How to a make a curved sheet (cube) in OpenSCAD? - curve

How can I curve a sheet (cube)? I'd like to control the angle of the bend/curve.
e.g.
cube([50,50,2]);

You can rotate_extrude() an rectangle with the parameter angle. This requires the openscad version 2016.xx or newer, see documentation.
It is necessary to install a development snapshot, see download openscad
$fn= 360;
width = 10; // width of rectangle
height = 2; // height of rectangle
r = 50; // radius of the curve
a = 30; // angle of the curve
rotate_extrude(angle = a) translate([r, 0, 0]) square(size = [height, width], center = true);
looks like this:
The curve is defined by radius and angle. I think it is more realistic, to use other dimensions like length or dh in this sketch
and calculate radius and angle
$fn= 360;
w = 10; // width of rectangle
h = 2; // height of rectangle
l = 25; // length of chord of the curve
dh = 2; // delta height of the curve
module curve(width, height, length, dh) {
// calculate radius and angle
r = ((length/2)*(length/2) - dh*dh)/(2*dh);
a = asin((length/2)/r);
rotate_extrude(angle = a) translate([r, 0, 0]) square(size = [height, width], center = true);
}
curve(w, h, l, dh);
Edit 30.09.2019:
considering comment of Cfreitas, additionally moved the resulting shape to origin, so dimensions can be seen on axes of coordinates
$fn= 360;
w = 10; // width of rectangle
h = 2; // height of rectangle
l = 30; // length of chord of the curve
dh = 4; // delta height of the curve
module curve(width, height, length, dh) {
r = (pow(length/2, 2) + pow(dh, 2))/(2*dh);
a = 2*asin((length/2)/r);
translate([-(r -dh), 0, -width/2]) rotate([0, 0, -a/2]) rotate_extrude(angle = a) translate([r, 0, 0]) square(size = [height, width], center = true);
}
curve(w, h, l, dh);
and the result:
Edit 19.09.2020: There was a typo in the last edit: In the first 'translate' the local 'width' should be used instead of 'w'. Corrected it in the code above.

I can do it this way but it would be better if you could specify the bend/curve in #degrees as an argument to the function:
$fn=300;
module oval(w, h, height, center = false) {
scale([1, h/w, 1]) cylinder(h=height, r=w, center=center);
}
module curved(w,l,h) {
difference() {
oval(w,l,h);
translate([0.5,-1,-1]) color("red") oval(w,l+2,h+2);
}
}
curved(10,20,30);

Using the concept used by a_manthey_67, corrected the math and centered (aligned the chord with y axis) the resulting object:
module bentCube(width, height, length, dh) {
// calculate radius and angle
r = (length*length + 4*dh*dh)/(8*dh);
a = 2*asin(length/(2*r));
translate([-r,0,0]) rotate([0,0,-a/2])
rotate_extrude(angle = a) translate([r, 0, 0]) square(size = [height, width], center = true);}

Or, if you just want something with a fixed length, and a certain bent angle do this:
module curve(width, height, length, a) {
if( a > 0 ) {
r = (360 * (length/a)) / (2 * pi);
translate( [-r-height/2,0,0] )
rotate_extrude(angle = a)
translate([r, 0, 0])
square(size = [height, width], center = false);
} else {
translate( [-height/2,0,width] )
rotate( a=270, v=[1,0,0] )
linear_extrude( height = length )
square(size = [height, width], center = false);
}
}
The if (a > 0) statement is needed to make an exception when the bending angle is 0 (which, if drawing a curved surface, would result in an infinite radius).
Animated GIF here

