Shortcircuit Prefix Boolean Expressions - algorithm

I have a bunch of boolean expressions written in prefix notation (also called Polish notation). Nested expressions in this format are very easy to evaluate (see the algorithm in the Wikipedia article).
The algorithm given on the Wikipedia page, however, does not do short-circuiting (when it evaluates and f() g(), it does not skip the evaluation of g() if f() is false). Is there any way to modify the algorithm to include short-circuiting?

I recently needed to do this and came up with an algorithm that seems to work:
Parse the expression using shunting yard, producing a postfix term series.
Find the parent operator of each term and store the offset.
for term in terms:
count = 0
for next in remaining terms:
if next type is function:
count = count - (argument count - 1)
else if next type is operator:
count = count - 1
else:
count = count + 1
if count is 0:
next is term's parent
offset = next - term
Evaluate the usual way and check for short-circuit after each operation. Jump ahead to term after parent term if applicable.
for term in terms:
if term is operator:
pop 2 values
evaluate (in reverse order)
push result value
if short-circuit (result is 0 and parent is AND, or result is non-zero and parent is OR):
term = term + offset
else if term is function:
pop arguments
evaluate (in reverse order)
push result value
else:
push term value

You could use the same algorithm to build an expression tree: instead of evaluating operand1 operator operand2, create a node with operand1 and operand2 as children, and operator as parent.
Once you have the tree, you can evaluate it (top to bottom). You can short-circuit the evaluation by not evaluating one of the children (for example if the left child evaluates to False and the operator is and).
You'll notice that the given algorithm is equivalent to evaluation from bottom to top. While this is simple (and saves memory), you cannot apply short-circuiting because you never know if the branch you're in should even be evaluated.

Related

how post and pre increment works with multiplication operator? [duplicate]

