Related
I'm new to prolog and I've been having trouble with some homework.
On some part of my code I have to generate subsets of a given set on backtracking. Meaning, the code should try for a subset, and when it fails the next condition, try the next subset. I have done some research and the default function subset won't backtrack because as explained in this question both arguments are input arguments. So I built a custom one, which still isn't backtracking. Can you give me a hint on what I'm failing on? Here's my code:
numNutrients(8).
product(milk,[2,4,6]).
product(porkChops,[1,8]).
product(yoghurt,[3,1]).
product(honey,[5,7]).
product(plastic,[3,5,2]).
product(magic,[5,7,8]).
nutrientlist(N,L):-findall(I,between(1,N,I),L).
subset2([],[]):-!.
subset2([X|T],[X|T2]):-
subset2(T,T2).
subset2([_|T],[T2]):-
subset2(T,T2).
shopping(K,L):-
numNutrients(J),
nutrientlist(J,N),
findall(P,product(P,_),Z),
subset2(X,Z),
length(X,T),
T =< K,
covers(X,N),
L = X.
covers(_,[]):-!.
covers([X|L],N):-
product(X,M),
subset2(M,N),
subtract(N,M,T),
covers(L,T).
main:-
shopping(5,L),
write(L).
The problem is on predicate shopping(K,L). When it gets to predicate subset2, it gives the whole set, which has length 6 (not 5), then fails and doesn't backtrack. Since all previous predicates can't backtrack it just fails.
So, why doesn't subset2 backtrack?
Thank you for your time.
Primary focus: subset2/2
First, let us focus only on the predicate that shows different properties from those you expect.
In your case, this is only subset2/2, defined by you as:
subset2([], []) :- !.
subset2([X|T], [X|T2]) :-
subset2(T, T2).
subset2([_|T], [T2]) :-
subset2(T, T2).
I will now use declarative debugging to locate the cause of the problem.
For this method to apply, I remove the !/0, because declarative debugging works best on pure and monotonic logic programs. See logical-purity for more information. Thus, we shall work on:
subset2([], []).
subset2([X|T], [X|T2]) :-
subset2(T, T2).
subset2([_|T], [T2]) :-
subset2(T, T2).
Test cases
Let us first construct a test case that yields unintended answers. For example:
?- subset2([a], [a,b]).
false.
That obviously not intended. Can we generalize the test case? Yes:
?- subset2([a], [a,b|_]).
false.
So, we have now an infinite family of examples that yield wrong results.
Exercise: Are there also cases where the program is too general, i.e., test cases that succeed although they should fail?
Locating mistakes
Why have we seen unintended failure in the cases above? To locate these mistakes, let us generalize the program.
For example:
subset2(_, []).
subset2([_|T], [_|T2]) :-
subset2(T, T2).
subset2(_, [T2]) :-
subset2(T, T2).
Even with this massive generalization, we still have:
?- subset2([a], [a,b|_]).
false.
That is, we have many cases where we expect the query to succeed, but it fails. This means that the remaining program, even though it is a massive generalization of the original program, is still too specific.
Correcting the program
To make the shown cases succeed, we have to either:
add clauses that describe the cases we need
or change the existing clauses to cover these cases too.
For example, a way out would be to add the following clause to the database:
subset2([a], [a,b|_]).
We could even generalize it to:
subset2([a], [a|_]).
Adding either or both of these clauses to the program would make the query succeed:
?- subset2([a], [a,b|_]).
true.
However, that is of course not the general definition of subset2/2 we are looking for, since it would for example still fail in cases like:
?- subset2([x], [x,y|_]).
false.
Therefore, let us go with the other option, and correct the existing definition. In particular, let us consider the last clause of the generalized program:
subset2(_, [T2]) :-
subset2(T, T2).
Note that this only holds if the second argument is a list with exactly one element which is subject to further constraints. This seems way too specific!
Therefore, I recommend you start by changing this clause so that it at least makes the test cases collected so far all succeed. Then, add the necessary specializations to make it succeed precisely for the intended cases.
