Transforming a sentence creates an infinite loop - but how? - prolog

I can't figure out where this is going wrong. Please note that I am very new to Prolog and I'm sure I'm missing something - just no idea what that might be. Could anyone help me out please?
Thanks, here is my code:
printSentence([]).
printSentence([W|[]]) :-
write(W),
write('.'),
nl.
printSentence([W|R]) :-
write(W),
write(' '),
printSentence(R).
transform([], Result).
transform([Word|Rest], Result) :-
replace(Word, Replacement),
append(Result, Replacement, NewResult),
transform(Rest, NewResult).
replace(my, your).
replace(i, you).
replace(you, me).
replace(am, are).
replace(Word, Word).
test :-
X = [you, are, my, only, hope],
transform(X, Result),
printSentence(Result).

#Junuxx' answer is one step to the solution ; there is also another problem in your program. But first step back: #Junuxx spotted the problem and fixed it. Nice. But how can you spot such a problem? Actually, you asked »infinite loop – but how?«
What is cool in Prolog is that you can often localize the looping program up to a very tiny fragment of the program. Such a fragment is called a failure-slice. That is: No more eye-sores reading lengthy programs!
Let's get back to your program. If you load it, you will get a message like:
Warning: /usager/SO/paranoid.pl:13:
Singleton variables: [Result]
Which gives you already a hint on something most probably wrong. Alas, this is not your biggest concern for the moment. Your biggest problem is that the goal test loops!
Localizing non-termination
So how can you with low effort realize what is actually looping?
One way would be to fire up a tracer, which will show you step-by-step how Prolog executes this program. However, the tracer will show you a lot of irrelevant detail. Detail, that you do not need to understand when programming in Prolog. Detail, that fills up your mind such that chances are that you will miss the actual problem completely. So unless you want to spend time on screens full with flickering lines, stay away from tracers.
The other way is to add goals false into your program. Remember, your program loops already, so such extra goals will not hurt you much. Why vandalize your program with these false goals that you never wanted to write in the first place? It's because these false goals will help you detect the culprit of non-termination in your program by hiding "irrelevant" parts. This is so, thanks to the following observation:
If a failure-slice (= your vandalized program) does not terminate then the original program does not terminate either.
In a sense, the failure-slice is a reason why your program does not terminate. Or to put it more strongly: As long as you do not change the visible part in a failure-slice ; that is, as long as you are only trying your luck by modifying parts that are not visible in the failure slice, the problem will persist! Guaranteed! That is not the nicest kind of guarantee but it is better than being blind.
Here is what I get as a failure slice. I removed printSentence/1 because it is no longer used in the fragment. And I added the definition of append/3. Some Prologs offer append/3 as a built-in predicate that you cannot modify. In that case use another name, like local_append/3 – just don't forget to replace all occurrences!
append([], Zs, Zs) :- false.
append([X|Xs], Ys, [X|Zs]) :-
append(Xs, Ys, Zs), false.
transform([], Result) :- false.
transform([Word|Rest], Result) :-
replace(Word, Replacement),
append(Result, Replacement, NewResult), false,
transform(Rest, NewResult).
replace(my, your) :- false.
replace(i, you) :- false.
replace(you, me).
replace(am, are) :- false.
replace(Word, Word) :- false.
test :-
X = [you, are, my, only, hope],
transform(X, Result), false,
printSentence(Result).
When I load this failure-slice, I get:
?- test.
ERROR: Out of local stack
Which is a good indication that the program does not terminate. On my finite hardware it exhausts all resources instead. ((To be pedantic, this program might still terminate, it might only need too much resources. But remember: We have this if failure-slice loops, then the entire program loops. In any case, proving non-termination of the failure-slice will often be easier, since the fragment is shorter)).
Some observations: Originally, transform/2 used to be recursive. Now, it no longer is. The only recursion left is within append/3. So I first look at the goal append(Result, Replacement, NewResult) and I try to figure out what the variables might be. The easiest is the 3rd argument: NewResult is the only occurrence in our fragment, we can thus replace it by _. The second argument's variable Replacement will always be me. And the first argument (here I have now to look at test/0) will be an uninstantiated variable. So we have to consider the goal append(_, me, _).
Simply run append(_, me, _), false to see that this goal does not terminate! You can see this also by inspecting the failure-slice. Here is it, again:
append([], Zs, Zs) :- false.
append([X|Xs], Ys, [X|Zs]) :-
append(Xs, Ys, Zs), false.
Look at Ys: Nobody cares about it, it is just "handed over". Only the first and the third argument might guarantee termination!
For more see the tag failure-slice.
Fine print
Certain restrictions apply! Void where prohibited! You can do above reasoning only with a pure, monotonic Prolog program. Actually, some benign side-effects as the ones you have in your program are OK too. As long as they do not affect the control-flow.
The other problem
There is another problem with your program. Run printSentence([you]), false to see it! Backtracking and side-effects do not flock together easily. For a beginner, the best is to avoid side-effects all together. See this question and that answer for an example, how to remove useless side-effects in programming problems.
Why not call transform([you, are, my, only hope], Xs) or maplist(replace,[you, are, my only, hope], Xs) directly? It lets you again concentrate on the relevant parts!