What are "sequence points"?
What is the relation between undefined behaviour and sequence points?
I often use funny and convoluted expressions like a[++i] = i;, to make myself feel better. Why should I stop using them?
If you've read this, be sure to visit the follow-up question Undefined behavior and sequence points reloaded.
(Note: This is meant to be an entry to Stack Overflow's C++ FAQ. If you want to critique the idea of providing an FAQ in this form, then the posting on meta that started all this would be the place to do that. Answers to that question are monitored in the C++ chatroom, where the FAQ idea started out in the first place, so your answer is very likely to get read by those who came up with the idea.)
C++98 and C++03
This answer is for the older versions of the C++ standard. The C++11 and C++14 versions of the standard do not formally contain 'sequence points'; operations are 'sequenced before' or 'unsequenced' or 'indeterminately sequenced' instead. The net effect is essentially the same, but the terminology is different.
Disclaimer : Okay. This answer is a bit long. So have patience while reading it. If you already know these things, reading them again won't make you crazy.
Pre-requisites : An elementary knowledge of C++ Standard
What are Sequence Points?
The Standard says
At certain specified points in the execution sequence called sequence points, all side effects of previous evaluations
shall be complete and no side effects of subsequent evaluations shall have taken place. (§1.9/7)
Side effects? What are side effects?
Evaluation of an expression produces something and if in addition there is a change in the state of the execution environment it is said that the expression (its evaluation) has some side effect(s).
For example:
int x = y++; //where y is also an int
In addition to the initialization operation the value of y gets changed due to the side effect of ++ operator.
So far so good. Moving on to sequence points. An alternation definition of seq-points given by the comp.lang.c author Steve Summit:
Sequence point is a point in time at which the dust has settled and all side effects which have been seen so far are guaranteed to be complete.
What are the common sequence points listed in the C++ Standard?
Those are:
at the end of the evaluation of full expression (§1.9/16) (A full-expression is an expression that is not a subexpression of another expression.)1
Example :
int a = 5; // ; is a sequence point here
in the evaluation of each of the following expressions after the evaluation of the first expression (§1.9/18) 2
a && b (§5.14)
a || b (§5.15)
a ? b : c (§5.16)
a , b (§5.18) (here a , b is a comma operator; in func(a,a++) , is not a comma operator, it's merely a separator between the arguments a and a++. Thus the behaviour is undefined in that case (if a is considered to be a primitive type))
at a function call (whether or not the function is inline), after the evaluation of all function arguments (if any) which
takes place before execution of any expressions or statements in the function body (§1.9/17).
1 : Note : the evaluation of a full-expression can include the evaluation of subexpressions that are not lexically
part of the full-expression. For example, subexpressions involved in evaluating default argument expressions (8.3.6) are considered to be created in the expression that calls the function, not the expression that defines the default argument
2 : The operators indicated are the built-in operators, as described in clause 5. When one of these operators is overloaded (clause 13) in a valid context, thus designating a user-defined operator function, the expression designates a function invocation and the operands form an argument list, without an implied sequence point between them.
What is Undefined Behaviour?
The Standard defines Undefined Behaviour in Section §1.3.12 as
behavior, such as might arise upon use of an erroneous program construct or erroneous data, for which this International Standard imposes no requirements 3.
Undefined behavior may also be expected when this
International Standard omits the description of any explicit definition of behavior.
3 : permissible undefined behavior ranges from ignoring the situation completely with unpredictable results, to behaving during translation or program execution in a documented manner characteristic of the environment (with or with-
out the issuance of a diagnostic message), to terminating a translation or execution (with the issuance of a diagnostic message).
In short, undefined behaviour means anything can happen from daemons flying out of your nose to your girlfriend getting pregnant.
What is the relation between Undefined Behaviour and Sequence Points?
Before I get into that you must know the difference(s) between Undefined Behaviour, Unspecified Behaviour and Implementation Defined Behaviour.
You must also know that the order of evaluation of operands of individual operators and subexpressions of individual expressions, and the order in which side effects take place, is unspecified.
For example:
int x = 5, y = 6;
int z = x++ + y++; //it is unspecified whether x++ or y++ will be evaluated first.
Another example here.
Now the Standard in §5/4 says
Between the previous and next sequence point a scalar object shall have its stored value modified at most once by the evaluation of an expression.
What does it mean?
Informally it means that between two sequence points a variable must not be modified more than once.
In an expression statement, the next sequence point is usually at the terminating semicolon, and the previous sequence point is at the end of the previous statement. An expression may also contain intermediate sequence points.
From the above sentence the following expressions invoke Undefined Behaviour:
i++ * ++i; // UB, i is modified more than once btw two SPs
i = ++i; // UB, same as above
++i = 2; // UB, same as above
i = ++i + 1; // UB, same as above
++++++i; // UB, parsed as (++(++(++i)))
i = (i, ++i, ++i); // UB, there's no SP between `++i` (right most) and assignment to `i` (`i` is modified more than once btw two SPs)
But the following expressions are fine:
i = (i, ++i, 1) + 1; // well defined (AFAIK)
i = (++i, i++, i); // well defined
int j = i;
j = (++i, i++, j*i); // well defined
Furthermore, the prior value shall be accessed only to determine the value to be stored.
What does it mean? It means if an object is written to within a full expression, any and all accesses to it within the same expression must be directly involved in the computation of the value to be written.
For example in i = i + 1 all the access of i (in L.H.S and in R.H.S) are directly involved in computation of the value to be written. So it is fine.
This rule effectively constrains legal expressions to those in which the accesses demonstrably precede the modification.
Example 1:
std::printf("%d %d", i,++i); // invokes Undefined Behaviour because of Rule no 2
Example 2:
a[i] = i++ // or a[++i] = i or a[i++] = ++i etc