I am writing a Prolog predicate that cuts first three elements off a numbered list and prints the result. An example of a numbered list:
[e(f,1),e(o,2),e(o,3),e(b,4),e(a,5),e(r,6)].
The original predicate for normal list looks like this:
strim([H|T],R) :-
append(P,R,[H|T]),
length(P,3).
So, since length predicate works perfectly for numbered lists as well, I only had to write predicate that appends one numbered list to another:
compose([],L,[L]).
compose([e(F,C)|T],e(A,_),[e(F,C)|L]) :-
N is C+1,
compose(T,e(A,N),L).
napp(X,[],X).
napp(L,[e(X,Y)|T],M):-
compose(L,e(X,Y),L1),
napp(L1,T,M).
I expected the predicate for numbered list to be a slightly modified version of predicate for normal list, so I wrote this:
numstrim([e(X,Y)|T],R) :-
napp(P,R,[e(X,Y)|T]),
length(P,3).
However, I'm getting this error:
ERROR: compose/3: Arguments are not sufficiently instantiated
Could somebody please explain what's causing the error and how to avoid it? I'm new to Prolog.
Instantiation errors are a common phenomenon in Prolog programs that use moded predicates: These are predicates that can only be used in special circumstances, requiring for example that some arguments are fully instantiated etc.
As a beginner, you are in my view well advised to use more general predicates instead, so that you can freely exchange the order of goals and do not have to take procedural limitations into account, at least not so early, and without the ability to freely experiment with your code.
For example, in your case, the following trivial change to compose/3 gives you a predicate that works in all directions:
compose([], L, [L]).
compose([e(F,C)|T], e(A,_), [e(F,C)|L]) :-
N #= C+1,
compose(T, e(A,N), L).
Here, I have simply replaced the moded predicate (is)/2 with the CLP(FD) constraint (#=)/2, which completeley subsumes the more low-level predicate over integers.
After this small change (depending on your Prolog system, you may have to import a library to use the more general arithmetic predicates), we get:
?- numstrim([e(f,1),e(o,2),e(o,3),e(b,4),e(a,5),e(r,6)], Es).
nontermination
So, we find out that the instantiation error has actually overshadowed a different problem that can only be understood procedurally, and which has now come to light.
To improve this, I now turn around the two goals of numstrim/2:
numstrim([e(X,Y)|T], R) :-
length(P, 3),
napp(P, R, [e(X,Y)|T]).
This is because length(P, 3) always terminates, and placing a goal that always terminates first can at most improve, never worsen, the termination properties of a pure and monotonic logic program.
So now we get:
?- numstrim([e(f,1),e(o,2),e(o,3),e(b,4),e(a,5),e(r,6)], Es).
Es = [e(b, _1442), e(a, _2678), e(r, _4286)] .
That is, at least we get an answer now!
However, the predicate still does not terminate universally, because we get:
?- numstrim([e(f,1),e(o,2),e(o,3),e(b,4),e(a,5),e(r,6)], Es), false.
nontermination
I leave fixing this as an exercise.
I'm new to prolog; I'm coming from a structured programming background, as will become obvious :)
I am building up a prolog query that involves reversing a number; eg. reverse_num(123,X) results in X = 321. I came up with the following definition, but it only works when I provide a number as the first parameter.
reverse_num(Num, Revnum) :-
number_chars(Num, Atoms),
reverse(Revatoms, Atoms),
number_chars(Reversed, Revatoms),
Reversed = Revnum.
the number_chars/2 predicate doesn't like an unsubstantiated variable if I do: reverse_num(X,123) (where I'm expecting X to be 321).
Am I trying too hard to make reverse_num do something it shouldn't (should it be understood to work only with a number as the first parameter and variable as the second)?
Or is there an easy / straight-forward way to handle a variable as the first parameter?
Relational naming
Before jumping into coding, let's take a step back. After all, the idea in Prolog is to define relations. Your name reverse_num/2 rather suggests some actions, num_reversed/2 might be a better name.