This should work. Notice you had a singleton in transform([],Result). Also, append doesn't work in the way you tried to use it, but you were on the right track generally.
transform([], []).
transform([Word|Rest], [Replacement|RestOfResult]) :-
replace(Word, Replacement),
transform(Rest, RestOfResult).

Related

What am I missing about equality and unification in Prolog?

I'm working through Clocksin and Mellish to try and finally go beyond just dabbling in Prolog. FWIW, I'm running SWI-Prolog:
SWI-Prolog version 7.2.3 for x86_64-linux
Anyway, I implemented a diff/2 predicate as part of exercise 1.4. The predicate is very simple:
diff(X,Y) :- X \== Y.
And it works when used in the sister_of predicate, like this:
sister_of(X,Y) :-
female(X),
diff(X,Y),
parents(X, Mum, Dad ),
parents(Y, Mum, Dad ).
in that, assuming the necessary additional facts, doing this:
?- sister_of(alice,alice).
returns false as expected. But here's the rub. If I do this instead:
?- sister_of(alice, Who).
(again, given the additional facts necessary)
I get
Who = edward ;
Who = alice;
false
Even though, as already shown, the sister_of predicate does not treat alice as her own sister.
On the other hand, if I use the SWI provided dif/2 predicate, then everything works the way I would naively expect.
Can anyone explain why this is happening this way, and why my diff implementation doesn't work the way I'm expecting, in the case where I ask for additional unifications from that query?
The entire source file I'm working with can be found here
Any help is much appreciated.
As you note, the problem stems from the interplay between equality (or rather, inequality) and unification. Observe that in your definition of sister_of, you first find a candidate value for X, then try to constrain Y to be different, but Y is still an uninstantiated logic variable and the check is always going to succeed, like diff(alice, Y) will. The following constraints, including the last one that gives a concrete value to Y, come too late.
In general, what you need to do is ensure that by the time you get to the inequality check all variables are instantiated. Negation is a non-logical feature of Prolog and therefore potentially dangerous, but checking whether two ground terms are not equal is safe.

