How do I re-segment a projection in Vertica? - vertica

I've run analyze_workload on some of my tables in production, and one suggestion for some tables is to re-segment certain projections. The output tells me that re-segmenting the projection would have a low impact.
One slight problem. I can't find anything in the documentation about to go about doing this. Is there a way to do this besides creating new projections and deleting the old ones? That doesn't sound like low impact, so I would assume so.
Thanks for any help in advance.

Is there a way to do this besides creating new projections and deleting the old ones?
I think that's what resegmenting means. The projection refresh process is on some background processing pool, whose priority can be tuned somewhat.
Personally, I often choose to create a new table with the new projection design, copy data into it, and swap. This is of course more intense, but I have more control of when it happens, and I have better gut sense of how long it'll take.

Related

Kedro Data Modelling

We are struggling to model our data correctly for use in Kedro - we are using the recommended Raw\Int\Prm\Ft\Mst model but are struggling with some of the concepts....e.g.
When is a dataset a feature rather than a primary dataset? The distinction seems vague...
Is it OK for a primary dataset to consume data from another primary dataset?
Is it good practice to build a feature dataset from the INT layer? or should it always pass through Primary?
I appreciate there are no hard & fast rules with data modelling but these are big modelling decisions & any guidance or best practice on Kedro modelling would be really helpful, I can find just one table defining the layers in the Kedro docs
If anyone can offer any further advice or blogs\docs talking about Kedro Data Modelling that would be awesome!
Great question. As you say, there are no hard and fast rules here and opinions do vary, but let me share my perspective as a QB data scientist and kedro maintainer who has used the layering convention you referred to several times.
For a start, let me emphasise that there's absolutely no reason to stick to the data engineering convention suggested by kedro if it's not suitable for your needs. 99% of users don't change the folder structure in data. This is not because the kedro default is the right structure for them but because they just don't think of changing it. You should absolutely add/remove/rename layers to suit yourself. The most important thing is to choose a set of layers (or even a non-layered structure) that works for your project rather than trying to shoehorn your datasets to fit the kedro default suggestion.
Now, assuming you are following kedro's suggested structure - onto your questions:
When is a dataset a feature rather than a primary dataset? The distinction seems vague...
In the case of simple features, a feature dataset can be very similar to a primary one. The distinction is maybe clearest if you think about more complex features, e.g. formed by aggregating over time windows. A primary dataset would have a column that gives a cleaned version of the original data, but without doing any complex calculations on it, just simple transformations. Say the raw data is the colour of all cars driving past your house over a week. By the time the data is in primary, it will be clean (e.g. correcting "rde" to "red", maybe mapping "crimson" and "red" to the same colour). Between primary and the feature layer, we will have done some less trivial calculations on it, e.g. to find one-hot encoded most common car colour each day.
Is it OK for a primary dataset to consume data from another primary dataset?
In my opinion, yes. This might be necessary if you want to join multiple primary tables together. In general if you are building complex pipelines it will become very difficult if you don't allow this. e.g. in the feature layer I might want to form a dataset containing composite_feature = feature_1 * feature_2 from the two inputs feature_1 and feature_2. There's no way of doing this without having multiple sub-layers within the feature layer.
However, something that is generally worth avoiding is a node that consumes data from many different layers. e.g. a node that takes in one dataset from the feature layer and one from the intermediate layer. This seems a bit strange (why has the latter dataset not passed through the feature layer?).
Is it good practice to build a feature dataset from the INT layer? or should it always pass through Primary?
Building features from the intermediate layer isn't unheard of, but it seems a bit weird. The primary layer is typically an important one which forms the basis for all feature engineering. If your data is in a shape that you can build features then that means it's probably primary layer already. In this case, maybe you don't need an intermediate layer.
The above points might be summarised by the following rules (which should no doubt be broken when required):
The input datasets for a node in layer L should all be in the same layer, which can be either L or L-1
The output datasets for a node in layer L should all be in the same layer L, which can be either L or L+1
If anyone can offer any further advice or blogs\docs talking about Kedro Data Modelling that would be awesome!
I'm also interested in seeing what others think here! One possibly useful thing to note is that kedro was inspired by cookiecutter data science, and the kedro layer structure is an extended version of what's suggested there. Maybe other projects have taken this directory structure and adapted it in different ways.
Your question prompted us to write a Medium article better explaining these concepts, it's just been published on Toward Data Science