Related

D3.js - Resize text to fit any polygon

How to resize the text to fit in any given polygon in D3js ?
I need something like in the picture:
I found similar topics but no usable resolutions: too old/deprecated/examples not working.
This question essentially boils down to finding a maximal rectangle inside a polygon, in this case aligned with the horizontal axis and of fixed aspect ratio, which is given by the text.
Finding this rectangle in an efficient way is not an easy task, but there are algorithms available. For example, the largestRect method in the d3plus-library. The details of this algorithm (which finds a good but not an optimal rectangle) are described in this blog post.
With the coordinates of the rectangle, you can transform the text such that it is contained in the rectangle, i. e.
translate to the bottom left point of the rectangle and
scale by the ratio of the width of the rectangle and the width of the text.
If you don't want to add an additional library to your dependency list and the polygons you are considering are (almost) convex and not highly irregular, you could try to find a "satisfying rectangle" by yourself. Below, I did a binary search on rectangles centered around the centroid of the polygon. In each iteration I check wether the four corners are inside the polygon using the d3.polygonContains method of d3-polygon. The resulting rectangle is green for comparison. Of course, this would just be a starting point.
const dim = 500;
const svg = d3.select("svg").attr("width", dim).attr("height", dim);
const text = svg.append("text").attr("x", 0).attr("y", 0);
const polygon = svg.append("polygon").attr("fill", "none").attr("stroke", "blue");
const rectangle = svg.append("polygon").attr("fill", "none").attr("stroke", "red");
const rectangle2 = svg.append("polygon").attr("fill", "none").attr("stroke", "green");
d3.select("input").on("change", fitText);
d3.select("button").on("click", drawPolygon);
// Draw random polygon
function drawPolygon() {
const num_points = 3 + Math.ceil(7 * Math.random());
points = [];
for (let i = 0; i < num_points; i++) {
const angle = 2 * Math.PI / num_points * (i + 0.1 + 0.8 * Math.random());
const radius = dim / 2 * (0.1 + 0.9 * Math.random());
points.push([
radius * Math.cos(angle) + dim / 2,
radius * Math.sin(angle) + dim / 2,
])
}
polygon.attr("points", points.map(d => d.join()).join(' '));
fitText();
}
function fitText() {
// Set text to input value and reset transform.
text.text(d3.select("input").property("value")).attr("transform", null);
// Get dimensions of text
const text_dimensions = text.node().getBoundingClientRect();
const ratio = text_dimensions.width / text_dimensions.height;
// Find largest rectangle
const rect = d3plus.largestRect(points, {angle: 0, aspectRatio: ratio}).points;
// transform text
const scale = (rect[1][0] - rect[0][0]) / text_dimensions.width;
text.attr("transform", `translate(${rect[3][0]},${rect[3][1]}) scale(${scale})`);
rectangle.attr("points", rect.map(d => d.join()).join(' '));
// alternative
const rect2 = satisfyingRect(ratio);
rectangle2.attr("points", rect2.map(d => d.join()).join(' '));
}
function satisfyingRect(ratio) {
// center rectangle around centroid
const centroid = d3.polygonCentroid(points);
let minWidth = 0;
let maxWidth = d3.max(points, d => d[0]) - d3.min(points, d => d[0]);
let rect;
for (let i = 0; i < 20; i++) {
const width = 0.5 * (maxWidth + minWidth);
rect = [
[centroid[0] - width, centroid[1] - width / ratio],
[centroid[0] + width, centroid[1] - width / ratio],
[centroid[0] + width, centroid[1] + width / ratio],
[centroid[0] - width, centroid[1] + width / ratio]
]
if (rect.every(d => d3.polygonContains(points, d)))
minWidth = width;
else
maxWidth = width;
}
return rect;
}
let points;
drawPolygon();
<script src="https://cdnjs.cloudflare.com/ajax/libs/d3/7.3.0/d3.min.js"></script>
<script src="https://cdn.jsdelivr.net/npm/d3plus-shape#1"></script>
<div>
<input type="text" value="lorem ipsum dolor">
<button>New polygon</button>
</div>
<svg></svg>