Prolog parsing malfunctioning

My code takes an expression like or(lit(true),lit(X)),X) and outputs it as a list of lists.
tocnf(Tree, Expr) :-
trans(Tree ,Expr, []).
trans(lit(X)) -->bbool(X).
trans(or(lit(X1),lit(X2))) --> bconj(X1), bdisj(X2).
trans(and(lit(X1),lit(X2))) --> bbool(X1), bconj(X2).
bdisj(Conj) --> bconj(Conj).
bconj(Bool) --> bbool(Bool).
bbool(X) --> [[X]].
this code should take something like
tocnf(lit(X),X)
output it as
[[X]]
or
tocnf(or(lit(true),lit(X)),X)
and output it as
[[true],[X]].
Question is why when I do
tocnf(or(lit(true), and(lit(X),lit(true))),X)
it outputs
false.
Preliminaries
First, a note on style: You should always use the phrase/2 interface to access DCGs, so write tocnf/2 as:
tocnf(Tree, Expr) :-
phrase(trans(Tree), Expr).
Further, tocnf/2 is a rather imperative name, since it implies a direction of use ("to" CNF). However, the relation also makes sense in other directions, for example to generate answers. Therefore, try to find a better name, that does justice to this general nature of Prolog. I leave this as an exercise.
Declarative debugging
Now, on to your actual question. Apply declarative debugging to find the reason for the failure.
We start with the query you posted:
?- tocnf(or(lit(true), and(lit(X),lit(true))), X).
false.
This means that the program is unexpectedly too specific: It fails in a case we expect to succeed.
Now, we generalize the query, to find simpler cases that still fail. This is completely admissible because your program is written using the monotonic subset of Prolog, as is highly recommended to make declarative debugging applicable.
To generalize the query, I use variables instead of some subterms. For example:
?- tocnf(or(lit(_), and(lit(X),lit(true))), X).
false.
Aha! This still fails, and therefore every more specific query will also fail.
So, we proceed like this, using variables instead of some subterms:
?- tocnf(or(lit(_), and(lit(X),lit(_))), X).
false.
?- tocnf(or(_, and(lit(X),lit(_))), X).
false.
?- tocnf(or(_, and(_,lit(_))), X).
false.
?- tocnf(or(_, and(_,_)), X).
false.
All of these queries also fail.
Now, we take it just one step further:
?- tocnf(or(_, _), X).
X = [[_G793], [_G795]].
Aha! So we have found a case that succeeds, and one slightly more specific though still very simple case that fails:
?- tocnf(or(_, and(_,_)), X).
false.
This is the case I would start with: Think about why your relation does not work for terms of the form or(_, and(_,_)).
Automated solution
A major attraction of pure monotonic Prolog is that the reasoning above can be automated:
The machine should find the reason for the failure, so that we can focus on more important tasks.
One way to do this was generously made available by Ulrich Neumerkel.
To try it out, you need to install:
library(diadem) and
library(lambda).
Now, to recapitulate: We have found a query that unexpectedly fails. It was:
?- tocnf(or(lit(true), and(lit(X),lit(true))), X).
false.
To find a reason for this, we first load library(diadem):
?- use_module(library(diadem)).
true.
Then, we repost the query with a slight twist:
?- tocnf(or(lit(true), and(lit(X),lit(true))), X).?Generalization.
That is, I have simply appended ?Generalization. to the previous query.
In response, we get:
Generalization = tocnf(or(_, and(_, _)), _) .
Thus, Generalization is a more general goal that still fails. Since the Prolog program we are considering is completely pure and monotonic, we know that every more specific query will also fail. Therefore, I suggest you focus on this simpler and more general case, which was found automatically in this case, and is the same goal we also found manually after several steps.
Unexpected failure is a common issue when learning Prolog, and automated declarative debugging lets you quickly find the reasons.

