MPI sort implementation - sorting

I need to sort a really huge file several, hundred of Gb. Luckily I have access to a Linux MPI cluster. Does somebody know a good but most importantly working sort program which can run in distributed environment using MPI.
Actually I want to count unique lines in that file so if somebody knows a program that does exactly that even better. Otherwise I can figure out how to do it myself later.

Because there was no no answer provided I though I would just share my results.
I downloaded nsort program from ordinal.com (2004 winner in sortbenchmark.org annual sorting algorithm competition). It sorts amazingly fast though not in a cluster manner. I don't remember what was it anymore but I got huge time improvement using nsort. I'm talking about tens of times more faster (maybe around ~50) than default linux sort.
Two more things to notice.
It is limited to text files sorting in non-commercial distribution.
It has exactly the same interface as linux sort utility.

Among other alternatives there is mpi-sort.

Related

Comparing algorithmic performance to old methods

I have written a new algorithm for something. Now I need to compare it with existing methods, some of which are old about 10 years.
The idea I had is to look at benchmarks of different processors over the years in order to establish how much faster my processor (i7-920) is than average processor from 2003. Then I would simply divide old methods' execution time by the speedup factor and use those numbers to compare with my own algorithm.
Has something like this been done? So I don't redo the existing work.
Can such a comparison be done some other way?
Are there some scientific papers written about such comparisons which I can reference?
I don't know which of these are possible for you, but here's a list of options I can think of:
Run their implementation side-by-side on your machine against yours.
This is the best option.
Rewrite their implementations and do (1).
You preferably need to compare it against their test to ensure you get vaguely similar results.
Find a library that implements their algorithm (or multiple libraries) and do (1).
I suggest multiple libraries, if possible, since a single one may not have implemented the algorithm efficiently. You may also want to compare these against their test.
Compare the algorithms mathematically.
This may be difficult, but it's not impossible.
Do what you presented.
(a) I would not recommend this as there are other determining factors in your computer other than the processor speed that affect the speed of an algorithm. Getting an equation that perfectly balances these will likely be very difficult.
(b) There is a massive difference between top and bottom of the line computers, so using the average is not a particularly good idea. If the author didn't provide details regarding this, I'm afraid your benchmark is not likely to be too accurate.
Go out and buy a machine of similar specs to the one used by the desired test to benchmark on.
A 10-year-old machine should be pretty cheap, if you can find one. Also, see (5.b).
Contact the author to allow for any of the other options.
Papers often provide contact details of the authors, or you should be able to find them elsewhere if they have any sort of online presence and you're half-decent at using Google.
If I were reviewing your results, I would be annoyed if you attempted to demonstrate less than an order of magnitude speedup this way. There are a lot of variables determining algorithm performance, and I would be skeptical that a generic benchmark could capture the right ones. My gold standard is old and new algorithms implemented by the same programmer, with similar effort made to optimize, running on the same hardware. Using the previous authors' implementation instead of making a new one is commonplace in the experimental algorithms literature, but using different hardware isn't.
Algorithmic performance is usually measured in big-O terms, for which it is better to count basic operations, like comparisons, and do it for a range of input sizes.
If you must measure overall time, at least eliminate other sources of difference.
As #larsmans said, do it on the same processor.
Also, if there is existing work, there's no harm in repeating it.
Generally, in science, that's a good thing.
You should attempt to reduce the amount of differing factors between the two runs. I think just run-timing the two algorithms side by side on the same machine and/or comparing their Big O times are both equally valid and important. You should also attempt to use updated libraries and other external functions; using outdated ones my also be the cause of timing results.

