Imagine you have N distinct people and that you have a record of where these people are, exactly M of these records to be exact.
For example
1,50,299
1,2,3,4,5,50,287
1,50,299
So you can see that 'person 1' is at the same place with 'person 50' three times. Here M = 3 obviously since there's only 3 lines. My question is given M of these lines, and a threshold value (i.e person A and B have been at the same place more than threshold times), what do you suggest the most efficient way of returning these co-occurrences?
So far I've built an N by N table, and looped through each row, incrementing table(N,M) every time N co occurs with M in a row. Obviously this is an awful approach and takes 0(n^2) to O(n^3) depending on how you implent. Any tips would be appreciated!
There is no need to create the table. Just create a hash/dictionary/whatever your language calls it. Then in pseudocode:
answer = []
for S in sets:
for (i, j) in pairs from S:
count[(i,j)]++
if threshold == count[(i,j)]:
answer.append((i,j))
If you have M sets of size of size K the running time will be O(M*K^2).
If you want you can actually keep the list of intersecting sets in a data structure parallel to count without changing the big-O.
Furthermore the same algorithm can be readily implemented in a distributed way using a map-reduce. For the count you just have to emit a key of (i, j) and a value of 1. In the reduce you count them. Actually generating the list of sets is similar.
The known concept for your case is Market Basket analysis. In this context, there are different algorithms. For example Apriori algorithm can be using for your case in a specific case for sets of size 2.
Moreover, in these cases to finding association rules with specific supports and conditions (which for your case is the threshold value) using from LSH and min-hash too.
you could use probability to speed it up, e.g. only check each pair with 1/50 probability. That will give you a 50x speed up. Then double check any pairs that make it close enough to 1/50th of M.
To double check any pairs, you can either go through the whole list again, or you could double check more efficiently if you do some clever kind of reverse indexing as you go. e.g. encode each persons row indices into 64 bit integers, you could use binary search / merge sort type techniques to see which 64 bit integers to compare, and use bit operations to compare 64 bit integers for matches. Other things to look up could be reverse indexing, binary indexed range trees / fenwick trees.
Related
Given an empty list. There are three types of queries 1, 2, 3.
Query 1 x where x is a positive integer indicates adding the number x into the list.
Query 2 x indicates removing x from the list.
Query 3 indicates printing the smallest positive integer not present in the array.
Here x can be from 1 upto 10^9 and number of queries upto 10^5. For the large range of x I can't keep a boolean array marking visited integers. How should I approach?
There are too many unknowns about your data to give a definitive answer here. The approach differs a lot between at least these different cases:
Few values.
A lot of values but with large gaps.
A lot of values with only small gaps.
Almost all values.
It also depends on which ones of the mentioned operations that you will do the most.
It is less than 1 GB of data so it is possible to keep it as a bit array in memory on most machines. But if the data set is sparse (case 1 and 2 above) you might want to consider sparse arrays instead, or for very sparse sets (case 1) perhaps a binary search tree or a min-heap. The heap is probably not a good idea if you are going to use operation 2 a lot.
For case 1, 2 and 4 you might consider a range tree. The upside to this solution is that you can do operation 3 in logarithmic time just by going leftwards down the tree and look at the first range.
It might also be possible to page out your datastructure to disk if you are not going to do a lot of random insertions.
You might also consider speeding up the search with a Bloom filter, depending on what type of datastructure you choose in the end.
Formally we are given an array with some initial values. Then we have 3 types of Queries :-
Point updates : Increment by 1 at a given position
Range Queries : To count number of elements>=x where x is taken as input
Range Updates : To decrement by 1 all elements>=x, where x is given as input.
N=105 , Q=105 (number of elements in array, number of Queries resp.)
I tried doing this with segment Tree but operations 2,3 can be worse than O(n) even as we don't know which 'range' is to be updated exactly so we may end up traversing whole of segment tree.
NOTE : I wish to clear that if we need to do all 3 operations in logarithmic Worst case ,ie O(log n) ,cause only then we can do this fast , linear approach doesn't works as Q=10^5 n N=10^5 , so worst case could be O(n^2) ,ie 10^10 operation which is clearly not feasible.
Given that you're talking about 105 items, and don't mention needing to add or remove items, it seems to me that the obvious data structure would be a simple sorted vector.
Operation complexities:
point update: O(1) + O(m) (where m is the number of subsequent elements equal to the value before the update).
Range query: O(log n) + O(m) (where n is start of range, m is elements in range).
Range update (same as range query).
It's a little difficult to be sure what "fast" means to you, but the fastest theoretically possible for 1 is O(1), so we're already within some constant factor of optimal.
For 2 and 3, even if we could do the find with constant complexity, we're pretty much stuck with O(m) for the update. Since Log2100000 = ~16.6, most of the time the O(m) term is going to dominate (i.e., the update part will involve as many operations as the search unless the given x is one of the last 17 items in the collection.
