I am trying to implement the collision detection between rotated rectangle and circle by following this http://www.migapro.com/circle-and-rotated-rectangle-collision-detection/
I have added the code in jsfiddle here http://jsfiddle.net/Z6KSX/2/.
What am i missing here ?
function check_coll ( circle_x,circle_y, rect_x, rect_y, rect_width, rect_height, rect_angle)
{
// Rotate circle's center point back
var rect_centerX = rect_x /2 ;
var rect_centerY = rect_y /2 ;
var cx = (Math.cos(rect_angle) * (circle_x - rect_centerX)) - (Math.sin(rect_angle) * (circle_y - rect_centerY)) + rect_centerX;
var cy = (Math.sin(rect_angle) * (circle_x - rect_centerX)) + (Math.cos(rect_angle) * (circle_y - rect_centerY)) + rect_centerY;
// Closest point
var x, y;
// Find the unrotated closest x point from center of unrotated circle
if (cx < rect_x) {
x = rect_x;
}
else if (cx > rect_x + rect_width){
x = rect_x + rect_width;
}
else{
x = cx;
}
// Find the unrotated closest y point from center of unrotated circle
if (cy < rect_y){
y = rect_y;
}
else if (cy > rect_y + rect_height) {
y = rect_y + rect_height;
}
else {
y = cy;
}
// Determine collision
var collision = false;
var c_radius = 5;
var distance = findDistance(cx, cy, x, y);
if (distance < c_radius) {
collision = true; // Collision
}
else {
collision = false;
}
return collision;
}
function findDistance (x1, y1, x2, y2) {
var a = Math.abs(x1 - x2);
var b = Math.abs(y1 - y2);
var c = Math.sqrt((a * a) + (b * b));
return c;
}
Hehe, I find this amusing as I somewhat recently solved this for myself after spending a large amount of time going down the wrong path.
Eventually I figured out a way:
1.) Simply rotate the point of the center of the circle by the Negative amount the rectangle has been rotated by. Now the point is 'aligned' with the rectangle (in the rectangles relative coordinate space).
2.) Solve for circle vs. AABB. The way I solved it gave me a point on the rectangle that is closest to the circle's center.
3.) Rotate the resulting point from by the Positive amount the rectangle has been rotated by. Continue solving as usual (checking if the distance between that point and the circle center is within the circle's radius)
From a very quick glance at your code, it seems like maybe you are doing the same thing, but missing the last step? I suggest drawing out your point on the rectangle from step 2 to see exactly where it is to help debug.
I was able to figure this out . The issue in the code was, I was using the wrong radius and had missed the center of rect_x and rect_y
var rect_centerX = rect_x + (rect_width / 2);
var rect_centerY = rect_y + (rect_height /2);
When dealing with rotation on the canvas we will need to add the translate values to the corresponding x and y values used in createrect.
I also use this code for my project and it's working. The only thing you need to do is use -angle instead of the angle.