Determine the relation
Your definition is not that bad, let me rewrite it to1:
num_reversed(Num, Reversed) :-
number_chars(Num, Chars),
reverse(Chars, Revchars),
number_chars(Reversed, Revchars).
?- num_reversed(123,X).
X = 321.
?- num_reversed(1230,X).
X = 321.
?- num_reversed(12300,X).
X = 321.
Do you see the pattern? All numbers N*10^I have the same result!
Now, let's ask some more:
?- num_reversed(Num, 321).
error(instantiation_error,number_chars/2).
Hm, what did we expect? Actually, we wanted all 123*10^I to be printed. That's infinitely many solutions. So above query, if correctly answered, would require infinitely many solutions to be printed. If we print them directly, that will take all our universe's lifetime, and more!
It is for this reason, that Prolog produces an instantiation error instead. By this, Prolog essentially states:
This goal is too general that I can make a good answer. Maybe there are infinitely many solutions, maybe not. I know not. But at least I indicate this by issuing an error. To remove this error you need to instantiate the arguments a bit more.
So the answer Prolog produced was not that bad at all! In fact, it is much better to produce a clean error than to, say, fail incorrectly. In general, Prolog's errors are often a very useful hint to what semantic problems you might have. See all error classes how.
Coroutining
As have other answers suggested, coroutining, using when/2 might solve this problem. However, coroutining itself has many semantic problems. Not without reason, systems like XSB do not offer it, due to the many problems related to subsumption checking. An implementation that would be compatible to it would be unexpectedly inefficient.
But for the sake of the point, we could make our definition more versatile by querying it like
?- when(nonvar(Num), num_reversed(Num, Reversed)).
when(nonvar(Num), num_reversed(Num, Reversed)).
Now we get back as an answer exactly the query we entered. This is also known as floundering. So there is a way to represent infinitely may solutions in a compact manner! However, this comes at a rather high price: You no longer know whether a solution exists or not. Think of:
?- when(nonvar(Num), num_reversed(Num, -1)).
when(nonvar(Num), num_reversed(Num, -1)).
Others have suggested to wait also for nonvar(Reversed) which would only be correct if we would produce infinitely many answers - but, as we have seen - this just takes too much time.
Coroutining looked as a very promising road at the beginning of the 1980s. However, it has never really caught on as a general programming methodology. Most of the time you get much too much floundering which is just a pain and even more difficult to handle than, say instantiation errors.
However, a more promising offspring of this development are constraints. There, the mechanisms are much cleaner defined. For practical purposes, programmers will only use existing libraries, like CLPFD, CLPQ, or CHR. Implementing your own library is an extremely non-trivial project in its own right. In fact it might even be possible to provide an implementation of num_reversed/2 using library(clpfd) that is, restricting the relation to the integer case.
Mode dependent conditionals
Traditionally, many such problems are solved by testing for instantiations explicitly. It is good style to perform this exclusively with nonvar/1 and ground/1 like the condition in when/2- other type test predicates lead easily to errors as exemplified by another answer.
num_reversed(Num, Reversed) :-
( nonvar(Num)
-> original_num_reversed(Num, Reversed)
; original_num_reversed(Reversed, Base),
( Base =:= 0
-> Num is 0
; length(_, I),
Num is Base*10^I
)
).
Above code breaks very soon for floats using base 2 and somewhat later for base 10. In fact, with classical base 2 floats, the relation itself does not make much sense.
As for the definition of number_chars/2, ISO/IEC 13211-1:1995 has the following template and mode subclause:
8.16.7.2 Template and modes
number_chars(+number, ?character_list)
number_chars(-number, +character_list)
The first case is when the first argument is instantiated (thus nonvar). The second case, when the first argument is not instantiated. In that case, the second argument has to be instantiated.
Note, however, that due to very similar problems, number_chars/2 is not a relation. As example, Chs = ['0','0'], number_chars(0, Chs) succeeds, whereas number_chars(0, Chs), Chs = ['0','0'] fails.
