Shuffle bag with repetition constraint - algorithm

I'm looking for an algorithm to randomize a set of items with length n, where there might be multiples (1 to m) of each item. An additional constraint is that the same item may not appear within k items of the previous one.
You may assume n is well under 100, and there always is a solution, i.e. m as well as k are small. You can also change the input to a list of <item, frequency> pairs if that helps.
To give a bit of context, assume I'm generating missions in a game and have a set of goals to choose from. Some goals may appear multiple times (e.g. "kill the boss"), but should not be close to each other, so simply shuffling the "bag" is no good.
I could shuffle the list, then iterate over it while keeping track of item intervals, starting with a new shuffle if it fails the test, but I'm looking for a more elegant solution that should also be compact, practical and easily implemented with e.g. C, C++ or JavaScript. In other words it should not rely on special language features or standard library functions that I might not understand or could find hard time implementing. However, you may assume the most common list operations such as sorting and shuffling are available.

If you want uniform probabilities over the set of valid outcomes, my hunch is that the rejection scheme you proposed (shuffle and then restart if the arrangement is bad) is going to be the easiest to code correctly, understand, read, and maintain as well as probably fairly close to the fastest, assuming that the numbers are such that most permutations are valid.
Here's another simple approach, though, based on greedily choosing valid values and hoping you don't knock yourself out. It's not at all guaranteed to find a solution if there are many invalid permutations (high m and k).
shuffled = list of length n
not_inserted = {0, 1, ..., n-1}
for each item i, frequency m_i, nearness constraint k_i:
valid = not_inserted
do m_i times:
choose an index j from valid
shuffled[j] = i
not_inserted.remove(j)
valid.remove(j-k_i, j-k_i+1, ..., j, ..., j+k_i)
If valid is ever empty, the partial solution you've built up is bad, and you'll probably have to restart. I'm guessing that failures will be less likely if you do the loop in order of decreasing m_i.
I'm not sure about how often this approach fails in comparison to the sorting/rejecting approach (it'd be interesting to implement and run it for some numbers...). I'd guess that it might be faster in situations where k is moderately high, but usually slower, because shuffles are really fast for n << 100.

Related

Efficiently search for pairs of numbers in various rows

Imagine you have N distinct people and that you have a record of where these people are, exactly M of these records to be exact.
For example
1,50,299
1,2,3,4,5,50,287
1,50,299
So you can see that 'person 1' is at the same place with 'person 50' three times. Here M = 3 obviously since there's only 3 lines. My question is given M of these lines, and a threshold value (i.e person A and B have been at the same place more than threshold times), what do you suggest the most efficient way of returning these co-occurrences?
So far I've built an N by N table, and looped through each row, incrementing table(N,M) every time N co occurs with M in a row. Obviously this is an awful approach and takes 0(n^2) to O(n^3) depending on how you implent. Any tips would be appreciated!
There is no need to create the table. Just create a hash/dictionary/whatever your language calls it. Then in pseudocode:
answer = []
for S in sets:
for (i, j) in pairs from S:
count[(i,j)]++
if threshold == count[(i,j)]:
answer.append((i,j))
If you have M sets of size of size K the running time will be O(M*K^2).
If you want you can actually keep the list of intersecting sets in a data structure parallel to count without changing the big-O.
Furthermore the same algorithm can be readily implemented in a distributed way using a map-reduce. For the count you just have to emit a key of (i, j) and a value of 1. In the reduce you count them. Actually generating the list of sets is similar.
The known concept for your case is Market Basket analysis. In this context, there are different algorithms. For example Apriori algorithm can be using for your case in a specific case for sets of size 2.
Moreover, in these cases to finding association rules with specific supports and conditions (which for your case is the threshold value) using from LSH and min-hash too.
you could use probability to speed it up, e.g. only check each pair with 1/50 probability. That will give you a 50x speed up. Then double check any pairs that make it close enough to 1/50th of M.
To double check any pairs, you can either go through the whole list again, or you could double check more efficiently if you do some clever kind of reverse indexing as you go. e.g. encode each persons row indices into 64 bit integers, you could use binary search / merge sort type techniques to see which 64 bit integers to compare, and use bit operations to compare 64 bit integers for matches. Other things to look up could be reverse indexing, binary indexed range trees / fenwick trees.

