I opened my calendar today and it had a puzzle inside. There are six pieces, and I suppose I have to make them into a cube... I tried to solve it and failed hard. So I decided to try to solve it with programming....
I made them into polygons (not sure if that was a good idea), but have no clue how to rotate them and/or check if any shape collides with any other shape.
The shapes are these:
TL;DR: I'm looking for help with checking every possible combination of these shapes to see if they make a cube. In other words, how can I rotate and check polygons (or something else that represents these pieces) for intersection?
Making them into polygons is not the correct abstraction for this problem.
See, what you have are the 6 sides of the cube, but now you have to figure out how to rotate them. Each polygon has on its edge 12 small squares that are either on or off and must match with the ones next to it. This is a very discrete problem.
The entire cube has 8 (vertices) + 12 * 2 (edges) small cubes on the edges.
Each face, when placed into the cube, will occupy some of those small cubes.
You need to
1) make a mapping that maps the face into the whole cube on the given face, in the given orientation
2) do a search for the configuration where no small cubes are occupied twice.
Related
I am trying to write a Rigid body simulator, and during simulation, I am not only interested in finding whether two objects collide or not, but also the point as well as normal of collision. I have found lots of resources which actually says whether two OBB are colliding or not using separating axis theorem. Also I am interested in 3D representation of OBB. Now, if I know the axis with minimum overlap region for two colliding OBB, is there any way to find the point of collision and normal of collision? Also, there are two major cases of collision, first, point-face and second edge-edge.
I tried to google this problem, but almost every solution is only detecting collision with true or false.
Kindly somebody help!
Look at the scene in the direction of the motion (in other terms, apply a change of coordinates such that this direction becomes vertical, and drop the altitude). You get a 2D figure.
Considering the faces of the two boxes that face each other, you will see two hexagons each split in three parallelograms.
Then
Detect the intersections between the edges in 2D. From the section ratios along the edges, you can determine the actual z distances.
For all vertices, determine the face they fall on in the other box; and from the 3D equations, the piercing point of the viewing line into the face plane, hence the distance. (Repeat this for the vertices of A and B.)
Comparing the distances will tell you which collision happens first and give you the coordinates of the first meeting point (in the transformed system, the back to absolute coordinates).
The point-in-face problem is easy to implement as the facesare convex polygons.
I'm trying to workout how to efficiently calculate the layout of a dynamic/random view.
The view will contain a number of circles. Each circle has a predetermined size. These sizes are all between a given maximum and minimum size.
I'm trying to find an efficient way of laying out the circles within a rect with a couple of conditions.
The circles mustn't overlap with the edge of the rect and the circles must have a minimum "spacing" between them.
The first method I came up with is to randomly generate coordinate pairs and place the biggest circle. Then randomly generate more coordinate pairs until a suitable one is generated for the next circle. And the next, and the next, and so on until all are drawn.
The problems with this are that it could potentially take a long time to complete. Each subsequent circle will take longer to place as there are fewer places that it can go.
Another problem is that it could be impossible to layout the view.
I'm sure there must be more efficient ways of doing this but I'm not sure where to begin.
The Formula must deal between the smallest possible square they need or from a other point of view, with an arrangement with the smallest possible density between the edgepoints. But your problem could be solved by sorting the circles by size and then start with the largest and arrange them step by step to the smallest because the larger are more bulky and the smaller fit easier in small corners by there nature.
Build triangles of circles, where 3 circles have a discribing space they use together. This triangle has 3 corners right? :) so messure/calc the angle of that corners and the corner with the nearest 90degree angle should be placed in a square corner, better to say the three circles should be places mirrored so that the circle with the fittest 90degree corner behind is the one who goes in the corner. If a 4th circle fits into the rest of this triangle, wonderful, if not you place exact this circle in it which is taken minimum outerspace of that triangle. because its not said that the next smaller circle is the one who fit's perfect, which also means you have a stack of not placed circles until one is found who fits better. after you find one you go upwards your circle-stack again and try to fit the next of it in one of the corners or you try to build the next triangle. and here you see how complex this is, damn! http://en.wikipedia.org/wiki/Malfatti_circles
But anyway, the more one of this triangles corners is 90° the less space it would take with this 3 circles in it.