Developing cluster apps

I'm not sure exactly where (or even how exactly to ask) this question, so I'm hoping someone here can point me in the right direction.
I have a service that I'm building. That service has different objects in memory - each with it's own state. Whenever an object is created it loads the state from the database and hold it. When changes are made to the object they are also persistent to the database.
I would like to scale this service. I have looked at solutions such as akka.net (actor model) and they have a clustering solution. From what I've read, it synchronizes the state with something they call "gossip" where each node sends the state to the other node. I'm not sure that it really possible to convert my working application to akka.net at this point.
I'm wondering exactly how clusters keep state synced between different nodes (I get the gossip concept), what happens if I have machine A that receives a message and at the same time, machine B also receives a message - both change the same state of an object - that will make problems with data integrity between states. My only thought about this is to lock a shared resource, but that defeats the purpose of the cluster.
Keeping state in the database is also not an option since the database becomes a bottleneck and a single point of failure.
I can't seem to find any relevant reading materials online - but I'm also lacking the technical phrases I need to focus on.
In case it's relevant, I'm using .NET Core and c# for development.
Can anyone explain the concept of clustering, how it works and make sure nodes are at sync? or can point to the right direction?
You have a big problem. I think that the way you are thinking about the problem is a bigger problem. Let's go through some basics.
Clustering is used to solve big problems, much like the "eat an elephant" problem. You could to solve this problem design a unique bigger predator with a huge mouth. But history and paleontology has shown us that big predators are not easily sustained (they are expensive on the environment).
So to solve your problem, you could take a bigger stronger server.
Or, you could use clustering.
Clustering solves the "eat the elephant" problem in a very different way. Instead of sending a unique huge predator with a huge mouth to eat the elephant, it will use a concept of distributed and shared processing to eat it one bite at a time. When done properly, ants could eat the elephant. If there are enough of them and the circumstances are correct.
But notice in my example, ants are very small... A single ant will never carry the entire elephant. You could carry the entire elephant if all the ants worked together but then you run into concurrency and locking problems (you must coordinate the ants).
Ants have shown us a much better way to deal with this. They will take a piece of the elephant and deal with the problem in smaller chunks.
In your system you ask how you can sync data across nodes... My question would be why? If you are syncing data then you are mirroring and your problem becomes even bigger (you are cloning the elephant but can only eat the original).
The solution to your problem is to rethink the solution and see if you can break down the problem into smaller pieces.
In Akka and in the Actor pattern the best way to deal with problems is to use smaller "processes" (a single ant). While the process on its own is almost useless, when used in a large scale they can become very powerful. When the architecture is properly done you will notice that taking a flamethrower to ants will not defeat them... More ants will come, they will continue to work on the problem.
Copying and syncing data is not your solution, clustering it is. You must take your data and break it down to a point where you can give it to a single ant. If you can do this then you can use Akka. If this approach seems ludicrous then Akka is not for you.
But consider this... You obviously have concerns over your database backend - you don't want to increase IO and introduce a single point of failure. I would have to agree with you. But you need to rethink things. You could have database mirroring to remove the single point of failure but you are correct that this won't remove the bottleneck. So let's say that mirror removes the single point of failure... Now let's attack the bottleneck portion.
If you can split up your data into small enough chunks that ants can handle it then I would urge you to tell your ants to only report to the database when the data changes... You can read it once on initialization (you need a backend store, don't kid yourself, electricity can be quickly lost... it must be saved somewhere) but if you tell your ants to persist only changed data then you will remove all the queries from the equation which will drastically shift where the load is coming from. Once you only have updates, inserts and deletes to deal with... the whole landscape will be much simpler.
Clustering should be the solution for you, but only if you can take the concept of mirror away from your mind.
Cluster nodes can and will crash... But they can be respawned elsewhere to other nodes, so that you always have a quick system. Only when you deal with a crash or loss of a node/worker process/ant will you have to reload data...
Good luck... you have outlined a formidable problem that I have seen people with software engineering degrees fail at solving.

