into a solution that works but maybe it will help someone along...
Like everybody else, I'm just throwing this out ... it works for the single example below, but YMMV!
The idea is to count the number of illegal sub-blocks, and subtract this from the total possible number. We count the illegal ones by examining each array element in turn and ruling out sub-blocks that include the element but not its predecessor or successor.
Foreach i in [1,N], compute B[A[i]] = i.
Let Count = the total number of sub-blocks with length>1, which is N-choose-2 (one for each possible combination of starting and ending index).
Foreach i, consider A[i]. Ignoring edge cases, let x=A[i]-1, and let y=A[i]+1. A[i] cannot participate in any sub-block that does not include x or y. Let iX=B[x] and iY=B[y]. There are several cases to be treated independently here. The general case is that iX<i<iY<i. In this case, we can eliminate the sub-block A[iX+1 .. iY-1] and all intervening blocks containing i. There are (i - iX + 1) * (iY - i + 1) such sub-blocks, so call this number Eliminated. (Other cases left as an exercise for the reader, as are those edge cases.) Set Count = Count - Eliminated.
Return Count.
The total cost appears to be N * (cost of step 2) = O(N).
WRINKLE: In step 2, we must be careful not to eliminate each sub-interval more than once. We can accomplish this by only eliminating sub-intervals that lie fully or partly to the right of position i.
Example:
A = [1, 3, 2, 4]
B = [1, 3, 2, 4]
Initial count = (4*3)/2 = 6
i=1: A[i]=1, so need sub-blocks with 2 in them. We can eliminate [1,3] from consideration. Eliminated = 1, Count -> 5.
i=2: A[i]=3, so need sub-blocks with 2 or 4 in them. This rules out [1,3] but we already accounted for it when looking right from i=1. Eliminated = 0.
i=3: A[i] = 2, so need sub-blocks with [1] or [3] in them. We can eliminate [2,4] from consideration. Eliminated = 1, Count -> 4.
i=4: A[i] = 4, so we need sub-blocks with [3] in them. This rules out [2,4] but we already accounted for it when looking right from i=3. Eliminated = 0.
Final Count = 4, corresponding to the sub-blocks [1,3,2,4], [1,3,2], [3,2,4] and [3,2].
(This is an attempt to do this N.log(N) worst case. Unfortunately it's wrong -- it sometimes undercounts. It incorrectly assumes you can find all the blocks by looking at only adjacent pairs of smaller valid blocks. In fact you have to look at triplets, quadruples, etc, to get all the larger blocks.)
You do it with a struct that represents a subblock and a queue for subblocks.
struct
c_subblock
{
int index ; /* index into original array, head of subblock */
int width ; /* width of subblock > 0 */
int lo_value;
c_subblock * p_above ; /* null or subblock above with same index */
};
Alloc an array of subblocks the same size as the original array, and init each subblock to have exactly one item in it. Add them to the queue as you go. If you start with array [ 7 3 4 1 2 6 5 8 ] you will end up with a queue like this:
queue: ( [7,7] [3,3] [4,4] [1,1] [2,2] [6,6] [5,5] [8,8] )
The { index, width, lo_value, p_above } values for subbblock [7,7] will be { 0, 1, 7, null }.
Now it's easy. Forgive the c-ish pseudo-code.
loop {
c_subblock * const p_left = Pop subblock from queue.
int const right_index = p_left.index + p_left.width;
if ( right_index < length original array ) {
// Find adjacent subblock on the right.
// To do this you'll need the original array of length-1 subblocks.
c_subblock const * p_right = array_basic_subblocks[ right_index ];
do {
Check the left/right subblocks to see if the two merged are also a subblock.
If they are add a new merged subblock to the end of the queue.
p_right = p_right.p_above;
}
while ( p_right );
}
}
This will find them all I think. It's usually O(N log(N)), but it'll be O(N^2) for a fully sorted or anti-sorted list. I think there's an answer to this though -- when you build the original array of subblocks you look for sorted and anti-sorted sequences and add them as the base-level subblocks. If you are keeping a count increment it by (width * (width + 1))/2 for the base-level. That'll give you the count INCLUDING all the 1-length subblocks.
After that just use the loop above, popping and pushing the queue. If you're counting you'll have to have a multiplier on both the left and right subblocks and multiply these together to calculate the increment. The multiplier is the width of the leftmost (for p_left) or rightmost (for p_right) base-level subblock.
Hope this is clear and not too buggy. I'm just banging it out, so it may even be wrong.
[Later note. This doesn't work after all. See note below.]

Resources