Custom subset not backtracking

I'm new to prolog and I've been having trouble with some homework.
On some part of my code I have to generate subsets of a given set on backtracking. Meaning, the code should try for a subset, and when it fails the next condition, try the next subset. I have done some research and the default function subset won't backtrack because as explained in this question both arguments are input arguments. So I built a custom one, which still isn't backtracking. Can you give me a hint on what I'm failing on? Here's my code:
numNutrients(8).
product(milk,[2,4,6]).
product(porkChops,[1,8]).
product(yoghurt,[3,1]).
product(honey,[5,7]).
product(plastic,[3,5,2]).
product(magic,[5,7,8]).
nutrientlist(N,L):-findall(I,between(1,N,I),L).
subset2([],[]):-!.
subset2([X|T],[X|T2]):-
subset2(T,T2).
subset2([_|T],[T2]):-
subset2(T,T2).
shopping(K,L):-
numNutrients(J),
nutrientlist(J,N),
findall(P,product(P,_),Z),
subset2(X,Z),
length(X,T),
T =< K,
covers(X,N),
L = X.
covers(_,[]):-!.
covers([X|L],N):-
product(X,M),
subset2(M,N),
subtract(N,M,T),
covers(L,T).
main:-
shopping(5,L),
write(L).
The problem is on predicate shopping(K,L). When it gets to predicate subset2, it gives the whole set, which has length 6 (not 5), then fails and doesn't backtrack. Since all previous predicates can't backtrack it just fails.
So, why doesn't subset2 backtrack?
Thank you for your time.
Primary focus: subset2/2
First, let us focus only on the predicate that shows different properties from those you expect.
In your case, this is only subset2/2, defined by you as:
subset2([], []) :- !.
subset2([X|T], [X|T2]) :-
subset2(T, T2).
subset2([_|T], [T2]) :-
subset2(T, T2).
I will now use declarative debugging to locate the cause of the problem.
For this method to apply, I remove the !/0, because declarative debugging works best on pure and monotonic logic programs. See logical-purity for more information. Thus, we shall work on:
subset2([], []).
subset2([X|T], [X|T2]) :-
subset2(T, T2).
subset2([_|T], [T2]) :-
subset2(T, T2).
Test cases
Let us first construct a test case that yields unintended answers. For example:
?- subset2([a], [a,b]).
false.
That obviously not intended. Can we generalize the test case? Yes:
?- subset2([a], [a,b|_]).
false.
So, we have now an infinite family of examples that yield wrong results.
Exercise: Are there also cases where the program is too general, i.e., test cases that succeed although they should fail?
Locating mistakes
Why have we seen unintended failure in the cases above? To locate these mistakes, let us generalize the program.
For example:
subset2(_, []).
subset2([_|T], [_|T2]) :-
subset2(T, T2).
subset2(_, [T2]) :-
subset2(T, T2).
Even with this massive generalization, we still have:
?- subset2([a], [a,b|_]).
false.
That is, we have many cases where we expect the query to succeed, but it fails. This means that the remaining program, even though it is a massive generalization of the original program, is still too specific.
Correcting the program
To make the shown cases succeed, we have to either:
add clauses that describe the cases we need
or change the existing clauses to cover these cases too.
For example, a way out would be to add the following clause to the database:
subset2([a], [a,b|_]).
We could even generalize it to:
subset2([a], [a|_]).
Adding either or both of these clauses to the program would make the query succeed:
?- subset2([a], [a,b|_]).
true.
However, that is of course not the general definition of subset2/2 we are looking for, since it would for example still fail in cases like:
?- subset2([x], [x,y|_]).
false.
Therefore, let us go with the other option, and correct the existing definition. In particular, let us consider the last clause of the generalized program:
subset2(_, [T2]) :-
subset2(T, T2).
Note that this only holds if the second argument is a list with exactly one element which is subject to further constraints. This seems way too specific!
Therefore, I recommend you start by changing this clause so that it at least makes the test cases collected so far all succeed. Then, add the necessary specializations to make it succeed precisely for the intended cases.