is disallowed because one of the accesses of i (the one in a[i]) has nothing to do with the value which ends up being stored in i (which happens over in i++), and so there's no good way to define--either for our understanding or the compiler's--whether the access should take place before or after the incremented value is stored. So the behaviour is undefined.
Example 3 :
int x = i + i++ ;// Similar to above
Follow up answer for C++11 here.
This is a follow up to my previous answer and contains C++11 related material..
Pre-requisites : An elementary knowledge of Relations (Mathematics).
Is it true that there are no Sequence Points in C++11?
Yes! This is very true.
Sequence Points have been replaced by Sequenced Before and Sequenced After (and Unsequenced and Indeterminately Sequenced) relations in C++11.
What exactly is this 'Sequenced before' thing?
Sequenced Before(§1.9/13) is a relation which is:
Asymmetric
Transitive
between evaluations executed by a single thread and induces a strict partial order1
Formally it means given any two evaluations(See below) A and B, if A is sequenced before B, then the execution of A shall precede the execution of B. If A is not sequenced before B and B is not sequenced before A, then A and B are unsequenced 2.
Evaluations A and B are indeterminately sequenced when either A is sequenced before B or B is sequenced before A, but it is unspecified which3.
[NOTES]
1 : A strict partial order is a binary relation "<" over a set P which is asymmetric, and transitive, i.e., for all a, b, and c in P, we have that:
........(i). if a < b then ¬ (b < a) (asymmetry);
........(ii). if a < b and b < c then a < c (transitivity).
2 : The execution of unsequenced evaluations can overlap.
3 : Indeterminately sequenced evaluations cannot overlap, but either could be executed first.
What is the meaning of the word 'evaluation' in context of C++11?
In C++11, evaluation of an expression (or a sub-expression) in general includes:
value computations (including determining the identity of an object for glvalue evaluation and fetching a value previously assigned to an object for prvalue evaluation) and
initiation of side effects.
Now (§1.9/14) says:
Every value computation and side effect associated with a full-expression is sequenced before every value computation and side effect associated with the next full-expression to be evaluated.
Trivial example:
int x;
x = 10;
++x;
Value computation and side effect associated with ++x is sequenced after the value computation and side effect of x = 10;
So there must be some relation between Undefined Behaviour and the above-mentioned things, right?
Yes! Right.
In (§1.9/15) it has been mentioned that
Except where noted, evaluations of operands of individual operators and of subexpressions of individual expressions are unsequenced4.
For example :
int main()
{
int num = 19 ;
num = (num << 3) + (num >> 3);
}
Evaluation of operands of + operator are unsequenced relative to each other.
Evaluation of operands of << and >> operators are unsequenced relative to each other.
4: In an expression that is evaluated more than once during the execution
of a program, unsequenced and indeterminately sequenced evaluations of its subexpressions need not be performed consistently in different evaluations.
(§1.9/15)
The value computations of the operands of an
operator are sequenced before the value computation of the result of the operator.
That means in x + y the value computation of x and y are sequenced before the value computation of (x + y).
More importantly
(§1.9/15) If a side effect on a scalar object is unsequenced relative to either
(a) another side effect on the same scalar object
or
(b) a value computation using the value of the same scalar object.
the behaviour is undefined.
Examples:
int i = 5, v[10] = { };
void f(int, int);
i = i++ * ++i; // Undefined Behaviour
i = ++i + i++; // Undefined Behaviour
i = ++i + ++i; // Undefined Behaviour
i = v[i++]; // Undefined Behaviour
i = v[++i]: // Well-defined Behavior
i = i++ + 1; // Undefined Behaviour
i = ++i + 1; // Well-defined Behaviour
++++i; // Well-defined Behaviour
f(i = -1, i = -1); // Undefined Behaviour (see below)
When calling a function (whether or not the function is inline), every value computation and side effect associated with any argument expression, or with the postfix expression designating the called function, is sequenced before execution of every expression or statement in the body of the called function. [Note: Value computations and side effects associated with different argument expressions are unsequenced. — end note]
Expressions (5), (7) and (8) do not invoke undefined behaviour. Check out the following answers for a more detailed explanation.
Multiple preincrement operations on a variable in C++0x
Unsequenced Value Computations
Final Note :
If you find any flaw in the post please leave a comment. Power-users (With rep >20000) please do not hesitate to edit the post for correcting typos and other mistakes.
C++17 (N4659) includes a proposal Refining Expression Evaluation Order for Idiomatic C++
which defines a stricter order of expression evaluation.
In particular, the following sentence
8.18 Assignment and compound assignment operators:....
In all cases, the assignment is sequenced after the value
computation of the right and left operands, and before the value computation of the assignment expression.
The right operand is sequenced before the left operand.
together with the following clarification
An expression X is said to be sequenced before an expression Y if every
value computation and every side effect associated with the expression X is sequenced before every value
computation and every side effect associated with the expression Y.
make several cases of previously undefined behavior valid, including the one in question:
a[++i] = i;
However several other similar cases still lead to undefined behavior.
In N4140:
i = i++ + 1; // the behavior is undefined
But in N4659
i = i++ + 1; // the value of i is incremented
i = i++ + i; // the behavior is undefined
Of course, using a C++17 compliant compiler does not necessarily mean that one should start writing such expressions.
I am guessing there is a fundamental reason for the change, it isn't merely cosmetic to make the old interpretation clearer: that reason is concurrency. Unspecified order of elaboration is merely selection of one of several possible serial orderings, this is quite different to before and after orderings, because if there is no specified ordering, concurrent evaluation is possible: not so with the old rules. For example in:
f (a,b)
previously either a then b, or, b then a. Now, a and b can be evaluated with instructions interleaved or even on different cores.
In C99(ISO/IEC 9899:TC3) which seems absent from this discussion thus far the following steteents are made regarding order of evaluaiton.
[...]the order of evaluation of subexpressions and the order in which
side effects take place are both unspecified. (Section 6.5 pp 67)
The order of evaluation of the operands is unspecified. If an attempt
is made to modify the result of an assignment operator or to access it
after the next sequence point, the behavior[sic] is undefined.(Section
6.5.16 pp 91)