Synchronize contact lists with a central server

We have some data that we are trying to synchronize between N machines and a centralized server, and I'm looking for a way to do this that is relatively efficient and robust.
Looking around, it appears that this is called a "set reconciliation problem". It's good to have a label for it, but searching on that turns up a lot of fairly academic work, which is at times a bit difficult to gauge in terms of its usefulness for our data, which is best described as contact lists in terms of its properties: objects (people) with multiple fields that do get updated, but not that often.
Our system involves a central server and machines connected to it. The central server, ideally, is the 'good' copy. A feature that's nice to have also, is the ability to force the machines to resend by tweaking something on the server.
So far, my thinking is along the lines of a UUID for each object and something like a version or timestamp (per object and or per collection of objects?) to use to tell which data to attempt to synchronize... but my thinking is still a bit fuzzy, and I thought asking would probably lead to a better solution than trying to invent this on my own.
It is not easy, and the perfect solution is academical. So you are on the good track.
You can craft a sync algorithm for your own problem, relaxing some of the requirements of the general solution.
I delivered a presentation on these topics at the last JsDay in Italy.
Here are my slides: http://www.slideshare.net/matteocollina/operational-transformation-12962149
Let me know if they help you, or if you need some assistance.

Algorithm to organize table into many tables to have less cells?

I'm not really trying to compress a database. This is more of a logical problem. Is there any algorithm that will take a data table with lots of columns and repeated data and find a way to organize it into many tables with ID's in such a way that in total there are as few cells as possible, and that this tables can be then joined with a query to replicate the original one.
I don't care about any particular database engine or language. I just want to see if there is a logical way of doing it. If you will post code, I like C# and SQL but you can use any.
I don't know of any automated algorithms but what you really need to do is heavily normalize your database. This means looking at your actual functional dependencies and breaking this off wherever it makes sense.
The problem with trying to do this in a computer program is that it isn't always clear if your current set of stored data represents all possible problem cases. You can't only look at numbers of values either. It makes little sense to break off booleans into their own table because they have only two values, for example, and this is only the tip of the iceberg.
I think that at this point, nothing is going to beat good ol' patient, hand-crafted normalization. This is something to do by hand. Any possible computer algorithm will either make a total mess of things or make you define the relationships such that you might as well do it all yourself.

Pitfalls in prototype database design (for performance viability testing)