I doubt there's any point for this small of a collection, but if you might have to deal with a substantially larger collection and the items in the collection are reasonably predictably distributed, it might be worth considering doing an interpolating search instead of a binary search. With predictable distribution this reduces the expected number of comparisons to approximately O(log log n). In this case, that would be roughly 4 (but normally with a higher constant factor). This might be a win for 105 items, but then again it might not. If you might have to deal with a collection of (say) 108 items or more, it would be much more likely to be a substantial win.
The following may not be optimal, but is the best I could think of tonight.
Let's start by trying to turn the problem sideways. Instead of a map from indices to values, let's consider a map from values to sets of indices. A point update now involves removing an index from one set and adding it to another. A range update involves either simply moving an index set from one value to another or taking the union of two index sets. A range query involves folding over the sets corresponding to the values in range. A quick peek at Wikipedia suggests a traditional disjoint-set data structure is really great for set unions. Unfortunately, it's no good at all for removing an element from a set.
Fortunately, there is a newer data structure supporting union-find with constant time deletion! That takes care of both point updates and range updates quite naturally. Range queries, unfortunately, will require checking all array elements, even if very few elements are in range.
Recently I have been working with combinations of words to make "phrases" in different languages and I have noticed a few things that I could do with some more expert input on.
Defining some constants for this,
Depths (n) is on average 6-7
The length of the input set is ~160 unique words.
Memory - Generating n permutations of 160 words wastes lots of space. I can abuse databases by writing it to disk, but then I take a hit in performance as I need to constantly wait for IO. The other trick is to generate the combinations on the fly like a generator object
Time - If Im not wrong n choose k gets big fast something like this formula factorial(n) / (factorial(depth) * (factorial(n-depth))) this means that input sets get huge quickly.
My question is thus.
Considering I have an function f(x) that takes a combination and applies a calculation that has a cost, e.g.
func f(x) {
if query_mysql("text search query").value > 15 {
return true
}
return false
}
How can I efficiently process and execute this function on a huge set of combinations?
Bonus question, can combinations be generated concurrently?
Update: I already know how to generate them conventionally, its more a case of making it efficient.
One approach will be to first calculate how much parallelism you can get, based on the number of threads you've got. Let the number of threads be T, and split the work as follows:
sort the elements according to some total ordering.
Find the smallest number d such that Choose(n,d) >= T.
Find all combinations of 'depth' (exactly) d (typically much lower than to depth d, and computable on one core).
Now, spread the work to your T cores, each getting a set of 'prefixes' (each prefix c is a combination of size d), and for each case, find all the suffixes that their 'smallest' element is 'bigger' than max(c) according to the total ordering.
this approach can also be translated nicely to map-reduce paradigm.
map(words): //one mapper
sort(words) //by some total ordering function
generate all combiations of depth `d` exactly // NOT K!!!
for each combination c produced:
idx <- index in words of max(c)
emit(c,words[idx+1:end])
reduce(c1, words): //T reducers
combinations <- generate all combinations of size k-d from words
for each c2 in combinations:
c <- concat(c1,c2)
emit(c,f(c))
Use one of the many known algorithms to generate combinations. Chase's Twiddle algorithm is one of the best known and perfectly suitable. It captures state in an array, so it can be restarted or seeded if wished.
See Algorithm to return all combinations of k elements from n for lots more.
You can progress through your list at your own pace, using minimal memory and no disk IO. Generating each combination will take a microscopic amount of time compared to the 1 sec or so of your computation.
This algorithm (and many others) are easily adapted for parallel execution if you have the necessary skills.
E.g. given a unordered list of N elements, find the medians for sub ranges 0..100, 25..200, 400..1000, 10..500, ...
I don't see any better way than going through each sub range and run the standard median finding algorithms.
A simple example: [5 3 6 2 4]
The median for 0..3 is 5 . (Not 4, since we are asking the median of the first three elements of the original list)
INTEGER ELEMENTS:
If the type of your elements are integers, then the best way is to have a bucket for each number lies in any of your sub-ranges, where each bucket is used for counting the number its associated integer found in your input elements (for example, bucket[100] stores how many 100s are there in your input sequence). Basically you can achieve it in the following steps:
create buckets for each number lies in any of your sub-ranges.
iterate through all elements, for each number n, if we have bucket[n], then bucket[n]++.
compute the medians based on the aggregated values stored in your buckets.
Put it in another way, suppose you have a sub-range [0, 10], and you would like to compute the median. The bucket approach basically computes how many 0s are there in your inputs, and how many 1s are there in your inputs and so on. Suppose there are n numbers lies in range [0, 10], then the median is the n/2th largest element, which can be identified by finding the i such that bucket[0] + bucket[1] ... + bucket[i] greater than or equal to n/2 but bucket[0] + ... + bucket[i - 1] is less than n/2.
The nice thing about this is that even your input elements are stored in multiple machines (i.e., the distributed case), each machine can maintain its own buckets and only the aggregated values are required to pass through the intranet.
You can also use hierarchical-buckets, which involves multiple passes. In each pass, bucket[i] counts the number of elements in your input lies in a specific range (for example, [i * 2^K, (i+1) * 2^K]), and then narrow down the problem space by identifying which bucket will the medium lies after each step, then decrease K by 1 in the next step, and repeat until you can correctly identify the medium.