Evaluate combination to tackle recursively (+ 1 2)

I am reading SICP's first chapter
1.1.3 Evaluating Combinations
It states that
To evaluate a combination, do the following:
1. Evaluate the subexpressions of the combination.
2. Apply the procedure that is the value of the leftmost subexpression (the operator) to the arguments that are the values of the other subexpressions (the operands).
Suppose an combination (+ 1 2)
According to the above algorithms,
The first is to evaluate (retrieve) + 1 and 2)
The second is to apply + to 1 (store the intermediate state)
The third is to evaluate(retrieve) the intermediate state and 2 again.
The forth is to apply the intermediate state to 2.
Is it right?
What' the intermediate state of +1?
The expression (+ 1 2) is a combination composed by the primitive expressions: +, 1, and 2.
The first step says to evaluate all the subexpressions. In this case they are, respectively, the operator which performs the sum of numbers, and the numbers corresponding to the numerals 1 and 2, respectively.
So you have an operator, and two numeric values. The second step says that you must apply the operator (leftmost value) to the two numbers: in other words you must apply the sum operator to 1 and 2, so to obtain the number 3. And the process terminate.
Note that there are no intermediate states in this computation.
The second is to apply + to 1
No, the second step is to call the function + with the argument values of 1 and 2.
This then computes the sum of 1 and 2 and returns 3.

Maximum sum of sequence

Suppose we have sequence of x numbers and x-1 operators (+ or -), where the order of the numbers and the operators are fixed. For example 5-2-1+3. By different parentheses you get different values. For example (5 - 2)-1+3 = 5, 5-(2-1)+3=7 and so on. I am now interested in the maximum sum and best in linear run-time/memory space.
I think that this problem can be solved with dynamic programming, but I simply don't find a meaningful variant.
What you need here is certainly a dynamic algorithm.
This would work in a recursive way, finding the maximum value that can be gotten for every range.
Algorithm:
You could separate the numbers and the operators into different lists (if the first number is positive add + to the list first).
max_sum(expression, operators):
if len(expression) == 1: return expression
max_value = -float('inf') # minus infinity
length = len(expression)
for i in range(length):
left_exp = max_sum(expression[0:i], operators[0:i])
right_exp = max_sum(expression[i:length], operators[i:length])
value = operator[i].apply(left_exp, right_exp)
if value >= max_value:
max_value = value
return max_value
The main idea of the algorithm is that it checks the maximum sums in every possible range division, goes all the way down recursively and then returns the maximum sum it got.
The pseudo-code doesn't take into account a case where you could get a maximum value by substracting the minimum value of the right expression, but with a few tweaks I think you could fix it pretty fast.
I tried to make the pseudo-code as easy to convert to code as possible out of my head, I hope this helps you.
Let an expression be a sequence of operator-number pairs: it starts with an operator followed by a number, and ends with an operator followed by a number. Your example 5-2-1+3 can be made into an expression by placing a + at the beginning: +5-2-1+3.
Let the head of an expression be its first operator-number pair, and its tail, the rest. The head of +5-2-1+3 is +5 and the tail, -2-1+3.
In this context, let parenthesizing an expression mean placing an opening parenthesis just after the first operator and a closing parenthesis at the end of the expression, like so: +(5-2-1+3). Parenthesizing an expression with a positive head doesn't do anything. Parenthesizing an expression with a negative head is equivalent to changing every sign of its tail: -(5 -2-1+3) = -5 +2+1-3.
If you want to get an extremum by parenthesizing some of its subexpressions, then you can first make some simplifications. It's easy to see that any subexpression of the form +x1+x2+...+xn won't be split: all of its elements will be used together towards the extremum. Similarly, any subexpression of the form -x1-x2-...-xn won't be split, but may be parenthesized (-(x1-x2-...-xn)). Therefore, you can first simplify any subexpression of the first form into +X, where X is the sum of its elements, and any subexpression of the second form into -x1-X, where X is the sum of its tail elements.
The resulting expression cannot have 3 consecutive - operators or 2 consecutive + operators. Now, start from the end, find the first subexpression of the form -a-b, -a+b-c, or -a+b, and compute its potential minimum and its potential maximum:
min(-a-b) = -a-b
max(-a-b) = -(a-b)
min(-a+b-c) = -(a+b)-c
max(-a+b-c) = -a+b-c if b>=c, max(-a+b-c) = -(a+b-c) if b<=c
min(-a+b) = -(a+b)
max(-a+b) = -a+b
Repeat by treating that subexpression as a single operator-number pair in the next one, albeit with two possible values (its two extrema). This way, the extrema of each subsequent subexpression is computed until you get to the main expression, of which you can simply compute the maximum. Note that the main expression may have a positive first pair, which makes it a special case, but that's easy to take into account: just add it to the maximum.