Here is my code link
const canvas = document.getElementById("canvas");
const ctx = canvas.getContext("2d");
const rectX = 100;
const rectY = 100;
const rectWidth = 200;
const rectHeight = 100;
const circleRadius = 2;
const rectMidPointX = rectX + rectWidth / 2;
const rectMidPointY = rectY + rectHeight / 2;
const angle = Math.PI / 4;
let circleX;
let circleY;
canvas.addEventListener('mousemove', (e) => {
circleX = e.clientX;
circleY = e.clientY;
ctx.save();
ctx.beginPath();
ctx.fillStyle = '#fff';
ctx.arc(circleX, circleY, circleRadius, 0, 2 * Math.PI);
ctx.fill();
ctx.stroke();
ctx.restore();
calculateIntersection();
})
ctx.save();
//ctx.fillRect(100, 100, 100, 100);
ctx.strokeStyle = 'black';
ctx.translate(rectMidPointX, rectMidPointY);
ctx.rotate(angle);
ctx.translate(-rectMidPointX, -rectMidPointY);
ctx.strokeRect(rectX, rectY, rectWidth, rectHeight);
ctx.restore();
// Determine collision
let collision = false;
const findDistance = (fromX, fromY, toX, toY) => {
const a = Math.abs(fromX - toX);
const b = Math.abs(fromY - toY);
return Math.sqrt((a * a) + (b * b));
};
function calculateIntersection() {
// Rotate circle's center point back
const unrotatedCircleX = Math.cos(-angle) * (circleX - rectMidPointX) -
Math.sin(-angle) * (circleY - rectMidPointY) + rectMidPointX;
const unrotatedCircleY = Math.sin(-angle) * (circleX - rectMidPointX) +
Math.cos(-angle) * (circleY - rectMidPointY) + rectMidPointY;
// Closest point in the rectangle to the center of circle rotated backwards(unrotated)
let closestX, closestY;
// Find the unrotated closest x point from center of unrotated circle
if (unrotatedCircleX < rectX)
closestX = rectX;
else if (unrotatedCircleX > rectX + rectWidth)
closestX = rectX + rectWidth;
else
closestX = unrotatedCircleX;
// Find the unrotated closest y point from center of unrotated circle
if (unrotatedCircleY < rectY)
closestY = rectY;
else if (unrotatedCircleY > rectY + rectHeight)
closestY = rectY + rectHeight;
else
closestY = unrotatedCircleY;
const distance = findDistance(unrotatedCircleX, unrotatedCircleY, closestX, closestY);
if (distance < circleRadius)
collision = true; // Collision
else
collision = false;
console.log('collision', collision);
}
<canvas id="canvas" width="400px" height="400px" />
Related
How can I curve a sheet (cube)? I'd like to control the angle of the bend/curve.
e.g.
cube([50,50,2]);
You can rotate_extrude() an rectangle with the parameter angle. This requires the openscad version 2016.xx or newer, see documentation.
It is necessary to install a development snapshot, see download openscad
$fn= 360;
width = 10; // width of rectangle
height = 2; // height of rectangle
r = 50; // radius of the curve
a = 30; // angle of the curve
rotate_extrude(angle = a) translate([r, 0, 0]) square(size = [height, width], center = true);
looks like this:
The curve is defined by radius and angle. I think it is more realistic, to use other dimensions like length or dh in this sketch
and calculate radius and angle
$fn= 360;
w = 10; // width of rectangle
h = 2; // height of rectangle
l = 25; // length of chord of the curve
dh = 2; // delta height of the curve
module curve(width, height, length, dh) {
// calculate radius and angle
r = ((length/2)*(length/2) - dh*dh)/(2*dh);
a = asin((length/2)/r);
rotate_extrude(angle = a) translate([r, 0, 0]) square(size = [height, width], center = true);
}
curve(w, h, l, dh);
Edit 30.09.2019:
considering comment of Cfreitas, additionally moved the resulting shape to origin, so dimensions can be seen on axes of coordinates
$fn= 360;
w = 10; // width of rectangle
h = 2; // height of rectangle
l = 30; // length of chord of the curve
dh = 4; // delta height of the curve
module curve(width, height, length, dh) {
r = (pow(length/2, 2) + pow(dh, 2))/(2*dh);
a = 2*asin((length/2)/r);
translate([-(r -dh), 0, -width/2]) rotate([0, 0, -a/2]) rotate_extrude(angle = a) translate([r, 0, 0]) square(size = [height, width], center = true);
}
curve(w, h, l, dh);
and the result:
Edit 19.09.2020: There was a typo in the last edit: In the first 'translate' the local 'width' should be used instead of 'w'. Corrected it in the code above.