Very fine print
1 This rewrite is necessary, because in many Prologs reverse/2 only terminates if the first argument is known. And in SWI this rewrite is necessary due to some idiosyncratic inefficiencies.
The number_chars/2 predicate has the signature:
number_chars(?Number, ?CharList)
But although not fully specified by the signature, at least Number or CharList have to be instantiated. That's where the error occurs from.
If you call:
reverse_num(Num,123)
You will call number_chars/2 with both uninstatiated at that time so the predicate will error.
A not very nice solution to the problem is to ask whether Num or RevNum are number/2s. You can do this by writing two versions. It will furthermore filter other calls like reverse_num(f(a),b), etc.:
reverse_num(Num,Revnum) :-
\+ number(Num),
\+ number(Revnum),
throw(error(instantiation_error, _)).
reverse_num(Num, Revnum) :-
ground(Num),
number(Num),
!,
number_chars(Num, Atoms),
reverse(Revatoms, Atoms),
number_chars(Revnum, Revatoms).
reverse_num(Num, Revnum) :-
ground(Revnum),
number(Revnum),
reverse_num(Revnum,Num).
Or you can in case you use two nongrounds (e.g. reverse_num(X,Y).) an instantiation error instead of false as #false says:
reverse_num(Num,Revnum) :-
\+ number(Num),
\+ number(Revnum),
!,
throw(error(instantiation_error, _)).
reverse_num(Num, Revnum) :-
number(Num),
!,
number_chars(Num, Atoms),
reverse(Revatoms, Atoms),
number_chars(Revnum, Revatoms).
reverse_num(Num, Revnum) :-
reverse_num(Revnum,Num).
The cut (!) is not behaviorally necessary, but will increase performance a bit. I'm not really a fan of this implementation, but Prolog cannot always fully make predicates reversible since (a) reversibility is an undecidable property because Prolog is Turing complete; and (b) one of the characteristics of Prolog is that the body atoms are evaluated left-to-right. otherwise it will take ages to evaluate some programs. There are logic engines that can do this in an arbitrary order and thus will succeed for this task.
If the predicate/2 is commutative, a solution that can be generalized is the following pattern:
predicate(X,Y) :-
predicate1(X,A),
predicate2(A,B),
% ...
predicaten(C,Y).
predicate(X,Y) :-
predicate(Y,X).
But you cannot simply add the last clause to the theory, because it can loop infinitely.
Nice to see someone is also worried about define flexible rules with no restrictions in the set of bound arguments.
If using a Prolog system that supports coroutining and the when/2 built-in predicate (e.g. SICStus Prolog, SWI-Prolog, or YAP), try as:
reverse_num(Num, Reversed) :-
when( ( ground(Num); ground(Atoms) ), number_chars(Num, Atoms) ),
when( ( ground(Reversed); ground(Revatoms) ), number_chars(Reversed, Revatoms) ),
reverse(Atoms , Revatoms).
that gives:
?- reverse_num( 123, X ).
X = 321.
?- reverse_num( X, 123 ).
X = 321 .
( thanks to persons who provided theses answers: Prolog: missing feature? )
This SWISH session shows my effort to answer.
Then I've come back here, where I found I was on #PasabaPorAqui' mood (+1), but I didn't get it right.
But, such an interesting topic: notice how regular is the join pattern.
reverse_num(X, Y) :-
when((nonvar(Xs);nonvar(Ys)), reverse(Xs, Ys)),
when((nonvar(X) ;nonvar(Xs)), atomic_chars(X, Xs)),
when((nonvar(Y) ;nonvar(Ys)), atomic_chars(Y, Ys)).
So, we can generalize in a simple way (after accounting for PasabaPorAqui correction, ground/1 it's the key):
% generalized... thanks Pasaba Por Aqui
:- meta_predicate when_2(0).
when_2(P) :-
strip_module(P,_,Q),
Q =.. [_,A0,A1],
when((ground(A0);ground(A1)), P).
reverse_num(X, Y) :-
maplist(when_2, [reverse(Xs, Ys), atomic_chars(X, Xs), atomic_chars(Y, Ys)]).