Algorithm to generate k element subsets in order of their sum

If I have an unsorted large set of n integers (say 2^20 of them) and would like to generate subsets with k elements each (where k is small, say 5) in increasing order of their sums, what is the most efficient way to do so?
Why I need to generate these subsets in this fashion is that I would like to find the k-element subset with the smallest sum satisfying a certain condition, and I thus would apply the condition on each of the k-element subsets generated.
Also, what would be the complexity of the algorithm?
There is a similar question here: Algorithm to get every possible subset of a list, in order of their product, without building and sorting the entire list (i.e Generators) about generating subsets in order of their product, but it wouldn't fit my needs due to the extremely large size of the set n
I intend to implement the algorithm in Mathematica, but could do it in C++ or Python too.
If your desired property of the small subsets (call it P) is fairly common, a probabilistic approach may work well:
Sort the n integers (for millions of integers i.e. 10s to 100s of MB of ram, this should not be a problem), and sum the k-1 smallest. Call this total offset.
Generate a random k-subset (say, by sampling k random numbers, mod n) and check it for P-ness.
On a match, note the sum-total of the subset. Subtract offset from this to find an upper bound on the largest element of any k-subset of equivalent sum-total.
Restrict your set of n integers to those less than or equal to this bound.
Repeat (goto 2) until no matches are found within some fixed number of iterations.
Note the initial sort is O(n log n). The binary search implicit in step 4 is O(log n).
Obviously, if P is so rare that random pot-shots are unlikely to get a match, this does you no good.
Even if only 1 in 1000 of the k-sized sets meets your condition, That's still far too many combinations to test. I believe runtime scales with nCk (n choose k), where n is the size of your unsorted list. The answer by Andrew Mao has a link to this value. 10^28/1000 is still 10^25. Even at 1000 tests per second, that's still 10^22 seconds. =10^14 years.
If you are allowed to, I think you need to eliminate duplicate numbers from your large set. Each duplicate you remove will drastically reduce the number of evaluations you need to perform. Sort the list, then kill the dupes.
Also, are you looking for the single best answer here? Who will verify the answer, and how long would that take? I suggest implementing a Genetic Algorithm and running a bunch of instances overnight (for as long as you have the time). This will yield a very good answer, in much less time than the duration of the universe.
Do you mean 20 integers, or 2^20? If it's really 2^20, then you may need to go through a significant amount of (2^20 choose 5) subsets before you find one that satisfies your condition. On a modern 100k MIPS CPU, assuming just 1 instruction can compute a set and evaluate that condition, going through that entire set would still take 3 quadrillion years. So if you even need to go through a fraction of that, it's not going to finish in your lifetime.
Even if the number of integers is smaller, this seems to be a rather brute force way to solve this problem. I conjecture that you may be able to express your condition as a constraint in a mixed integer program, in which case solving the following could be a much faster way to obtain the solution than brute force enumeration. Assuming your integers are w_i, i from 1 to N:
min sum(i) w_i*x_i
x_i binary
sum over x_i = k
subject to (some constraints on w_i*x_i)
If it turns out that the linear programming relaxation of your MIP is tight, then you would be in luck and have a very efficient way to solve the problem, even for 2^20 integers (Example: max-flow/min-cut problem.) Also, you can use the approach of column generation to find a solution since you may have a very large number of values that cannot be solved for at the same time.
If you post a bit more about the constraint you are interested in, I or someone else may be able to propose a more concrete solution for you that doesn't involve brute force enumeration.
Here's an approximate way to do what you're saying.
First, sort the list. Then, consider some length-5 index vector v, corresponding to the positions in the sorted list, where the maximum index is some number m, and some other index vector v', with some max index m' > m. The smallest sum for all such vectors v' is always greater than the smallest sum for all vectors v.
So, here's how you can loop through the elements with approximately increasing sum:
sort arr
for i = 1 to N
for v = 5-element subsets of (1, ..., i)
set = arr{v}
if condition(set) is satisfied
break_loop = true
compute sum(set), keep set if it is the best so far
break if break_loop
Basically, this means that you no longer need to check for 5-element combinations of (1, ..., n+1) if you find a satisfying assignment in (1, ..., n), since any satisfying assignment with max index n+1 will have a greater sum, and you can stop after that set. However, there is no easy way to loop through the 5-combinations of (1, ..., n) while guaranteeing that the sum is always increasing, but at least you can stop checking after you find a satisfying set at some n.
This looks to be a perfect candidate for map-reduce (http://en.wikipedia.org/wiki/MapReduce). If you know of any way of partitioning them smartly so that passing candidates are equally present in each node then you can probably get a great throughput.
Complete sort may not really be needed as the map stage can take care of it. Each node can then verify the condition against the k-tuples and output results into a file that can be aggregated / reduced later.
If you know of the probability of occurrence and don't need all of the results try looking at probabilistic algorithms to converge to an answer.