I can do it this way but it would be better if you could specify the bend/curve in #degrees as an argument to the function:
$fn=300;
module oval(w, h, height, center = false) {
scale([1, h/w, 1]) cylinder(h=height, r=w, center=center);
}
module curved(w,l,h) {
difference() {
oval(w,l,h);
translate([0.5,-1,-1]) color("red") oval(w,l+2,h+2);
}
}
curved(10,20,30);
Using the concept used by a_manthey_67, corrected the math and centered (aligned the chord with y axis) the resulting object:
module bentCube(width, height, length, dh) {
// calculate radius and angle
r = (length*length + 4*dh*dh)/(8*dh);
a = 2*asin(length/(2*r));
translate([-r,0,0]) rotate([0,0,-a/2])
rotate_extrude(angle = a) translate([r, 0, 0]) square(size = [height, width], center = true);}
Or, if you just want something with a fixed length, and a certain bent angle do this:
module curve(width, height, length, a) {
if( a > 0 ) {
r = (360 * (length/a)) / (2 * pi);
translate( [-r-height/2,0,0] )
rotate_extrude(angle = a)
translate([r, 0, 0])
square(size = [height, width], center = false);
} else {
translate( [-height/2,0,width] )
rotate( a=270, v=[1,0,0] )
linear_extrude( height = length )
square(size = [height, width], center = false);
}
}
The if (a > 0) statement is needed to make an exception when the bending angle is 0 (which, if drawing a curved surface, would result in an infinite radius).
Animated GIF here
I need to make the following shape in HTML5 canvas. I have tried using cubic bezier arcs and also clipping two circles.
How can I make this shape?
Here's my work in progress, just cant get it right
https://codepen.io/matt3224/pen/oeXbdg?editors=1010
var canvas = document.getElementById("canvas1");
var ctx1 = canvas.getContext("2d");
ctx1.lineWidth = 2;
ctx1.beginPath();
ctx1.bezierCurveTo(4, 42, 0, 0, 42, 4);
ctx1.moveTo(4, 42);
ctx1.bezierCurveTo(4, 42, 0, 84, 42, 84);
ctx1.stroke();
var canvas = document.getElementById("canvas2");
var ctx2 = canvas.getContext("2d");
ctx2.lineWidth = 2;
ctx2.beginPath();
ctx2.arc(55, 75, 50, 0, Math.PI * 2, true);
ctx2.moveTo(165, 75);
ctx2.arc(75, 75, 50, 0, Math.PI * 2, true);
ctx2.fill();
Circle circle boolean operation.
Incase anyone is interested in a programmatic solution the example below finds the intercept points of the two circles and uses those points to calculate the start and end angles for the outer and inner circle.
This is a little more flexible than a masking solution as it give you a path.
Snippet shows circle, move mouse over circle to see crescent solution. Not the stroke that would not be available if using a masking solution.
const PI2 = Math.PI * 2;
const ctx = canvas.getContext("2d");
canvas.height = canvas.width = 400;
const mouse = {x : 0, y : 0, button : false}
function mouseEvents(e){
const m = mouse;
const bounds = canvas.getBoundingClientRect();
m.x = e.pageX - bounds.left - scrollX;
m.y = e.pageY - bounds.top - scrollY;
m.button = e.type === "mousedown" ? true : e.type === "mouseup" ? false : m.button;
}
["down","up","move"].forEach(name => document.addEventListener("mouse" + name, mouseEvents));
// generic circle circle intercept function. Returns undefined if
// no intercept.