What is three commas syntax in Go?

Can anyone explain to me what is this line doing? I've never seen this before, I guess.
np.Point, np.Valid = Point{}, false
As stated in this github code
This is not a three comma syntax. It is actually initializing two variables together in a line
np.Point, np.Valid = Point{}, false
is similar to
np.Point = Point{}
np.Valid = false
The Go Programming Language Specification
Assignments
A tuple assignment assigns the individual elements of a multi-valued
operation to a list of variables. There are two forms. In the first,
the right hand operand is a single multi-valued expression such as a
function call, a channel or map operation, or a type assertion. The
number of operands on the left hand side must match the number of
values. For instance, if f is a function returning two values,
x, y = f()
assigns the first value to x and the second to y. In the second form,
the number of operands on the left must equal the number of
expressions on the right, each of which must be single-valued, and the
nth expression on the right is assigned to the nth operand on the
left:
one, two, three = '一', '二', '三'
A tuple assignment assigns the individual elements of a multi-valued
operation to a list of variables. In the second form, the number of operands on the left must equal the number of > expressions on the right, each of which must be single-valued, and the nth expression on the right is assigned to the nth operand on the left.
In your example,
np.Point, np.Valid = Point{}, false
Or, equivalently,
t1 := Point{}
t2 := false
np.Point = t1
np.Valid = t2

SML - function that checks if a tree datatype is valid or not

datatype tree = br of tree*int*tree | lf
The tree is valid if the values of branches on the left are always lower than the root and branches on the right are always higher.
For instance:
valid(br(br(lf,2,lf),1,lf)) = false;
valid(br (br (lf, 2, br (lf, 7, lf)), 8, lf)) = true;
I'm looking for somethine like this, except i have no idea how to compare the integer of inner branches to the integer of roots.
fun valid(lf)=true
| valid(br(left,x,right)) = valid(left) andalso valid(right);
EDIT:
So far i've come up with this (but it still doesn't check all the integers against all the upper nodes, just 1 node above.. it's close but no cigar)
fun valid(lf)=true
| valid(br(lf,x,lf)) = true
| valid(br(lf,x,br(left2,z,right2))) = if x<z then valid(br(left2,z,right2)) else false
| valid(br(br(left,y,right),x,lf)) = if y<x then valid(br(left,y,right)) else false
| valid(br(br(left,y,right),x,br(left2,z,right2))) = if y<x andalso x<z then valid(br(left,y,right)) andalso valid(br(left2,z,right2)) else false;
Assuming that this is homework, I'll give you a hint rather than a complete answer. It would help to first define a function, maybe call it all_nodes which has type
tree * (int -> bool) -> bool
this should be a function which, when passed a tree and a Boolean function on integers returns true if all integers in the tree satisfy the predicate.
Then your function valid should have 4 (rather than 2) clauses. For br(left,x,right) to be valid:
1) left must be valid
2) all integer nodes in left must satisfy that they are < x . This can be checked using all_nodes and an appropriate anonymous function
3) right must be valid
4) all integer nodes in right must be > x, which again can be checked by passing an appropriate anonymous function to all_nodes
On Edit: the above will work but entails a certain amount of inefficiency due to applying two rather than one recursive function to each subtree. An alternative approach would be to define a helper function which only applies to trees of the form br(left,x,right). This helper function could return a tuple of type bool*int*int which tells you whether or not the tree is valid, together with the minimum and the maximum int in the tree. The main function would simply take care of the lf pattern and invoke and interpret the helper function. The crucial point is that at the key recursive step, it is enough to check the max of the left and the min of the right against the int at the node. Some care needs to be taken in how the recursive step is formulated so that you don't call the helper on lf, but it is certainly doable.

Resources