I think I understand why nonvar/1 was problematic: the list bound for reverse get 'fired' too early, when just the head get bound... too fast !
maplist/2 is not really necessary: by hand we can write
reverse_num(X, Y) :-
when_2(reverse(Xs, Ys)),
when_2(atomic_chars(X, Xs)),
when_2(atomic_chars(Y, Ys)).
this seems an ideal application of term rewriting... what do you think about -:- ? Implementing that we could write bidirectional code like
reverse_num(X, Y) -:-
reverse(Xs, Ys),
atomic_chars(X, Xs),
atomic_chars(Y, Ys).
edit SWISH maybe is not 'term_rewrite' friendly... so here is a lower level approach:
:- op(900, xfy, ++).
A ++ B ++ C :- when_2(A), B ++ C.
A ++ B :- when_2(A), when_2(B).
reverse_num(X, Y) :-
reverse(Xs, Ys) ++ atomic_chars(X, Xs) ++ atomic_chars(Y, Ys).
Setting aside the problem of trailing zeroes turning into leading zeroes, it doesn't seem like it should be much more complicated than something like this (made somewhat more complicated by dealing with negative numbers):
reverse_number(X,Y) :- number(X) , ! , rev(X,Y) .
reverse_number(X,Y) :- number(Y) , ! , rev(Y,X) .
rev(N,R) :-
N < 0 ,
! ,
A is abs(N) ,
rev(A,T) ,
R is - T
.
rev(N,R) :-
number_chars(N,Ns) ,
reverse(Ns,Rs) ,
number_chars(R,Rs)
.
Note that this does require at least one of the arguments to reverse_number/2 to be instantiated.
Having recently got into Prolog I've been using it for a few simple tasks and began to wonder about using member within forall loops like the one in the trivial example below:
forall(member(A,[1,2,3,4]), print(A)).
In the case that you do something like this is it always true that forall will process the elements within the list in the same order every time its called? Does it have to be enforced by say doing something like:
A = [1,2,3,4], sort(A, B), forall(member(C,B), print(C)).
From what little research I've initially done I'm guessing that it comes down to the behaviour of member/2 but the documentation for the function on SWI-Prolog's website is very brief. It does however mention determinism with regards member/2 which gave me an inkling I might be on the right path in saying that it would always extract the elements in the same order, though I'm far from certain.
Can anyone give me any guarantees or explanations on this one?
Non-determinism in Prolog simply refers to a predicate having potentially more than one solution. Clearly, member/2 is such a predicate. This does not mean that you have to be worried about your computation becoming unpredictable. Prolog has a well-defined computation rule which essentially says that alternative solutions are explored in a depth-first, left-to-right manner. Thus your goal member(X,[1,2,3,4]) will generate solutions to X in the expected order 1,2,3,4.
Sorting the list [1,2,3,4] will not make any difference, as it is already sorted (according to Prolog's standard term order).
A word of caution about forall/2: some Prologs define this, but it is probably less useful than you imagine, because it is not really a "loop". You can use it in your example because you only perform a print side effect in each iteration. For most other purposes, you should familiarize yourself with recursive patterns like
print_list([]).
print_list([X|Xs]) :- print(X), print_list(Xs).
Strictly speaking, there is no guarantee in SWI on several levels:
1mo, that member/2 or forall/2 will perform in exactly this manner, since you can redefine them.
?- [user].
member(X,X).
|: % user://1 compiled 0.00 sec, 2 clauses
true.
?- forall(member(A,[1,2,3,4]), print(A)).
[1,2,3,4]
true.
However, member/2 is defined in the Prolog prologue which covers all the details you are interested in.
As for forall(A,B) it is safer to write \+ (A, \+B) instead, since this relies on standard features only. There is no definition of forall/2 as such, so it is difficult to tell what is the "right" behavior.