Make a predicate reversible

I'm new to prolog; I'm coming from a structured programming background, as will become obvious :)
I am building up a prolog query that involves reversing a number; eg. reverse_num(123,X) results in X = 321. I came up with the following definition, but it only works when I provide a number as the first parameter.
reverse_num(Num, Revnum) :-
number_chars(Num, Atoms),
reverse(Revatoms, Atoms),
number_chars(Reversed, Revatoms),
Reversed = Revnum.
the number_chars/2 predicate doesn't like an unsubstantiated variable if I do: reverse_num(X,123) (where I'm expecting X to be 321).
Am I trying too hard to make reverse_num do something it shouldn't (should it be understood to work only with a number as the first parameter and variable as the second)?
Or is there an easy / straight-forward way to handle a variable as the first parameter?
Relational naming
Before jumping into coding, let's take a step back. After all, the idea in Prolog is to define relations. Your name reverse_num/2 rather suggests some actions, num_reversed/2 might be a better name.
Determine the relation
Your definition is not that bad, let me rewrite it to1:
num_reversed(Num, Reversed) :-
number_chars(Num, Chars),
reverse(Chars, Revchars),
number_chars(Reversed, Revchars).
?- num_reversed(123,X).
X = 321.
?- num_reversed(1230,X).
X = 321.
?- num_reversed(12300,X).
X = 321.
Do you see the pattern? All numbers N*10^I have the same result!
Now, let's ask some more:
?- num_reversed(Num, 321).
error(instantiation_error,number_chars/2).
Hm, what did we expect? Actually, we wanted all 123*10^I to be printed. That's infinitely many solutions. So above query, if correctly answered, would require infinitely many solutions to be printed. If we print them directly, that will take all our universe's lifetime, and more!
It is for this reason, that Prolog produces an instantiation error instead. By this, Prolog essentially states:
This goal is too general that I can make a good answer. Maybe there are infinitely many solutions, maybe not. I know not. But at least I indicate this by issuing an error. To remove this error you need to instantiate the arguments a bit more.
So the answer Prolog produced was not that bad at all! In fact, it is much better to produce a clean error than to, say, fail incorrectly. In general, Prolog's errors are often a very useful hint to what semantic problems you might have. See all error classes how.
Coroutining
As have other answers suggested, coroutining, using when/2 might solve this problem. However, coroutining itself has many semantic problems. Not without reason, systems like XSB do not offer it, due to the many problems related to subsumption checking. An implementation that would be compatible to it would be unexpectedly inefficient.
But for the sake of the point, we could make our definition more versatile by querying it like
?- when(nonvar(Num), num_reversed(Num, Reversed)).
when(nonvar(Num), num_reversed(Num, Reversed)).
Now we get back as an answer exactly the query we entered. This is also known as floundering. So there is a way to represent infinitely may solutions in a compact manner! However, this comes at a rather high price: You no longer know whether a solution exists or not. Think of:
?- when(nonvar(Num), num_reversed(Num, -1)).
when(nonvar(Num), num_reversed(Num, -1)).
Others have suggested to wait also for nonvar(Reversed) which would only be correct if we would produce infinitely many answers - but, as we have seen - this just takes too much time.
Coroutining looked as a very promising road at the beginning of the 1980s. However, it has never really caught on as a general programming methodology. Most of the time you get much too much floundering which is just a pain and even more difficult to handle than, say instantiation errors.
However, a more promising offspring of this development are constraints. There, the mechanisms are much cleaner defined. For practical purposes, programmers will only use existing libraries, like CLPFD, CLPQ, or CHR. Implementing your own library is an extremely non-trivial project in its own right. In fact it might even be possible to provide an implementation of num_reversed/2 using library(clpfd) that is, restricting the relation to the integer case.
Mode dependent conditionals
Traditionally, many such problems are solved by testing for instantiations explicitly. It is good style to perform this exclusively with nonvar/1 and ground/1 like the condition in when/2- other type test predicates lead easily to errors as exemplified by another answer.
num_reversed(Num, Reversed) :-
( nonvar(Num)
-> original_num_reversed(Num, Reversed)
; original_num_reversed(Reversed, Base),
( Base =:= 0
-> Num is 0
; length(_, I),
Num is Base*10^I
)
).
Above code breaks very soon for floats using base 2 and somewhat later for base 10. In fact, with classical base 2 floats, the relation itself does not make much sense.
As for the definition of number_chars/2, ISO/IEC 13211-1:1995 has the following template and mode subclause:
8.16.7.2 Template and modes
number_chars(+number, ?character_list)
number_chars(-number, +character_list)
The first case is when the first argument is instantiated (thus nonvar). The second case, when the first argument is not instantiated. In that case, the second argument has to be instantiated.