Parallel Subset

The setup: I have two arrays which are not sorted and are not of the same length. I want to see if one of the arrays is a subset of the other. Each array is a set in the sense that there are no duplicates.
Right now I am doing this sequentially in a brute force manner so it isn't very fast. I am currently doing this subset method sequentially. I have been having trouble finding any algorithms online that A) go faster and B) are in parallel. Say the maximum size of either array is N, then right now it is scaling something like N^2. I was thinking maybe if I sorted them and did something clever I could bring it down to something like Nlog(N), but not sure.
The main thing is I have no idea how to parallelize this operation at all. I could just do something like each processor looks at an equal amount of the first array and compares those entries to all of the second array, but I'd still be doing N^2 work. But I guess it'd be better since it would run in parallel.
Any Ideas on how to improve the work and make it parallel at the same time?
Thanks
Suppose you are trying to decide if A is a subset of B, and let len(A) = m and len(B) = n.
If m is a lot smaller than n, then it makes sense to me that you sort A, and then iterate through B doing a binary search for each element on A to see if there is a match or not. You can partition B into k parts and have a separate thread iterate through every part doing the binary search.
To count the matches you can do 2 things. Either you could have a num_matched variable be incremented every time you find a match (You would need to guard this var using a mutex though, which might hinder your program's concurrency) and then check if num_matched == m at the end of the program. Or you could have another array or bit vector of size m, and have a thread update the k'th bit if it found a match for the k'th element of A. Then at the end, you make sure this array is all 1's. (On 2nd thoughts bit vector might not work out without a mutex because threads might overwrite each other's annotations when they load the integer containing the bit relevant to them). The array approach, atleast, would not need any mutex that can hinder concurrency.
Sorting would cost you mLog(m) and then, if you only had a single thread doing the matching, that would cost you nLog(m). So if n is a lot bigger than m, this would effectively be nLog(m). Your worst case still remains NLog(N), but I think concurrency would really help you a lot here to make this fast.
Summary: Just sort the smaller array.
Alternatively if you are willing to consider converting A into a HashSet (or any equivalent Set data structure that uses some sort of hashing + probing/chaining to give O(1) lookups), then you can do a single membership check in just O(1) (in amortized time), so then you can do this in O(n) + the cost of converting A into a Set.

Genetic algorithms: How to do crossover in "subset" problems?