FLOATING-POINT ELEMENTS
The entire elements can fit into memory:
If your entire elements can fit into memory, first sorting the N element and then finding the medians for each sub ranges is the best option. The linear time heap solution also works well in this case if the number of your sub-ranges is less than logN.
The entire elements cannot fit into memory but stored in a single machine:
Generally, an external sort typically requires three disk-scans. Therefore, if the number of your sub-ranges is greater than or equal to 3, then first sorting the N elements and then finding the medians for each sub ranges by only loading necessary elements from the disk is the best choice. Otherwise, simply performing a scan for each sub-ranges and pick up those elements in the sub-range is better.
The entire elements are stored in multiple machines:
Since finding median is a holistic operator, meaning you cannot derive the final median of the entire input based on the medians of several parts of input, it is a hard problem that one cannot describe its solution in few sentences, but there are researches (see this as an example) have been focused on this problem.
I think that as the number of sub ranges increases you will very quickly find that it is quicker to sort and then retrieve the element numbers you want.
In practice, because there will be highly optimized sort routines you can call.
In theory, and perhaps in practice too, because since you are dealing with integers you need not pay n log n for a sort - see http://en.wikipedia.org/wiki/Integer_sorting.
If your data are in fact floating point and not NaNs then a little bit twiddling will in fact allow you to use integer sort on them - from - http://en.wikipedia.org/wiki/IEEE_754-1985#Comparing_floating-point_numbers - The binary representation has the special property that, excluding NaNs, any two numbers can be compared like sign and magnitude integers (although with modern computer processors this is no longer directly applicable): if the sign bit is different, the negative number precedes the positive number (except that negative zero and positive zero should be considered equal), otherwise, relative order is the same as lexicographical order but inverted for two negative numbers; endianness issues apply.
So you could check for NaNs and other funnies, pretend the floating point numbers are sign + magnitude integers, subtract when negative to correct the ordering for negative numbers, and then treat as normal 2s complement signed integers, sort, and then reverse the process.
My idea:
Sort the list into an array (using any appropriate sorting algorithm)
For each range, find the indices of the start and end of the range using binary search
Find the median by simply adding their indices and dividing by 2 (i.e. median of range [x,y] is arr[(x+y)/2])
Preprocessing time: O(n log n) for a generic sorting algorithm (like quick-sort) or the running time of the chosen sorting routine
Time per query: O(log n)
Dynamic list:
The above assumes that the list is static. If elements can freely be added or removed between queries, a modified Binary Search Tree could work, with each node keeping a count of the number of descendants it has. This will allow the same running time as above with a dynamic list.
The answer is ultimately going to be "in depends". There are a variety of approaches, any one of which will probably be suitable under most of the cases you may encounter. The problem is that each is going to perform differently for different inputs. Where one may perform better for one class of inputs, another will perform better for a different class of inputs.
As an example, the approach of sorting and then performing a binary search on the extremes of your ranges and then directly computing the median will be useful when the number of ranges you have to test is greater than log(N). On the other hand, if the number of ranges is smaller than log(N) it may be better to move elements of a given range to the beginning of the array and use a linear time selection algorithm to find the median.
All of this boils down to profiling to avoid premature optimization. If the approach you implement turns out to not be a bottleneck for your system's performance, figuring out how to improve it isn't going to be a useful exercise relative to streamlining those portions of your program which are bottlenecks.
I have two arrays, N and M. they are both arbitrarily sized, though N is usually smaller than M. I want to find out what elements in N also exist in M, in the fastest way possible.
To give you an example of one possible instance of the program, N is an array 12 units in size, and M is an array 1,000 units in size. I want to find which elements in N also exist in M. (There may not be any matches.) The more parallel the solution, the better.
I used to use a hash map for this, but it's not quite as efficient as I'd like it to be.
Typing this out, I just thought of running a binary search of M on sizeof(N) independent threads. (Using CUDA) I'll see how this works, though other suggestions are welcome.
1000 is a very small number. Also, keep in mind that parallelizing a search will only give you speedup as the number of cores you have increases. If you have more threads than cores, your application will start to slow down again due to context switching and aggregating information.
A simple solution for your problem is to use a hash join. Build a hash table from M, then look up the elements of N in it (or vice versa; since both your arrays are small it doesn't matter much).
Edit: in response to your comment, my answer doesn't change too much. You can still speed up linearly only until your number of threads equals your number of processors, and not past that.
If you want to implement a parallel hash join, this would not be difficult. Start by building X-1 hash tables, where X is the number of threads/processors you have. Use a second hash function which returns a value modulo X-1 to determine which hash table each element should be in.
When performing the search, your main thread can apply the auxiliary hash function to each element to determine which thread to hand it off to for searching.
Just sort N. Then for each element of M, do a binary search for it over sorted N. Finding the M items in N is trivially parallel even if you do a linear search over an unsorted N of size 12.