How to rotate a sprite around a fixed point so it follows cursor

I'm developing a small minigolf game, where the user can shoot moving the cursor around to set an angle, and the force applied will be the length of an arrow (less force when the cursor is closer to the ball). You can check exactly how it works here: https://imgur.com/a/AQ1pi
I have figured out how to rotate the arrow sprite to follow the cursor but I don't know yet how to make it move around the ball, right now it's just rotating in its anchor, in this case the head of the arrow.
I'm using Panda.js (a Pixi.js based framework) to develop the game, but its API is similar to the native Canvas functions. I don't need an exact implementation (that's why I'm not posting any code), but I would like to get some ideas about how to rotate the sprite around a point in a given radius. In this case, the point would be the center of the ball, and the radius will be the ball radius. Thanks!
You set the point of rotation with ctx.translate or ctx.setTransform then apply the rotation with ctx.rotate(ang); Then draw the image offset so that the point of rotation is at (0,0). Ie if you want the point of rotation to be at image coordinates (100,50) then render at ctx.drawImage(image,-100,-50);
To get the angle from a point to the mouse use Math.atan2
requestAnimationFrame(update);
// draws rotated image at x,y.
// cx, cy is the image coords you want it to rotate around
function drawSprite(image, x, y, cx, cy, rotate) {
ctx.setTransform(1, 0, 0, 1, x, y);
ctx.rotate(rotate);
ctx.drawImage(image, -cx, -cy);
ctx.setTransform(1, 0, 0, 1, 0, 0); // restore defaults
}
// function gets the direction from point to mouse and draws an image
// rotated to point at the mouse
function rotateAroundPoint(x, y, mouse) {
const dx = mouse.x - x;
const dy = mouse.y - y;
const dir = Math.atan2(dy, dx);
drawSprite(arrow, x, y, 144, 64, dir);
}
// Main animation loop.
function update(timer) {
globalTime = timer;
ctx.setTransform(1, 0, 0, 1, 0, 0); // reset transform
ctx.globalAlpha = 1; // reset alpha
ctx.clearRect(0, 0, w, h);
strokeCircle(150, 75, 10);
rotateAroundPoint(150, 75, mouse);
requestAnimationFrame(update);
}
//=====================================================
// All the rest is unrelated to the answer.
const ctx = canvas.getContext("2d");
const mouse = { x: 0, y: 0, button: false };
["down", "up", "move"].forEach(name => document.addEventListener("mouse" + name, mouseEvents));
function mouseEvents(e) {
mouse.bounds = canvas.getBoundingClientRect();
mouse.x = e.pageX - mouse.bounds.left - scrollX;
mouse.y = e.pageY - mouse.bounds.top - scrollY;
mouse.button = e.type === "mousedown" ? true : e.type === "mouseup" ? false : mouse.button;
}
const CImage = (w = 128, h = w) => (c = document.createElement("canvas"), c.width = w, c.height = h, c);
const CImageCtx = (w = 128, h = w) => (c = CImage(w, h), c.ctx = c.getContext("2d"), c);
const drawPath = (ctx, p) => {var i = 0;while (i < p.length) {ctx.lineTo(p[i++], p[i++])}};
const strokeCircle = (l,y=ctx,r=ctx,c=ctx) =>{if(l.p1){c=y; r=leng(l);y=l.p1.y;l=l.p1.x }else if(l.x){c=r;r=y;y=l.y;l=l.x}c.beginPath(); c.arc(l,y,r,0,Math.PI*2); c.stroke()};
const aW = 10;
const aH = 20;
const ind = 5;
const arrow = CImageCtx();
arrow.ctx.beginPath();
drawPath(arrow.ctx, [
ind, 64 - aW,
128 - ind - aH, 64 - aW,
128 - ind - aH, 64 - aH,
128 - ind, 64,
128 - ind - aH, 64 + aH,
128 - ind - aH, 64 + aW,
ind, 64 + aW,
]);
arrow.ctx.fillStyle = "red";
arrow.ctx.fill();
ctx.strokeStyle = "black";
ctx.lineWidth = 2;
var w = canvas.width;
var h = canvas.height;
var cw = w / 2; // center
var ch = h / 2;
var globalTime;
canvas {
border: 2px solid black;
}
<canvas id="canvas"></canvas>