An other concept could be to think about larger circles like space who leftover a triangle in one of its corners in relation to the rectangle. This triangle has a maximum space availible for a smaller circle. If there is no perfectly fitting circle your taken square-space grows up. So as far as i think about to handle this problem with imagined triangles to compare with fitting circles in it or taking triangle ranges from the square is the solutions base.
I am interested in using shapes like these:
Usually a tangram is made of 7 shapes(5 triangles, 1 square and 1 parallelogram).
What I want to do is fill a shape only with tangram shapes, so at this point,
the size and repetition of shapes shouldn't matter.
Here's something I manually tried:
I am a bit lost on how to approach this.
Assuming I have a path (an ordered list/array of points of the outline),
I imagine I should try to do some sort of triangulation.
Is there such a thing as Deulanay triangulation with triangles constrained to 45 degrees
right angled triangles ?
A more 'brute' approach would be to add a bunch of triangles(45 degrees) and use SAT
for collision detection to 'fix' overlaps, and hopefully gaps will be avoided.
Since the square and parallelogram can be made of triangles(45 degrees) too, I imagine there
would be a nice clean geometric solution, right ?
How do I pack triangles(45 degrees) inside an arbitrary shape ?
Any ideas are welcome.
A few random thoughts (maybe they help you find a better solution) if you're using only the original sizes of the shapes:
as you point out, all shapes in the tangram can be made composed of e.g. the yellow or pink triangle (d-g-c), so try also thinking of a bottom-up approach such as first trying to place as many yellow triangles into your shape and then combine them into larger shapes if possible. In the worst case, you'll end up with a set of these smallest triangles.
any kind triangulation of non-polygons (such as the half-moon in your example) probably does not work very well...
It looks like you require that the shapes can only have a few discrete orientations. To find the best fit of these triangles into the given shape, I'd propose the following approximate solution: draw a grid of triangles (i.e. a square grid with diagonal lines) across the shape and take those triangles which are fully contained. This most likely will not give you the optimal coverage but then you could repeatedly shift the grid by a tenth of the grid size in horizontal and vertical direction and see whether you'll find something which covers a larger fraction of the original shape (or you could go in steps of 1/2 then 1/4 etc. of the original grid size in the spirit of a binary search).
If you allow any arbitrary scaling of the shapes you could approximate any (reasonably smooth ?) shape to arbitrary precision by adding smaller and smaller shapes. E.g. if you have a raster image, you can e.g. choose the size of the yellow triangle such that two of them make a pixel on the image and then you can represent any such raster image.
Starting with a 3D mesh, how would you give a rounded appearance to the edges and corners between the polygons of that mesh?
Without wishing to discourage other approaches, here's how I'm currently approaching the problem:
Given the mesh for a regular polyhedron, I can give the mesh's edges a rounded appearance by scaling each polygon along its plane and connecting the edges using cylinder segments such that each cylinder is tangent to each polygon where it meets that polygon.
Here's an example involving a cube:
Here's the cube after scaling its polygons:
Here's the cube after connecting the polygons' edges using cylinders:
What I'm having trouble with is figuring out how to deal with the corners between polygons, especially in cases where more than three edges meet at each corner. I'd also like an algorithm that works for all closed polyhedra instead of just those that are regular.
I post this as an answer because I can't put images into comments.
Sattle point
Here's an image of two brothers camping:
They placed their simple tents right beside each other in the middle of a steep walley (that's one bad place for tents, but thats not the point), so one end of each tent points upwards. At the point where the four squares meet you have a sattle point. The two edges on top of each tent can be rounded normally as well as the two downward edges. But at the sattle point you have different curvature in both directions and therefore its not possible to use a sphere. This rules out Svante's solution.