Note, however, that due to very similar problems, number_chars/2 is not a relation. As example, Chs = ['0','0'], number_chars(0, Chs) succeeds, whereas number_chars(0, Chs), Chs = ['0','0'] fails.
Very fine print
1 This rewrite is necessary, because in many Prologs reverse/2 only terminates if the first argument is known. And in SWI this rewrite is necessary due to some idiosyncratic inefficiencies.
The number_chars/2 predicate has the signature:
number_chars(?Number, ?CharList)
But although not fully specified by the signature, at least Number or CharList have to be instantiated. That's where the error occurs from.
If you call:
reverse_num(Num,123)
You will call number_chars/2 with both uninstatiated at that time so the predicate will error.
A not very nice solution to the problem is to ask whether Num or RevNum are number/2s. You can do this by writing two versions. It will furthermore filter other calls like reverse_num(f(a),b), etc.:
reverse_num(Num,Revnum) :-
\+ number(Num),
\+ number(Revnum),
throw(error(instantiation_error, _)).
reverse_num(Num, Revnum) :-
ground(Num),
number(Num),
!,
number_chars(Num, Atoms),
reverse(Revatoms, Atoms),
number_chars(Revnum, Revatoms).
reverse_num(Num, Revnum) :-
ground(Revnum),
number(Revnum),
reverse_num(Revnum,Num).
Or you can in case you use two nongrounds (e.g. reverse_num(X,Y).) an instantiation error instead of false as #false says:
reverse_num(Num,Revnum) :-
\+ number(Num),
\+ number(Revnum),
!,
throw(error(instantiation_error, _)).
reverse_num(Num, Revnum) :-
number(Num),
!,
number_chars(Num, Atoms),
reverse(Revatoms, Atoms),
number_chars(Revnum, Revatoms).
reverse_num(Num, Revnum) :-
reverse_num(Revnum,Num).
The cut (!) is not behaviorally necessary, but will increase performance a bit. I'm not really a fan of this implementation, but Prolog cannot always fully make predicates reversible since (a) reversibility is an undecidable property because Prolog is Turing complete; and (b) one of the characteristics of Prolog is that the body atoms are evaluated left-to-right. otherwise it will take ages to evaluate some programs. There are logic engines that can do this in an arbitrary order and thus will succeed for this task.
If the predicate/2 is commutative, a solution that can be generalized is the following pattern:
predicate(X,Y) :-
predicate1(X,A),
predicate2(A,B),
% ...
predicaten(C,Y).
predicate(X,Y) :-
predicate(Y,X).
But you cannot simply add the last clause to the theory, because it can loop infinitely.
Nice to see someone is also worried about define flexible rules with no restrictions in the set of bound arguments.
If using a Prolog system that supports coroutining and the when/2 built-in predicate (e.g. SICStus Prolog, SWI-Prolog, or YAP), try as:
reverse_num(Num, Reversed) :-
when( ( ground(Num); ground(Atoms) ), number_chars(Num, Atoms) ),
when( ( ground(Reversed); ground(Revatoms) ), number_chars(Reversed, Revatoms) ),
reverse(Atoms , Revatoms).
that gives:
?- reverse_num( 123, X ).
X = 321.
?- reverse_num( X, 123 ).
X = 321 .
( thanks to persons who provided theses answers: Prolog: missing feature? )
This SWISH session shows my effort to answer.
Then I've come back here, where I found I was on #PasabaPorAqui' mood (+1), but I didn't get it right.
But, such an interesting topic: notice how regular is the join pattern.
reverse_num(X, Y) :-
when((nonvar(Xs);nonvar(Ys)), reverse(Xs, Ys)),
when((nonvar(X) ;nonvar(Xs)), atomic_chars(X, Xs)),
when((nonvar(Y) ;nonvar(Ys)), atomic_chars(Y, Ys)).
So, we can generalize in a simple way (after accounting for PasabaPorAqui correction, ground/1 it's the key):
% generalized... thanks Pasaba Por Aqui
:- meta_predicate when_2(0).
when_2(P) :-
strip_module(P,_,Q),
Q =.. [_,A0,A1],
when((ground(A0);ground(A1)), P).
reverse_num(X, Y) :-
maplist(when_2, [reverse(Xs, Ys), atomic_chars(X, Xs), atomic_chars(Y, Ys)]).
I think I understand why nonvar/1 was problematic: the list bound for reverse get 'fired' too early, when just the head get bound... too fast !
maplist/2 is not really necessary: by hand we can write
reverse_num(X, Y) :-
when_2(reverse(Xs, Ys)),
when_2(atomic_chars(X, Xs)),
when_2(atomic_chars(Y, Ys)).
this seems an ideal application of term rewriting... what do you think about -:- ? Implementing that we could write bidirectional code like
reverse_num(X, Y) -:-
reverse(Xs, Ys),
atomic_chars(X, Xs),
atomic_chars(Y, Ys).
edit SWISH maybe is not 'term_rewrite' friendly... so here is a lower level approach:
:- op(900, xfy, ++).
A ++ B ++ C :- when_2(A), B ++ C.
A ++ B :- when_2(A), when_2(B).
reverse_num(X, Y) :-
reverse(Xs, Ys) ++ atomic_chars(X, Xs) ++ atomic_chars(Y, Ys).
Setting aside the problem of trailing zeroes turning into leading zeroes, it doesn't seem like it should be much more complicated than something like this (made somewhat more complicated by dealing with negative numbers):
reverse_number(X,Y) :- number(X) , ! , rev(X,Y) .
reverse_number(X,Y) :- number(Y) , ! , rev(Y,X) .
rev(N,R) :-
N < 0 ,
! ,
A is abs(N) ,
rev(A,T) ,
R is - T
.
rev(N,R) :-
number_chars(N,Ns) ,
reverse(Ns,Rs) ,
number_chars(R,Rs)
.
Note that this does require at least one of the arguments to reverse_number/2 to be instantiated.