How to make a crescent moon shape in HTML canvas

I need to make the following shape in HTML5 canvas. I have tried using cubic bezier arcs and also clipping two circles.
How can I make this shape?
Here's my work in progress, just cant get it right
https://codepen.io/matt3224/pen/oeXbdg?editors=1010
var canvas = document.getElementById("canvas1");
var ctx1 = canvas.getContext("2d");
ctx1.lineWidth = 2;
ctx1.beginPath();
ctx1.bezierCurveTo(4, 42, 0, 0, 42, 4);
ctx1.moveTo(4, 42);
ctx1.bezierCurveTo(4, 42, 0, 84, 42, 84);
ctx1.stroke();
var canvas = document.getElementById("canvas2");
var ctx2 = canvas.getContext("2d");
ctx2.lineWidth = 2;
ctx2.beginPath();
ctx2.arc(55, 75, 50, 0, Math.PI * 2, true);
ctx2.moveTo(165, 75);
ctx2.arc(75, 75, 50, 0, Math.PI * 2, true);
ctx2.fill();
Circle circle boolean operation.
Incase anyone is interested in a programmatic solution the example below finds the intercept points of the two circles and uses those points to calculate the start and end angles for the outer and inner circle.
This is a little more flexible than a masking solution as it give you a path.
Snippet shows circle, move mouse over circle to see crescent solution. Not the stroke that would not be available if using a masking solution.
const PI2 = Math.PI * 2;
const ctx = canvas.getContext("2d");
canvas.height = canvas.width = 400;
const mouse = {x : 0, y : 0, button : false}
function mouseEvents(e){
const m = mouse;
const bounds = canvas.getBoundingClientRect();
m.x = e.pageX - bounds.left - scrollX;
m.y = e.pageY - bounds.top - scrollY;
m.button = e.type === "mousedown" ? true : e.type === "mouseup" ? false : m.button;
}
["down","up","move"].forEach(name => document.addEventListener("mouse" + name, mouseEvents));
// generic circle circle intercept function. Returns undefined if
// no intercept.
// Circle 1 is center x1,y1 and radius r1
// Circle 2 is center x2,y2 and radius r2
// If points found returns {x1,y1,x2,y2} as two points.
function circleCircleIntercept(x1,y1,r1,x2,y2,r2){
var x = x2 - x1;
var y = y2 - y1;
var dist = Math.sqrt(x * x + y * y);
if(dist > r1 + r2 || dist < Math.abs(r1-r2)){
return; // no intercept return undefined
}
var a = (dist * dist - r1 * r1 + r2 *r2) / ( 2 * dist);
var b = Math.sqrt(r2 * r2 - a * a);
a /= dist;
x *= a;
y *= a;
var mx = x2 - x;
var my = y2 - y;
dist = b / Math.sqrt(x * x + y * y);
x *= dist;
y *= dist;
return {
x1 : mx-y,
y1 : my+x,
x2 : mx+y,
y2 : my-x,
};
}
// draws a crescent from two circles if possible
// If not then just draws the first circle
function drawCrescent(x1,y1,r1,x2,y2,r2){
// The circle circle intercept finds points
// but finding the angle of the points does not consider
// the rotation direction and you end up having to do a lot of
// checking (if statments) to determin the correct way to draw each circle
// the following normalises the direction the circle are from each other
// thus making the logic a lot easier
var dist = Math.hypot(x2-x1,y2-y1);
var ang = Math.atan2(y2-y1,x2-x1);
var intercepts = circleCircleIntercept(x1,y1,r1,x1 + dist,y1,r2);
if(intercepts === undefined){
ctx.beginPath();
ctx.arc(x1, y1, r1, 0, PI2);
if(dist < r1){
ctx.moveTo(x2 + r2, y2);
ctx.arc(x2, y2, r2, 0, PI2, true);
}
ctx.fill();
ctx.stroke();
return;
}
// get the start end angles for outer then inner circles
const p = intercepts;
var startA1 = Math.atan2(p.y1 - y1, p.x1 - x1) + ang;
var endA1 = Math.atan2(p.y2 - y1, p.x2 - x1) + ang;
var startA2 = Math.atan2(p.y1 - y1, p.x1 - (x1 + dist)) + ang;
var endA2 = Math.atan2(p.y2 - y1, p.x2 - (x1 + dist)) + ang;
ctx.beginPath();
if(endA1 < startA1){
ctx.arc(x1, y1, r1, startA1, endA1);
ctx.arc(x2, y2, r2, endA2, startA2, true);
}else{
ctx.arc(x2, y2, r2, endA2, startA2);
ctx.arc(x1, y1, r1, startA1, endA1,true);
}
ctx.closePath();
ctx.fill();
ctx.stroke();
}
const outerRadius = 100;
const innerRadius = 80;
var w = canvas.width;
var h = canvas.height;
var cw = w / 2; // center
var ch = h / 2;
var globalTime;
ctx.font = "32px arial";
ctx.textAlign = "center";
ctx.lineJoin = "round";
ctx.lineWidth = 8;
ctx.strokeStyle = "#999";
// main update function
function mainLoop(timer){
globalTime = timer;
ctx.setTransform(1,0,0,1,0,0); // reset transform
ctx.globalAlpha = 1; // reset alpha
ctx.fillStyle = "black";
ctx.fillRect(0,0,w,h);
ctx.fillStyle = "white";
ctx.fillText("Move mouse over circle",cw,40);
drawCrescent(cw, ch-40, outerRadius, mouse.x, mouse.y, innerRadius);
requestAnimationFrame(mainLoop);
}
requestAnimationFrame(mainLoop);
canvas { border : 2px solid black; }
<canvas id="canvas"></canvas>
Solved it using globalCompositeOperation
https://codepen.io/matt3224/pen/oeXbdg?editors=1010

XNA/Monogame Creating rectangle around texture regardless of rotation?