Most effective method to use parallel computing on different architectures

I am planning to write something to take advantages of the many devices that I have at home.
Basically my aim is to use the laptop to execute calculations, and also to use my main desktop computer to add more power (and finish the task quicker). I work with cellular simulation and chemical interactions, so to me would be great to take advantage of all that I have available at home.
I am using mainly OSX, so I need something that may work with that OS. I can code in objective-C, C and C++.
I am aware of GCD, OpenCL and MPI, but I am not sure which way to go.
I was planning to not use the full power of my desktop but only some of the available cores (in this way I can continue to work on the desktop doing other tasks that are not so resource intensive). In particular I would love to use the graphic card power (it is an ATI card, so no CUDA), since all that I do mainly is spreadsheet, word and coding with Xcode, and the graphic card resources are basically unused in that scenario.
Is there a specific set of libraries or API, among the aforementioned 3, that would allow me to selectively route tasks, and use resources on another machine without leaving the control totally to the compiler? I've heard that GCD is great but it has very limited control on where the blocks are executed, while MPI is on the other side of the spectrum....OpenCL seems to be in the middle.
Before diving in one of these technologies I would like to know which one would most likely suit my needs; I am sure that some other researcher has already used successfully parallel computing to achieve what I am trying to achieve.
Thanks in advance.
MPI is more for scientific computing large scale many processors many nodes exc not for a weekend project, for what you describe I would suggest using OpenCl or any one the more distributed framework of AMQP protocol families, such as zeromq or rabbitMQ, or a combination of OpenCl and AMQP , or even simpler consider multithreading , i would suggest OpenMP for that. I'm not sure if you are looking for direct solvers or parallel functions but there are many that exist as well for gpu's and cpu's which you can find on the web
Sorry, but this question simply cannot be meaningfully answered as posed. To be sure, I could toss out a collection of buzzwords describing various technologies to look at like GCD, OpenMPI, OpenCL, CUDA and any number of other technologies which allow one to run a single program on multiple cores, multiple programs on different cooperating computers, or a single program distributed across CPU and GPU, and it sounds like you know about a number of those already so I wouldn't even be adding much value in listing the buzzwords.
To simply toss out such terms without knowing the full specifics of the problem you're trying to solve, however, is a bit like saying that you know English, French and a little German so sure, by all means - mix them all together in a single paragraph without knowing anything about the target audience! Similarly, you can parallelize a given computation in any number of ways, across any number of different processing elements, but whether that parallelization is actually a win or not is going to be entirely dependent on the nature of the algorithm, its data dependencies, how much computation is expected for each reasonable "work chunk", and whether it can be executed on a GPU with sufficient numeric precision, among many other factors. The more complex the technology you choose, the more those factors matter and the greater the possibility that the resulting code will actually be slower than its single-threaded, single machine counterpart. IPC overhead and data copying can, and frequently do, swamp all of the gains one might realize from trying to naively parallelize something and then add additional overhead on top of that, resulting in a net loss. This is why engineers who can do this kind of work meaningfully and well are in such high demand. :)
Without knowing anything about your calculations, I would move in baby steps. First try a simple multi-processor framework like GCD (which is already built in to OS X and requires no additional dependencies to use) and figure out how to factor your code such that it can effectively use all of the available cores on a single machine. Once you've learned where the wins are (and if there even are any - if multi-threading isn't helping, multi-machine parallelization almost certainly won't either), try setting up several instances of the calculation on several machines with a simple IPC model that allows for distributing the work. Having already factored your algorithm(s) for multiple threads, it should be comparatively straight-forward to further generalize the approach across multiple machines (though it bears noting that the two are NOT the same problem and either way you still want to use all the cores available on any of the given target machines, so the two challenges are both complimentary and orthogonal).

Fastest math programming language?

I have an application that requires millions of subtractions and remainders, i originally programmed this algorithm inside of C#.Net but it takes five minutes to process this information and i need it faster than that.
I have considered perl and that seems to be the best alternative now. Vb.net was slower in testing. C++ may be better also. Any advice would be greatly appreciated.
You need a compiled language like Fortran, C, or C++. Other languages are designed to give you flexibility, object-orientation, or other advantages, and assume absolutely fastest performance is not your highest priority.
Know how to get maximum performance out of a single thread, and after you have done so investigate sharing the work across multiple cores, for example with MPI. To get maximum performance in a single thread, one thing I do is single-step it at the machine instruction level, to make sure it's not dawdling about in stuff that could be removed.
Some calculations are regular enough to take profit of GPGPUs: recent graphic cards are essentially specialized massively parallel numerical co-processors. For instance, you could code your numerical kernels in OpenCL. Otherwise, learn C++11 (not some earlier version of the C++ standard) or C. And in many cases Ocaml could be nearly as fast as C++ but much easier to code with.
Perhaps your problem can be handled by scilab or R, I did not understand it enough to help more.
And you might take advantage of your multi-core processor by e.g. using Pthreads or MPI
At last, the Linux operating system is perhaps better to deal with massive calculations. It is significant that most super computers use it today.
If execution speed is the highest priority, that usually means Fortran.
Try Julia: its killing feature is being easy to code in a high level concise way, while keeping performances at the same order of magnitude of Fortran/C.
PARI/GP is the best I have used so far. It's written in C.
Try to look at DMelt mathematical program. The program calls Java libraries. Java virtual machine can optimize long mathematical calculations for you.
The standard tool for mathmatic numerical operations in engineering is often Matlab (or as free alternatives octave or the already mentioned scilab).