// Circle 1 is center x1,y1 and radius r1
// Circle 2 is center x2,y2 and radius r2
// If points found returns {x1,y1,x2,y2} as two points.
function circleCircleIntercept(x1,y1,r1,x2,y2,r2){
var x = x2 - x1;
var y = y2 - y1;
var dist = Math.sqrt(x * x + y * y);
if(dist > r1 + r2 || dist < Math.abs(r1-r2)){
return; // no intercept return undefined
}
var a = (dist * dist - r1 * r1 + r2 *r2) / ( 2 * dist);
var b = Math.sqrt(r2 * r2 - a * a);
a /= dist;
x *= a;
y *= a;
var mx = x2 - x;
var my = y2 - y;
dist = b / Math.sqrt(x * x + y * y);
x *= dist;
y *= dist;
return {
x1 : mx-y,
y1 : my+x,
x2 : mx+y,
y2 : my-x,
};
}
// draws a crescent from two circles if possible
// If not then just draws the first circle
function drawCrescent(x1,y1,r1,x2,y2,r2){
// The circle circle intercept finds points
// but finding the angle of the points does not consider
// the rotation direction and you end up having to do a lot of
// checking (if statments) to determin the correct way to draw each circle
// the following normalises the direction the circle are from each other
// thus making the logic a lot easier
var dist = Math.hypot(x2-x1,y2-y1);
var ang = Math.atan2(y2-y1,x2-x1);
var intercepts = circleCircleIntercept(x1,y1,r1,x1 + dist,y1,r2);
if(intercepts === undefined){
ctx.beginPath();
ctx.arc(x1, y1, r1, 0, PI2);
if(dist < r1){
ctx.moveTo(x2 + r2, y2);
ctx.arc(x2, y2, r2, 0, PI2, true);
}
ctx.fill();
ctx.stroke();
return;
}
// get the start end angles for outer then inner circles
const p = intercepts;
var startA1 = Math.atan2(p.y1 - y1, p.x1 - x1) + ang;
var endA1 = Math.atan2(p.y2 - y1, p.x2 - x1) + ang;
var startA2 = Math.atan2(p.y1 - y1, p.x1 - (x1 + dist)) + ang;
var endA2 = Math.atan2(p.y2 - y1, p.x2 - (x1 + dist)) + ang;
ctx.beginPath();
if(endA1 < startA1){
ctx.arc(x1, y1, r1, startA1, endA1);
ctx.arc(x2, y2, r2, endA2, startA2, true);
}else{
ctx.arc(x2, y2, r2, endA2, startA2);
ctx.arc(x1, y1, r1, startA1, endA1,true);
}
ctx.closePath();
ctx.fill();
ctx.stroke();
}
const outerRadius = 100;
const innerRadius = 80;
var w = canvas.width;
var h = canvas.height;
var cw = w / 2; // center
var ch = h / 2;
var globalTime;
ctx.font = "32px arial";
ctx.textAlign = "center";
ctx.lineJoin = "round";
ctx.lineWidth = 8;
ctx.strokeStyle = "#999";
// main update function
function mainLoop(timer){
globalTime = timer;
ctx.setTransform(1,0,0,1,0,0); // reset transform
ctx.globalAlpha = 1; // reset alpha
ctx.fillStyle = "black";
ctx.fillRect(0,0,w,h);
ctx.fillStyle = "white";
ctx.fillText("Move mouse over circle",cw,40);
drawCrescent(cw, ch-40, outerRadius, mouse.x, mouse.y, innerRadius);
requestAnimationFrame(mainLoop);
}
requestAnimationFrame(mainLoop);
canvas { border : 2px solid black; }
<canvas id="canvas"></canvas>
Solved it using globalCompositeOperation
https://codepen.io/matt3224/pen/oeXbdg?editors=1010
I know Rectangle is axis aligned, that's fine, I just can't figure out how to create a rectangle so it is always encompassing the entire sprite, regardless of rotation. I have been looking everywhere for an answer but I can't get a straight one anywhere.
For example:
Assuming the origin point is the middle of the texture, how can I go about this?