I have a problem which I am trying to solve with genetic algorithms. The problem is selecting some subset (say 4) of 100 integers (these integers are just ids that represent something else). Order does not matter, the solution to the problem is a SET of integers not an ordered list. I have a good fitness function but am having trouble with the crossover function.
I want to be able to mate the following two chromosomes:
[1 2 3 4] and
[3 4 5 6] into something useful. Clearly I cannot use the typical crossover function because I could end up with duplicates in my children which would represent invalid solutions. What is the best crossover method in this case.
Just ignore any element that occurs in both of the sets (i.e. in their intersection.), that is leave such elements unchanged in both sets.
The rest of the elements form two disjoint sets, to which you can apply pretty much any random transformation (e.g. swapping some pairs randomly) without getting duplicates.
This can be thought of as ordering and aligning both sets so that matching elements face each other and applying one of the standard crossover algorithms.
Sometimes it is beneficial to let your solution go "out of bounds" so that your search will converge more quickly. Rather than making a set of 4 unique integers a requirement for your chromosome, make the number of integers (and their uniqueness) part of the fitness function.
Since order doesn't matter, just collect all the numbers into an array, sort the array, throw out the duplicates (by disconnecting them from a linked list, or setting them to a negative number, or whatever). Shuffle the array and take the first 4 numbers.
I don't really know what you mean on "typical crossover", but I think you could use a crossover similar to what is often used for permutations:
take m ints from the first parent (m < n, where n is the number of ints in your sets)
scan the second and fill your subset from it with (n-m) ints that are free (not in the subset already).
This way you will have n ints from the first and n-m ints from the second parent, without duplications.
Sounds like a valid crossover for me :-).
I guess it might be beneficial not to do either steps on ordered sets (or using an iterator where the order of returned elements correlates somehow with the natural ordering of ints), otherwise either smaller or higher numbers will get a higher chance to be in the child making your search biased.
If it is the best method depends on the problem you want to solve...
In order to combine sets A and B, you could choose the resulting set S probabilistically so that the probability that x is in S is (number of sets out of A, B, which contain x) / 2. This will be guaranteed to contain the intersection and be contained in the union, and will have expected cardinality 4.