Prolog list membership, multiple results returned

I have a standard procedure for determining membership of a list:
member(X, [X|_]).
member(X, [_|T]) :- member(X, T).
What I don't understand is why when I pose the following query:
?- member(a,[a,b]).
The result is
True;
False.
I would have thought that on satisfying the goal using the first rule (as a is the head of the list) True would be returned and that would be the end of if. It seems as if it is then attempting to satisfy the goal using the second rule and failing?
Prolog interpreter is SWI-Prolog.
Let's consider a similar query first: [Edit: Do this without adding your own definition ; member/2 is already defined]
?- member(a,[b,a]).
true.
In this case you get the optimal answer: There is exactly one solution. But when exchanging the elements in the list we get:
?- member(a,[a,b]).
true
; false.
Logically, both are just the affirmation that the query is true.
The reason for the difference is that in the second query the answer true is given immediately upon finding a as element of the list. The remaining list [b] does not contain a fitting element, but this is not yet examined. Only upon request (hitting SPACE or ;) the rest of the list is tried with the result that there is no further solution.
Essentially, this little difference gives you a hint when a computation is completely finished and when there is still some work to do. For simple queries this does not make a difference, but in more complex queries these open alternatives (choicepoints) may accumulate and use up memory.
Older toplevels always asked if you want to see a further solution, even if there was none.
Edit:
The ability to avoid asking for the next answer, if there is none, is extremely dependent on the very implementation details. Even within the same system, and the same program loaded you might get different results. In this case, however, I was using SWI's built-in definition for member/2 whereas you used your own definition, which overwrites the built-in definition.
SWI uses the following definition as built-in which is logically equivalent to yours but makes avoiding unnecessary choice points easier to SWI — but many other systems cannot profit from this:
member(B, [C|A]) :-
member_(A, B, C).
member_(_, A, A).
member_([C|A], B, _) :-
member_(A, B, C).
To make things even more complex: Many Prologs have a different toplevel that does never ask for further answers when the query does not contain a variable. So in those systems (like YAP) you get a wrong impression.
Try the following query to see this:
?- member(X,[1]).
X = 1.
SWI is again able to determine that this is the only answer. But YAP, e.g., is not.
Are you using the ";" operator after the first result then pushing return? I believe this is asking the query to look for more results and as there are none it is coming up as false.
Do you know about Prolog's cut - !?
If you change member(X, [X|_]). to member(X, [X|_]) :- !. Prolog will not try to find another solution after the first one.

Resources