Selfintersection
The following image shows some 3D polygons if viewed from the side. Its some sharp thing with a hole drilled into it from the other side. The left image shows it before, the right after rounding.
.
The mass thats get removed from the sharp edge containts the end of the drill hole.
There is someething else to see here. The drill holes sides might be very large polygons (lets say it's not a hole but a slit). Still you only get small radii at the top. you can't just scale your polygons, you have to take into account the neighboring polygon.
Convexity
You say you're only removing mass, this is only true if your geometry is convex. Look at the image you posted. But now assume that the viewer is inside the volume. The radii turn away from you and therefore add mass.
NURBS
I'm not a nurbs specialist my self. But the constraints would look something like this:
The corners of the nurbs patch must be at the same position as the corners of the scaled-down polygons. The normal vectors of the nurb surface at the corners must be equal to the normal of the polygon. This should be sufficent to gurarantee that the nurb edge will be a straight line following the polygon edge. The normals also ensure that no visible edges will result at the border between polygon and nurbs patch.
I'd just do the math myself. nurbs are just polygons. You'll have some unknown coefficients and your constraints. This gives you a system of equations (often linear) that you can solve.
Is there any upper bound on the number of faces, that meet at that corner?
You might you might employ concepts from CAGD, especially Non-Uniform Rational B-Splines (NURBS) might be of interest for you.
Your current approach - glueing some fixed geometrical primitives might be too inflexible to solve the problem. NURBS require some mathematical work to get used to, but might be more suitable for your needs.
Extrapolating your cylinder-edge approach, the corners should be spheres, resp. sphere segments, that have the same radius as the cylinders meeting there and the centre at the intersection of the cylinders' axes.
Here we have a single C++ header for generating triangulated rounded 3D boxes. The code is in C++ but also easy to transplant to other coding languages. Also it's easy to be modified for other primitives like quads.
https://github.com/nepluno/RoundCornerBox
As #Raymond suggests, I also think that the nepluno repo provides a very good implementation to solve this issue; efficient and simple.
To complete his answer, I just wrote a solution to this issue in JS, based on the BabylonJS 3D engine. This solution can be found here, and can be quite easily replaced by another 3D engine:
https://playground.babylonjs.com/#AY7B23
I've asked some questions here and seen this geometric shape mentioned a few times among other geodesic shapes, but I'm curious how exactly would I generate one about a point xyz?
There's a tutorial here.
The essential idea is to start with an icosahedron (which has 20 triangular faces) and to repeatedly subdivide each triangular face into smaller triangles. At each stage, each new point is shifted radially so it is the correct distance from the centre.
The number of stages will determine how many triangles are generated and hence how close the resulting mesh will be to a sphere.
Here is one reference that I've used for subdivided icosahedrons, based on the OpenGL Red Book. The BSD-licensed source code to my iPhone application Molecules contains code for generating simple icosahedrons and loading them into a vertex buffer object for OpenGL ES. I haven't yet incorporated subdivision to improve the quality of the rendering, but it's in my plans.
To tesselate a sphere, most people sub-divide the points linearly, but that does not produce a rounded shape.
For a rounded tesselation, rotate the two points through a series of rotations.
Rotate the second point around z (by the z angle of point 1) to 0
Rotate the second point around y (by the y angle of point 1) to 0 (this logically puts point 1 at the north pole).
Rotate the second point around z to 0 (this logically puts point 1 on the x/y plane, which now becomes a unit circle).
Find the half-angle, compute x and y for the new 3rd point, point 3.
Perform the counter-rotations in the reverse order for steps 3), 2) and 1) to position the 3rd point to its destination.
There are also some mathematical considerations for values near each of the near-0 locations, such as the north and south pole, and the right-most and left-most, and fore-most and aft-most positions, so check those first and perform an additional rotation by pi/4 (45 degrees) if they're at those locations. This prevents floating point math libraries from freaking out and producing wildly out-of-character values for atan2() and other trig functions.
Hope this helps! :-)