Dynamic Programming: Sum-of-products

Let's say you have two lists, L1 and L2, of the same length, N. We define prodSum as:
def prodSum(L1, L2) :
ans = 0
for elem1, elem2 in zip(L1, L2) :
ans += elem1 * elem2
return ans
Is there an efficient algorithm to find, assuming L1 is sorted, the number of permutations of L2 such that prodSum(L1, L2) < some pre-specified value?
If it would simplify the problem, you may assume that L1 and L2 are both lists of integers from [1, 2, ..., N].
Edit: Managu's answer has convinced me that this is impossible without assuming that L1 and L2 are lists of integers from [1, 2, ..., N]. I'd still be interested in solutions that assume this constraint.
I want to first dispell a certain amount of confusion about the math, then discuss two solutions and give code for one of them.
There is a counting class called #P which is a lot like the yes-no class NP. In a qualitative sense, it is even harder than NP. There is no particular reason to believe that this counting problem is any better than #P-hard, although it could be hard or easy to prove that.
However, many #P-hard problems and NP-hard problems vary tremendously in how long they take to solve in practice, and even one particular hard problem can be harder or easier depending on the properties of the input. What NP-hard or #P-hard mean is that there are hard cases. Some NP-hard and #P-hard problems also have less hard cases or even outright easy cases. (Others have very few cases that seem much easier than the hardest cases.)
So the practical question could depend a lot on the input of interest. Suppose that the threshold is on the high side or on the low side, or you have enough memory for a decent number of cached results. Then there is a useful recursive algorithm that makes use of two ideas, one of them already mentioned: (1) After partially assigning some of the values, the remaining threshold for list fragments may rule out all of the permutations, or it may allow all of them. (2) Memory permitting, you should cache the subtotals for some remaining threshold and some list fragments. To improve the caching, you might as well pick the elements from one of the lists in order.
Here is a Python code that implements this algorithm:
list1 = [1,2,3,4,5,6,7,8,9,10,11]
list2 = [1,2,3,4,5,6,7,8,9,10,11]
size = len(list1)
threshold = 396 # This is smack in the middle, a hard value
cachecutoff = 6 # Cache results when up to this many are assigned
def dotproduct(v,w):
return sum([a*b for a,b in zip(v,w)])
factorial = [1]
for n in xrange(1,len(list1)+1):
factorial.append(factorial[-1]*n)
cache = {}
# Assumes two sorted lists of the same length
def countprods(list1,list2,threshold):
if dotproduct(list1,list2) <= threshold: # They all work
return factorial[len(list1)]
if dotproduct(list1,reversed(list2)) > threshold: # None work
return 0
if (tuple(list2),threshold) in cache: # Already been here
return cache[(tuple(list2),threshold)]
total = 0
# Match the first element of list1 to each item in list2
for n in xrange(len(list2)):
total += countprods(list1[1:],list2[:n] + list2[n+1:],
threshold-list1[0]*list2[n])
if len(list1) >= size-cachecutoff:
cache[(tuple(list2),threshold)] = total
return total
print 'Total permutations below threshold:',
print countprods(list1,list2,threshold)
print 'Cache size:',len(cache)
As the comment line says, I tested this code with a hard value of the threshold. It is quite a bit faster than a naive search over all permutations.
There is another algorithm that is better than this one if three conditions are met: (1) You don't have enough memory for a good cache, (2) the list entries are small non-negative integers, and (3) you're interested in the hardest thresholds. A second situation to use this second algorithm is if you want counts for all thresholds flat-out, whether or not the other conditions are met. To use this algorithm for two lists of length n, first pick a base x which is a power of 10 or 2 that is bigger than n factorial. Now make the matrix
M[i][j] = x**(list1[i]*list2[j])
If you compute the permanent of this matrix M using the Ryser formula, then the kth digit of the permanent in base x tells you the number of permutations for which the dot product is exactly k. Moreover, the Ryser formula is quite a bit faster than the summing over all permutations directly. (But it is still exponential, so it does not contradict the fact that computing the permanent is #P-hard.)
Also, yes it is true that the set of permutations is the symmetric group. It would be great if you could use group theory in some way to accelerate this counting problem. But as far as I know, nothing all that deep comes from that description of the question.
Finally, if instead of exactly counting the number of permutations below a threshold, you only wanted to approximate that number, then probably the game changes completely. (You can approximate the permanent in polynomial time, but that doesn't help here.) I'd have to think about what to do; in any case it isn't the question posed.
I realized that there is another kind of caching/dynamic programming that is missing from the above discussion and the above code. The caching implemented in the code is early-stage caching: If just the first few values of list1 are assigned to list2, and if a remaining threshold occurs more than once, then the cache allows the code to reuse the result. This works great if the entries of list1 and list2 are integers that are not too large. But it will be a failed cache if the entries are typical floating point numbers.