I know Rectangle is axis aligned, that's fine, I just can't figure out how to create a rectangle so it is always encompassing the entire sprite, regardless of rotation. I have been looking everywhere for an answer but I can't get a straight one anywhere.
For example:
Assuming the origin point is the middle of the texture, how can I go about this?
EDIT
Fiddling around with it a little, I've gotten this far:
public Rectangle BoundingBox
{
get
{
var cos = Math.Cos(SpriteAngle);
var sin = Math.Cos(SpriteAngle);
var t1_opp = Width * cos;
var t1_adj = Math.Sqrt(Math.Pow(Width, 2) - Math.Pow(t1_opp, 2));
var t2_opp = Height * sin;
var t2_adj = Math.Sqrt(Math.Pow(Height, 2) - Math.Pow(t2_opp, 2));
int w = Math.Abs((int)(t1_opp + t2_opp));
int h = Math.Abs((int)(t1_adj + t2_adj));
int x = Math.Abs((int)(Position.X) - (w / 2));
int y = Math.Abs((int)(Position.Y) - (h / 2));
return new Rectangle(x, y, w, h);
}
}
(doing this off the top of my head.. but the principle should work)
Create a matrix to rotate around the center of the rectangle - that is a translate of -(x+width/2), -(y+height/2)
followed by a rotation of angle
followed by a translate of (x+width/2), (y+height/2)
Use Vector2.Transform to transform each corner of the original rectangle
Then make a new rectangle with
x = min(p1.x, p2.x, p3.x, p4.x)
width = max(p1.x, p2.x, p3.x, p4.x) - x
similar for y
Sorry this is coming so late, but I figured this out a while ago and forgot to post an answer.
public virtual Rectangle BoundingBox
{
get
{
int x, y, w, h;
if (Angle != 0)
{
var cos = Math.Abs(Math.Cos(Angle));
var sin = Math.Abs(Math.Sin(Angle));
var t1_opp = Width * cos;
var t1_adj = Math.Sqrt(Math.Pow(Width, 2) - Math.Pow(t1_opp, 2));
var t2_opp = Height * sin;
var t2_adj = Math.Sqrt(Math.Pow(Height, 2) - Math.Pow(t2_opp, 2));
w = (int)(t1_opp + t2_opp);
h = (int)(t1_adj + t2_adj);
x = (int)(Position.X - (w / 2));
y = (int)(Position.Y - (h / 2));
}
else
{
x = (int)Position.X;
y = (int)Position.Y;
w = Width;
h = Height;
}
return new Rectangle(x, y, w, h);
}
}
This is it here. In my work in the edit, I accidentally had Math.Cos in the sin variable, which didn't help.
So it's just basic trigonometry. If the textures angle is something other than zero, calculate the sides of the two triangles formed by the width and the height, and use the sides as the values for the width and the height, then center the rectangle around the texture. If that makes sense.
Here's a picture to help explain:
Here's a gif of the final result:

circle rotated rectangle collision detection

I am trying to implement the collision detection between rotated rectangle and circle by following this http://www.migapro.com/circle-and-rotated-rectangle-collision-detection/
I have added the code in jsfiddle here http://jsfiddle.net/Z6KSX/2/.
What am i missing here ?
function check_coll ( circle_x,circle_y, rect_x, rect_y, rect_width, rect_height, rect_angle)
{
// Rotate circle's center point back
var rect_centerX = rect_x /2 ;
var rect_centerY = rect_y /2 ;
var cx = (Math.cos(rect_angle) * (circle_x - rect_centerX)) - (Math.sin(rect_angle) * (circle_y - rect_centerY)) + rect_centerX;
var cy = (Math.sin(rect_angle) * (circle_x - rect_centerX)) + (Math.cos(rect_angle) * (circle_y - rect_centerY)) + rect_centerY;
// Closest point
var x, y;
// Find the unrotated closest x point from center of unrotated circle
if (cx < rect_x) {
x = rect_x;
}
else if (cx > rect_x + rect_width){
x = rect_x + rect_width;
}
else{
x = cx;
}
// Find the unrotated closest y point from center of unrotated circle
if (cy < rect_y){
y = rect_y;
}
else if (cy > rect_y + rect_height) {
y = rect_y + rect_height;
}
else {
y = cy;
}
// Determine collision
var collision = false;
var c_radius = 5;
var distance = findDistance(cx, cy, x, y);
if (distance < c_radius) {
collision = true; // Collision
}
else {
collision = false;
}
return collision;
}
function findDistance (x1, y1, x2, y2) {
var a = Math.abs(x1 - x2);
var b = Math.abs(y1 - y2);
var c = Math.sqrt((a * a) + (b * b));
return c;
}
Hehe, I find this amusing as I somewhat recently solved this for myself after spending a large amount of time going down the wrong path.
Eventually I figured out a way:
1.) Simply rotate the point of the center of the circle by the Negative amount the rectangle has been rotated by. Now the point is 'aligned' with the rectangle (in the rectangles relative coordinate space).
2.) Solve for circle vs. AABB. The way I solved it gave me a point on the rectangle that is closest to the circle's center.
3.) Rotate the resulting point from by the Positive amount the rectangle has been rotated by. Continue solving as usual (checking if the distance between that point and the circle center is within the circle's radius)
From a very quick glance at your code, it seems like maybe you are doing the same thing, but missing the last step? I suggest drawing out your point on the rectangle from step 2 to see exactly where it is to help debug.
I was able to figure this out . The issue in the code was, I was using the wrong radius and had missed the center of rect_x and rect_y
var rect_centerX = rect_x + (rect_width / 2);
var rect_centerY = rect_y + (rect_height /2);
When dealing with rotation on the canvas we will need to add the translate values to the corresponding x and y values used in createrect.
I also use this code for my project and it's working. The only thing you need to do is use -angle instead of the angle.
Here is my code link
const canvas = document.getElementById("canvas");
const ctx = canvas.getContext("2d");
const rectX = 100;
const rectY = 100;
const rectWidth = 200;
const rectHeight = 100;
const circleRadius = 2;
const rectMidPointX = rectX + rectWidth / 2;
const rectMidPointY = rectY + rectHeight / 2;
const angle = Math.PI / 4;
let circleX;
let circleY;
canvas.addEventListener('mousemove', (e) => {
circleX = e.clientX;
circleY = e.clientY;
ctx.save();
ctx.beginPath();
ctx.fillStyle = '#fff';
ctx.arc(circleX, circleY, circleRadius, 0, 2 * Math.PI);
ctx.fill();
ctx.stroke();
ctx.restore();
calculateIntersection();
})
ctx.save();
//ctx.fillRect(100, 100, 100, 100);
ctx.strokeStyle = 'black';
ctx.translate(rectMidPointX, rectMidPointY);
ctx.rotate(angle);
ctx.translate(-rectMidPointX, -rectMidPointY);
ctx.strokeRect(rectX, rectY, rectWidth, rectHeight);
ctx.restore();
// Determine collision
let collision = false;
const findDistance = (fromX, fromY, toX, toY) => {
const a = Math.abs(fromX - toX);
const b = Math.abs(fromY - toY);
return Math.sqrt((a * a) + (b * b));
};
function calculateIntersection() {
// Rotate circle's center point back
const unrotatedCircleX = Math.cos(-angle) * (circleX - rectMidPointX) -
Math.sin(-angle) * (circleY - rectMidPointY) + rectMidPointX;
const unrotatedCircleY = Math.sin(-angle) * (circleX - rectMidPointX) +
Math.cos(-angle) * (circleY - rectMidPointY) + rectMidPointY;
// Closest point in the rectangle to the center of circle rotated backwards(unrotated)
let closestX, closestY;
// Find the unrotated closest x point from center of unrotated circle
if (unrotatedCircleX < rectX)
closestX = rectX;
else if (unrotatedCircleX > rectX + rectWidth)
closestX = rectX + rectWidth;
else
closestX = unrotatedCircleX;
// Find the unrotated closest y point from center of unrotated circle
if (unrotatedCircleY < rectY)
closestY = rectY;
else if (unrotatedCircleY > rectY + rectHeight)
closestY = rectY + rectHeight;
else
closestY = unrotatedCircleY;
const distance = findDistance(unrotatedCircleX, unrotatedCircleY, closestX, closestY);
if (distance < circleRadius)
collision = true; // Collision
else
collision = false;
console.log('collision', collision);
}
<canvas id="canvas" width="400px" height="400px" />

Resources