EDIT
Fiddling around with it a little, I've gotten this far:
public Rectangle BoundingBox
{
get
{
var cos = Math.Cos(SpriteAngle);
var sin = Math.Cos(SpriteAngle);
var t1_opp = Width * cos;
var t1_adj = Math.Sqrt(Math.Pow(Width, 2) - Math.Pow(t1_opp, 2));
var t2_opp = Height * sin;
var t2_adj = Math.Sqrt(Math.Pow(Height, 2) - Math.Pow(t2_opp, 2));
int w = Math.Abs((int)(t1_opp + t2_opp));
int h = Math.Abs((int)(t1_adj + t2_adj));
int x = Math.Abs((int)(Position.X) - (w / 2));
int y = Math.Abs((int)(Position.Y) - (h / 2));
return new Rectangle(x, y, w, h);
}
}
(doing this off the top of my head.. but the principle should work)
Create a matrix to rotate around the center of the rectangle - that is a translate of -(x+width/2), -(y+height/2)
followed by a rotation of angle
followed by a translate of (x+width/2), (y+height/2)
Use Vector2.Transform to transform each corner of the original rectangle
Then make a new rectangle with
x = min(p1.x, p2.x, p3.x, p4.x)
width = max(p1.x, p2.x, p3.x, p4.x) - x
similar for y
Sorry this is coming so late, but I figured this out a while ago and forgot to post an answer.
public virtual Rectangle BoundingBox
{
get
{
int x, y, w, h;
if (Angle != 0)
{
var cos = Math.Abs(Math.Cos(Angle));
var sin = Math.Abs(Math.Sin(Angle));
var t1_opp = Width * cos;
var t1_adj = Math.Sqrt(Math.Pow(Width, 2) - Math.Pow(t1_opp, 2));
var t2_opp = Height * sin;
var t2_adj = Math.Sqrt(Math.Pow(Height, 2) - Math.Pow(t2_opp, 2));
w = (int)(t1_opp + t2_opp);
h = (int)(t1_adj + t2_adj);
x = (int)(Position.X - (w / 2));
y = (int)(Position.Y - (h / 2));
}
else
{
x = (int)Position.X;
y = (int)Position.Y;
w = Width;
h = Height;
}
return new Rectangle(x, y, w, h);
}
}
This is it here. In my work in the edit, I accidentally had Math.Cos in the sin variable, which didn't help.
So it's just basic trigonometry. If the textures angle is something other than zero, calculate the sides of the two triangles formed by the width and the height, and use the sides as the values for the width and the height, then center the rectangle around the texture. If that makes sense.
Here's a picture to help explain:
Here's a gif of the final result:
I'm having a brain-freeze trying to calculate the original coordinates of the top, left corner of a rectangle before it was rotated.
Given that I know rectangle was rotated n degrees/radians, and I know the new x and y coordinates, how would I calculate the x and y (? and ?) coordinates using trigonometry in JavaScript? I also know the width and height of the rectangle. The axis of the rotation is central to the rectangle.
The rotated rectangle is in blue, the original is in green.
you have to counter-rotate it around the pivot. (center of the rect)
//utils
function nr(v){ return +v || 0 }
class Point{
constructor(x,y){
this.x = nr(x);
this.y = nr(y);
}
add(pt){
var a = this, b = Point.from(pt);
return new Point(a.x + b.x, a.y + b.y);
}
subtract(pt){
var a = this, b = Point.from(pt);
return new Point(a.x - b.x, a.y - b.y);
}
rotate(radians, pivot){
if(pivot){
return this.subtract(pivot).rotate(radians).add(pivot);
}
var r = nr(radians), c = Math.cos(r), s = Math.sin(r);
return new Point(
this.x * c - this.y * s,
this.x * s + this.x * c
);
//return delta.matrixTransform( c, s, -s, c );
}
matrixTransform(a, b, c, d, tx, ty){
return new Point(
this.x * nr(a) + this.y * nr(c) + nr(tx),
this.x * nr(b) + this.y * nr(d) + nr(ty)
)
}
static from(pt){
if(pt instanceof Point) return pt;
return new Point(pt && pt.x, pt && pt.y);
}
}
and the computation:
var RAD = Math.PI/180, DEG = 180/Math.PI;
var knownPoint = new Point(100, 100);
var angle = 30*RAD;
var unrotatedRect = { width: 150, height: 100 };
//the pivot to (counter-)rotate your known point
//if you know this point, you don't have to compute it
var pivot = new Point(unrotatedRect.width/2, unrotatedRect.height/2)
.rotate(angle)
.add(knownPoint);
console.log(knownPoint.rotate(-angle, pivot));
The original X is exactly as far from the axis as the transposed ("rotated") Y is, and vice versa, the original Y is as far as the transposed X is from the axis.