However, you can also precompute at the other end, when most of the values of list1 have been assigned. In this case, you can make a sorted list of the subtotals for all of the remaining values. And remember, you can use up list1 in order, and do all of the permutations on the list2 side. For example, suppose that the last three entries of list1 are [4,5,6], and suppose that three of the values in list2 (somewhere in the middle) are [2.1,3.5,3.7]. Then you would cache a sorted list of the six dot products:
endcache[ [2.1, 3.5, 3.7] ] = [44.9, 45.1, 46.3, 46.7, 47.9, 48.1]
What does this do for you? If you look in the code that I did post, the function countprods(list1,list2,threshold) recursively does its work with a sub-threshold. The first argument, list1, might have been better as a global variable than as an argument. If list2 is short enough, countprods can do its work much faster by doing a binary search in the list endcache[list2]. (I just learned from stackoverflow that this is implemented in the bisect module in Python, although a performance code wouldn't be written in Python anyway.) Unlike the head cache, the end cache can speed up the code a lot even if there are no numerical coincidences among the entries of list1 and list2. Ryser's algorithm also stinks for this problem without numerical coincidences, so for this type of input I only see two accelerations: Sawing off a branch of the search tree using the "all" test and the "none" test, and the end cache.
Probably not (without the simplifying assumption): your problem is NP-Hard. Here's a trivial reduction to SUBSET-SUM. Let count_perms(L1, L2, x) represent the function "count the number of permutations of L2 such that prodSum(L1, L2) < x"
SUBSET_SUM(L2,n): # (determine if any subset of L2 adds up to n)
For i in [1,...,len(L2)]
Set L1=[0]*(len(L2)-i)+[1]*i
calculate count_perms(L1,L2,n+1)-count_perms(L1,L2,n)
if result positive, return true
Return false
Thus, if there were a way to calculate your function count_perms(L1, L2, x) efficiently, then we would have an efficient algorithm to calculate SUBSET_SUM(L2,n).
This also turns out to be an abstract algebra problem. It's been awhile for me, but here's a few things to get started. There's nothing terribly significant about the following (it's all very basic; an expansion on the fact that every group is isomorphic to a permutation group), but it provides a different way of looking at the problem.
I'll try to stick to fairly standard notation: "x" is a vector, and "xi" is the ith component of x. If "L" is a list, L is the equivalent vector. "1n" is a vector with all components = 1. The set of natural numbers ℕ is taken to be the positive integers. "[a,b]" is the set of integers from a through b, inclusive. "θ(x, y)" is the angle formed by x and y
Note prodSum is the dot product. The question is equivalent to finding all vectors L generated by an operation (permuting elements) on L2 such that θ(L1, L) less than a given angle α. The operation is equivalent to reflecting a point in ℕn through a subspace with presentation:
< ℕn | (xixj-1)(i,j) ∈ A >
where i and j are in [1,n], A has at least one element and no (i,i) is in A (i.e. A is a non-reflexive subset of [1,n]2 where |A| > 0). Stated more plainly (and more ambiguously), the subspaces are the points where one or more components are equal to one or more other components. The reflections correspond to matrices whose columns are all the standard basis vectors.
Let's name the reflection group "RPn" (it should have another name, but memory fails). RPn is isomorphic to the symmetric group Sn. Thus
|RPn| = |Sn| = n!
In 3 dimensions, this gives a group of order 6. The reflection group is D3, the triangle symmetry group, as a subgroup of the cube symmetry group. It turns out you can also generate the points by rotating L2 in increments of π/3 around the line along 1n. This is the the modular group ℤ6 and this points to a possible solution: find a group of order n! with a minimal number of generators and use that to generate the permutations of L2 as sequences with increasing, then decreasing, angle with L2. From there, we can try to generate the elements L with θ(L1, L) < α directly (for example we can binsearch on the 1st half of each sequence to find the transition point; with that, we can specify the rest of the sequence that fulfills the condition and count it in O(1) time). Let's call this group RP'n.
RP'4 is constructed of 4 subspaces isomorphic to ℤ6. More generally, RP'n is constructed of n subspaces isomorphic to RP'n-1.
This is where my abstract algebra muscles really begins to fail. I'll try to keep working on the construction, but Managu's answer doesn't leave much hope. I fear that reducing RP3 to ℤ6 is the only useful reduction we can make.
It looks like if l1 and l2 are both ordered high->low (or low->high, whatever, if they have the same order), the result is maximized, and if they are ordered oposite, the result is minimized, and other alterations of order appear to follow some rules; swapping two numbers in a continuous list of integers always reduces the sum by a fixed amount which seems to be related to their distance apart (ie swapping 1 and 3 or 2 and 4 have the same effect). This was just from a little messing around, but the idea is that there is a maximum, a minimum, and if some-pre-specified-value is between them, there are ways to count the permutations that make that possible (although; if the list isn't evenly spaced, then there aren't. Well, not that I know of. If l2 is (1 2 4 5) swapping 1 2 and 2 4 would have different effects)

Resources