2do, that SWI will be standard conforming. If you read the documentation, you will note that there is no self-declaration (as for, e.g. SICStus Prolog) for standard conformance. In fact, \+ (A, \+B) is not fully conforming, as in the following example that should silently fail, but rather prints nonconforming
?- \+ ( C= !, \+ (C,fail;writeq(nonconforming))).
N208 has forall/2 defined + (call(Generator), + call(Test)), so this makes it less dubious. But by virtue that the ISO core standard (+)/1 does already a call/1 and that the ISO core standard (,)/2 will be subject to body conversion one can simply define it as follows in an ISO core standard Prolog:
forall(Generator, Test) :-
\+ (Generator, \+ Test).
SWI-Prolog has also implemented this way, and the error observed by Ulrich Neumerkel will not be seen when using forall/2:
Welcome to SWI-Prolog (threaded, 64 bits, version 7.7.18)
SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software.
?- \+ ( C= !, \+ (C,fail;writeq(nonconforming))).
nonconforming
true.
?- forall(C=!, (C,fail;writeq(nonconforming))).
false.
Side remark:
I don't know how useful it is for loop. It seems to me using it for loops is not the right approach, since the test might fail, and then the construct also fails. I have also seen by Striegnitz and Blackburn the following definition of a helper predicate that they call failiure driven loop.
doall(Goal) :-
Goal, fail.
doall(_).
I find myself directly writing Goal, fail; true which also does the job:
Welcome to SWI-Prolog (threaded, 64 bits, version 7.7.18)
SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software.
?- member(A,[1,2,3,4]), write(A), nl, fail; true.
1
2
3
4
true.
I have a standard procedure for determining membership of a list:
member(X, [X|_]).
member(X, [_|T]) :- member(X, T).
What I don't understand is why when I pose the following query:
?- member(a,[a,b]).
The result is
True;
False.
I would have thought that on satisfying the goal using the first rule (as a is the head of the list) True would be returned and that would be the end of if. It seems as if it is then attempting to satisfy the goal using the second rule and failing?
Prolog interpreter is SWI-Prolog.
Let's consider a similar query first: [Edit: Do this without adding your own definition ; member/2 is already defined]
?- member(a,[b,a]).
true.
In this case you get the optimal answer: There is exactly one solution. But when exchanging the elements in the list we get:
?- member(a,[a,b]).
true
; false.
Logically, both are just the affirmation that the query is true.
The reason for the difference is that in the second query the answer true is given immediately upon finding a as element of the list. The remaining list [b] does not contain a fitting element, but this is not yet examined. Only upon request (hitting SPACE or ;) the rest of the list is tried with the result that there is no further solution.
Essentially, this little difference gives you a hint when a computation is completely finished and when there is still some work to do. For simple queries this does not make a difference, but in more complex queries these open alternatives (choicepoints) may accumulate and use up memory.
Older toplevels always asked if you want to see a further solution, even if there was none.
Edit:
The ability to avoid asking for the next answer, if there is none, is extremely dependent on the very implementation details. Even within the same system, and the same program loaded you might get different results. In this case, however, I was using SWI's built-in definition for member/2 whereas you used your own definition, which overwrites the built-in definition.
SWI uses the following definition as built-in which is logically equivalent to yours but makes avoiding unnecessary choice points easier to SWI — but many other systems cannot profit from this:
member(B, [C|A]) :-
member_(A, B, C).
member_(_, A, A).
member_([C|A], B, _) :-
member_(A, B, C).
To make things even more complex: Many Prologs have a different toplevel that does never ask for further answers when the query does not contain a variable. So in those systems (like YAP) you get a wrong impression.
Try the following query to see this:
?- member(X,[1]).
X = 1.
SWI is again able to determine that this is the only answer. But YAP, e.g., is not.
Are you using the ";" operator after the first result then pushing return? I believe this is asking the query to look for more results and as there are none it is coming up as false.
Do you know about Prolog's cut - !?
If you change member(X, [X|_]). to member(X, [X|_]) :- !. Prolog will not try to find another solution after the first one.