Getting started with massive data

I'm a mathematician and occasionally do some statistics/machine learning analysis consulting projects on the side. The data I have access to are usually on the smaller side, at most a couple hundred of megabytes (and almost always far less), but I want to learn more about handling and analyzing data on the gigabyte/terabyte scale. What do I need to know and what are some good resources to learn from?
Hadoop/MapReduce is one obvious start.
Is there a particular programming language I should pick up? (I primarily work now in Python, Ruby, R, and occasionally Java, but it seems like C and Clojure are often used for large-scale data analysis?)
I'm not really familiar with the whole NoSQL movement, except that it's associated with big data. What's a good place to learn about it, and is there a particular implementation (Cassandra, CouchDB, etc.) I should get familiar with?
Where can I learn about applying machine learning algorithms to huge amounts of data? My math background is mostly on the theory side, definitely not on the numerical or approximation side, and I'm guessing most of the standard ML algorithms don't really scale.
Any other suggestions on things to learn would be great!
Apache Hadoop is indeed a good start, because it's free, has a large community and is easy to set up.
Hadoop is build in Java, so this can be the language of choice. But it is possible to use ohter languages with Hadoop as well ("pipes" and "streams"). I know, that Python is often used for example.
You can avoid having your data in data bases, if you like to. Originally, Hadoop works with data on the (distributed) file system. But as you already seem to know, there are distributed data bases for Hadoop available.
Did you ever had a look an Mahout? I think that would be a hit for you ;-) Many work you need, may already had been done!?
Read the Quick Start and set up your own (pseudo-distributed?) cluster and run the word-count example.
Let me know, if you have any questions :-) A comment will remind me on this question.
I've done some large scale machine learning (3-5GB datasets), so here are some insights:
First, there are logistics issues at large scales. Can you load all your data into memory? With Java and a 64 bit JVM you can access as much RAM as you have: for example, command line parameter -Xmx8192M will give you access to 8GB (if you have that much). Matlab, being a Java application, can also benefit from this and work with fairly large datasets.
More importantly, the algorithms that you run on your data. Chances are that standard implementations will expect all of the data in memory. You might have to implement a working set approach yourself, where you swap data in and out to the disk, and only work on a portion of data at a time. These are sometimes referred to as chunking, batch or even incremental algorithms, depending on the context.
You are right to suspect that a lot of algorithms do not practically scale, so you might have to go for an approximate solution. The good news is that for almost any algorithm you can find research papers that deal with approximation and/or discuss large scale solutions. The bad news is that you'll most likely have to implement those approaches yourself.
Hadoop is great, but can be a pain in the ass to set up. This is by far the best article I've read on Hadoop setup. I strongly recommend it:
http://www.michael-noll.com/wiki/Running_Hadoop_On_Ubuntu_Linux_%28Single-Node_Cluster%29
Clojure is built on top of Java so it's unlikely that it's going to be any faster than Java. However, it is one of the few languages that does shared memory well, which may or may not be helpful. I'm not a math guy but it seems most math calculations are very parallelizable, with little need of threads sharing memory. Either way, you might want to check out Incanter, which is Clojure's statistical computing library, and clojure-hadoop, which makes writing Hadoop jobs a lot less painful.
In terms of languages, I find that the differences in performance end up being constant factors. It's far better to just find a language you enjoy and focus on improving your algorithms. However, according to some shootout cited by Peter Norvig (scroll down to the colorful table, you may want to shy away from Python and Perl due to their crappiness with arrays.
In a nutshell, NoSQL is great for unstructured/arbitrarily structured data while SQL/RDBMS is great (or at least tolerable) for structured data. Changing/adding fields is expensive in RDBMS so if that's going to happen alot, you might want to shy away from them.
However, in your case, it seems like you're going to be batch processing a ton of data and then getting back an answer as opposed to having data around that you will periodically ask questions about? You could probably just process CSVs/text files in Hadoop. Unless you need a performant way of accessing arbitrary information about your data on the fly, I'm not sure either SQL or NoSQL would be useful.

Is it possible to perform arbitrary data analysis in Erlang?

I want to answer questions about data in Erlang: count things, correlate messages, provide arbitrary statistics. I had thought about resorting to Hadoop for this but is it possible to build a solution in raw Erlang to do rather arbitrary data analysis not necessarily via map/reduce but somehow? I have seen some hints of people doing this but no explicit blog posts or examples of this being done. I know that Powerset's natural language capabilities are written in Erlang. I also know about CouchDB but was looking for some other solutions.
Yes.
For general-purpose computation and statistics, Erlang works just fine. It isn't optimized heavily for such work, so it will have trouble keeping up with similar numeric code in, say MatLab, ForTran, or any of the major C package for this work -- but for most uses it will do just fine. And of course if your code parallelizes neatly and you have multiple CPUs available, Erlang will catch up more easily.
(You also mentioned the map/reduce pattern; it is relatively trivial given the Erlang/OTP runtime and libraries.)
I and my colleagues have written plenty of "raw" Erlang to do counting, statistics, and so on. We have found it to be more than sufficient for most tasks.

Resources