So:
origX = axisX - (axisY - transY)
origY = axisY - (axisX - transX)
I'm having a bit of a mind blank on this at the moment.
I've got a problem where I need to calculate the position of points around a central point, assuming they're all equidistant from the center and from each other.
The number of points is variable so it's DrawCirclePoints(int x)
I'm sure there's a simple solution, but for the life of me, I just can't see it :)
Given a radius length r and an angle t in radians and a circle's center (h,k), you can calculate the coordinates of a point on the circumference as follows (this is pseudo-code, you'll have to adapt it to your language):
float x = r*cos(t) + h;
float y = r*sin(t) + k;
A point at angle theta on the circle whose centre is (x0,y0) and whose radius is r is (x0 + r cos theta, y0 + r sin theta). Now choose theta values evenly spaced between 0 and 2pi.
Here's a solution using C#:
void DrawCirclePoints(int points, double radius, Point center)
{
double slice = 2 * Math.PI / points;
for (int i = 0; i < points; i++)
{
double angle = slice * i;
int newX = (int)(center.X + radius * Math.Cos(angle));
int newY = (int)(center.Y + radius * Math.Sin(angle));
Point p = new Point(newX, newY);
Console.WriteLine(p);
}
}
Sample output from DrawCirclePoints(8, 10, new Point(0,0));:
{X=10,Y=0}
{X=7,Y=7}
{X=0,Y=10}
{X=-7,Y=7}
{X=-10,Y=0}
{X=-7,Y=-7}
{X=0,Y=-10}
{X=7,Y=-7}
Good luck!
Placing a number in a circular path
// variable
let number = 12; // how many number to be placed
let size = 260; // size of circle i.e. w = h = 260
let cx= size/2; // center of x(in a circle)
let cy = size/2; // center of y(in a circle)
let r = size/2; // radius of a circle
for(let i=1; i<=number; i++) {
let ang = i*(Math.PI/(number/2));
let left = cx + (r*Math.cos(ang));
let top = cy + (r*Math.sin(ang));
console.log("top: ", top, ", left: ", left);
}
Using one of the above answers as a base, here's the Java/Android example:
protected void onDraw(Canvas canvas) {
super.onDraw(canvas);
RectF bounds = new RectF(canvas.getClipBounds());
float centerX = bounds.centerX();
float centerY = bounds.centerY();
float angleDeg = 90f;
float radius = 20f
float xPos = radius * (float)Math.cos(Math.toRadians(angleDeg)) + centerX;
float yPos = radius * (float)Math.sin(Math.toRadians(angleDeg)) + centerY;
//draw my point at xPos/yPos
}
For the sake of completion, what you describe as "position of points around a central point(assuming they're all equidistant from the center)" is nothing but "Polar Coordinates". And you are asking for way to Convert between polar and Cartesian coordinates which is given as x = r*cos(t), y = r*sin(t).