Following on from my previous question, I'm looking to run some performance tests on various potential schema representations of an object model. However, the catch is that while the model is conceptually complete, it's not actually finalised yet - and so the exact number of tables, and numbers/types of attributes in each table aren't definite.
From my (possibly naive) perspective it seems like it should be possible to put together a representative prototype model for each approach, and test the performance of each of these to determine which is the fastest approach for each case.
And that's where the question comes in. I'm aware that the performance characteristics of databases can be very non-intuitive, such that a small (even "trivial") change can lead to an order of magnitude difference. Thus I'm wondering what common pitfalls there might be when setting up a dummy table structure and populating it with dummy data. Since the environment is likely to make a massive difference here, the target is Oracle 10.2.0.3.0 running on RHEL 3.
(In particular, I'm looking for examples such as "make sure that one of your tables has a much more selective index than the other"; "make sure you have more than x rows/columns because below this you won't hit page faults and the performance will be different"; "ensure you test with the DATETIME datatype if you're going to use it because it will change the query plan greatly", and so on. I tried Google, expecting there would be lots of pages/blog posts on best practices in this area, but couldn't find the trees for the wood (lots of pages about tuning performance of an existing DB instead).)
As a note, I'm willing to accept an answer along the lines of "it's not feasible to perform a test like this with any degree of confidence in the transitivity of the result", if that is indeed the case.
There are a few things that you can do to position yourself to meet performance objectives. I think they happen in this order:
be aware of architectures, best practices and patterns
be aware of how the database works
spot-test performance to get additional precision or determine impact of wacky design areas
More on each:
Architectures, best practices and patterns: one of the most common reasons for reporting databases to fail to perform is that those who build them are completely unfamiliar with the reporting domain. They may be experts on the transactional database domain - but the techniques from that domain do not translate to the warehouse/reporting domain. So, you need to know your domain well - and if you do you'll be able to quickly identify an appropriate approach that will work almost always - and that you can tweak from there.
How the database works: you need to understand in general what options the optimizer/planner has for your queries. What's the impact to different statements of adding indexes? What's the impact of indexing a 256 byte varchar? Will reporting queries even use your indexes? etc
Now that you've got the right approach, and generally understand how 90% of your model will perform - you're often done forecasting performance with most small to medium size databases. If you've got a huge one, there's a ton at stake, you've got to get more precise (might need to order more hardware), or have a few wacky spots in the design - then focus your tests on just this. Generate reasonable test data - and (important) stats that you'd see in production. And look to see what the database will do with that data. Unless you've got real data and real prod-sized servers you'll still have to extrapolate - but you should at least be able to get reasonably close.
Running performance tests against various putative implementation of a conceptual model is not naive so much as heroically forward thinking. Alas I suspect it will be a waste of your time.
Let's take one example: data. Presumably you are intending to generate random data to populate your tables. That might give you some feeling for how well a query might perform with large volumes. But often performance problems are a product of skew in the data; a random set of data will give you an averaged distribution of values.
Another example: code. Most performance problems are due to badly written SQL, especially inappropriate joins. You might be able to apply an index to tune an individual for SELECT * FROM my_table WHERE blah but that isn't going to help you forestall badly written queries.
The truism about premature optimization applies to databases as well as algorithms. The most important thing is to get the data model complete and correct. If you manage that you are already ahead of the game.
edit
Having read the question which you linked to I more clearly understand where you are coming from. I have a little experience of this Hibernate mapping problem from the database designer perspective. Taking the example you give at the end of the page ...
Animal > Vertebrate > Mammal > Carnivore > Canine > Dog type hierarchy,
... the key thing is to instantiate objects as far down the chain as possible. Instantiating a column of Animals will perform much slower than instantiating separate collections of Dogs, Cats, etc. (presuming you have tables for all or some of those sub-types).
This is more of an application design issue than a database one. What will make a difference is whether you only build tables at the concrete level (CATS, DOGS) or whether you replicate the hierarchy in tables (ANIMALS, VERTEBRATES, etc). Unfortunately there are no simple answers here. For instance, you have to consider not just the performance of data retrieval but also how Hibernate will handle inserts and updates: a design which performs well for queries might be a real nightmare when it comes to persisting data. Also relational integrity has an impact: if you have some entity which applies to all Mammals, it is comforting to be able to enforce a foreign key against a MAMMALS table.
Performance problems with databases do not scale linearly with data volume. A database with a million rows in it might show one hotspot, while a similar database with a billion rows in it might reveal an entirely different hotspot. Beware of tests conducted with sample data.
You need good sound database design practices in order to keep your design simple and sound. Worry about whether your database meets the data requirements, and whether your model is relevant, complete, correct and relational (provided you're building a relational database) before you even start worrying about speed.
Then, once you've got something that's simple, sound, and correct, start worrying about speed. You'd be amazed at how much you can speed things up by just tweaking the physical features of your database, without changing any app code. To do this, you need to learn a lot about your particular DBMS.
They never said database development would be easy. They just said it would be this much fun!

Resources