PHP Solution:
class point{
private $x = 0;
private $y = 0;
public function setX($xpos){
$this->x = $xpos;
}
public function setY($ypos){
$this->y = $ypos;
}
public function getX(){
return $this->x;
}
public function getY(){
return $this->y;
}
public function printX(){
echo $this->x;
}
public function printY(){
echo $this->y;
}
}
function drawCirclePoints($points, $radius, &$center){
$pointarray = array();
$slice = (2*pi())/$points;
for($i=0;$i<$points;$i++){
$angle = $slice*$i;
$newx = (int)($center->getX() + ($radius * cos($angle)));
$newy = (int)($center->getY() + ($radius * sin($angle)));
$point = new point();
$point->setX($newx);
$point->setY($newy);
array_push($pointarray,$point);
}
return $pointarray;
}
Here is how I found out a point on a circle with javascript, calculating the angle (degree) from the top of the circle.
const centreX = 50; // centre x of circle
const centreY = 50; // centre y of circle
const r = 20; // radius
const angleDeg = 45; // degree in angle from top
const radians = angleDeg * (Math.PI/180);
const pointY = centreY - (Math.cos(radians) * r); // specific point y on the circle for the angle
const pointX = centreX + (Math.sin(radians) * r); // specific point x on the circle for the angle
I had to do this on the web, so here's a coffeescript version of #scottyab's answer above:
points = 8
radius = 10
center = {x: 0, y: 0}
drawCirclePoints = (points, radius, center) ->
slice = 2 * Math.PI / points
for i in [0...points]
angle = slice * i
newX = center.x + radius * Math.cos(angle)
newY = center.y + radius * Math.sin(angle)
point = {x: newX, y: newY}
console.log point
drawCirclePoints(points, radius, center)
Here is an R version based on the #Pirijan answer above.
points <- 8
radius <- 10
center_x <- 5
center_y <- 5
drawCirclePoints <- function(points, radius, center_x, center_y) {
slice <- 2 * pi / points
angle <- slice * seq(0, points, by = 1)
newX <- center_x + radius * cos(angle)
newY <- center_y + radius * sin(angle)
plot(newX, newY)
}
drawCirclePoints(points, radius, center_x, center_y)
The angle between each of your points is going to be 2Pi/x so you can say that for points n= 0 to x-1 the angle from a defined 0 point is 2nPi/x.
Assuming your first point is at (r,0) (where r is the distance from the centre point) then the positions relative to the central point will be:
rCos(2nPi/x),rSin(2nPi/x)
Working Solution in Java:
import java.awt.event.*;
import java.awt.Robot;
public class CircleMouse {
/* circle stuff */
final static int RADIUS = 100;
final static int XSTART = 500;
final static int YSTART = 500;
final static int DELAYMS = 1;
final static int ROUNDS = 5;
public static void main(String args[]) {
long startT = System.currentTimeMillis();
Robot bot = null;
try {
bot = new Robot();
} catch (Exception failed) {
System.err.println("Failed instantiating Robot: " + failed);
}
int mask = InputEvent.BUTTON1_DOWN_MASK;
int howMany = 360 * ROUNDS;
while (howMany > 0) {
int x = getX(howMany);
int y = getY(howMany);
bot.mouseMove(x, y);
bot.delay(DELAYMS);
System.out.println("x:" + x + " y:" + y);
howMany--;
}
long endT = System.currentTimeMillis();
System.out.println("Duration: " + (endT - startT));
}
/**
*
* #param angle
* in degree
* #return
*/
private static int getX(int angle) {
double radians = Math.toRadians(angle);
Double x = RADIUS * Math.cos(radians) + XSTART;
int result = x.intValue();
return result;
}
/**
*
* #param angle
* in degree
* #return
*/
private static int getY(int angle) {
double radians = Math.toRadians(angle);
Double y = RADIUS * Math.sin(radians) + YSTART;
int result = y.intValue();
return result;
}
}
Based on the answer above from Daniel, here's my take using Python3.
import numpy
def circlepoints(points,radius,center):
shape = []
slice = 2 * 3.14 / points
for i in range(points):
angle = slice * i
new_x = center[0] + radius*numpy.cos(angle)
new_y = center[1] + radius*numpy.sin(angle)
p = (new_x,new_y)
shape.append(p)
return shape
print(circlepoints(100,20,[0,0]))