Not getting performance with MapReduce - hadoop

I am new to Map-reduce and I am using Hadoop Pipes. I have an input file which contains the number of records, one per line. I have written one simple program to print those lines in which three words are common. In map function I have emitted the word as a key and record as a value and compared those records in reduce function. Then I compared Hadoop's performance with simple C++ program in which I read the records from file and split it into words and load the data in map. Map contains word as a key and record as a value. After loading all the data, I compared that data. But I found that for doing the same task Hadoop Map-reduce takes long time compared with plain C++ program. When I run my program on hadoop it takes about 37 minutes where as it takes only about 5 minutes for simple C++ program. Please, somebody help me to figure out whether I am doing wrong somewhere? Our application needs performance.

There are several points which should be made here:
Hadoop is not high performance - it is scalable. Local program doing the same on small data set will always outperform hadoop. So its usage makes sense only when you want to run on cluster on machine and enjoy Hadoop's parallel processing.
Hadoop streaming is also not best thing performance wise since there are task switches per line. In many cases native hadoop program written in Java will have better performance

Related

Does Apache Spark read and process in the same time, or in first reads entire file in memory and then starts transformations?

I am curious if Spark first reads entire file into memory and only then starts processing it, meaning applying transformations and actions, or it reads first chunk of a file - applies transformation on it, reads second chunk and so on.
Is there any difference between Spark in Hadoop for the same matter? I read that Spark keeps entire file in memory most of the times, while Hadoop not. But what about the initial step when we read it for the first time and map the keys.
Thanks
I think a fair characterisation would be this:
Both Hadoop (or more accurately MapReduce) and Spark use the same underlying filesystem HDFS to begin with.
During the Mapping phase both will read all data and actually write the map result to disk so that it can be sorted and distributed between nodes via the Shuffle logic.
Both of them do in fact try and cache the data just mapped in memory in addition to spilling it to disk for the Shuffle to do its work.
The difference here though is that Spark is a lot more efficient in this process, trying to optimally align the node chosen for a specific computation with the data already cached on a certain node.
Since Spark also does something called lazy-evaluation the memory use of Spark is very different from Hadoop as a result of planning computation and caching simultaneously.
In in the steps of a word-count job Hadoop does this:
Map all the words to 1.
Write all those mapped pairs of (word, 1) to a single file in HDFS (single file could still span multiple nodes on the distributed HDFS) (this is the shuffle phase)
Sort the rows of (word, 1) in that shared file (this is the sorting phase)
Have the reducers read sections (partitions) from that shared file that now contains all the words sorted and sum up all those 1s for every word.
Spark on the other hand will go the other way around:
It figures that like in Hadoop it is probably most efficient to have all those words summed up via separate Reducer runs, so it decides according to some factors that it wants to split the job into x parts and then merge them into the final result.
So it knows that words will have to be sorted which will require at least part of them in memory at a given time.
After that it evaluates that such a sorted list will require all words mapped to (word, 1) pairs to start the calculation.
It works through steps 3 than 2 than 1.
Now the trick relative to Hadoop is that it knows in Step 3, which in-memory cached items it will need in 2. and in 2. it already knows how these parts (mostly K-V pairs) will be needed in the final step 1.
This allows Spark to very efficiently plan the execution of Jobs, but caching data it knows will be needed in later stages of the job. Hadoop working from the beginning (mapping) to the end without explicitly looking ahead into the following stages, simply cannot use memory this efficiently and hence doesn't waste resources keeping the large chunks in memory, that Spark would keep. Unlike Spark it just doesn't know if all the pairs in a Map phase will be needed in the next step.
The fact that it appears that Spark is keeping the whole dataset in memory hence isn't something Spark actively does, but rather a result of the way Spark is able to plan the execution of a job.
On the other hand, Spark may be able to actually keep fewer things memory in a different kind of job. Counting the number of distinct words is a good example here in my opinion.
Here Spark would have planned ahead and immediately drop a repeat-word from the cache/memory when encountering it during the mapping, while in Hadoop it would go ahead and waste memory on shuffling the repeat words too (I acknowledge there is a million ways to also make Hadoop do this but it's not out of the box, also there is ways of writing your Spark job in unfortunate ways to break these optimisations, but it's not so easy to fool Spark here :)).
Hope this helps understand that the memory use is just a natural consequence of the way Spark works, but not something actively aimed at and also not something strictly required by Spark. It is also perfectly capable of repeatedly spilling data back to disk between steps of the execution when memory becomes an issue.
For more insight into this I recommend learning about the DAG scheduler in Spark from here to see how this is actually done in code.
You'll see that it always follows the pattern of working out where what data is and will be cached before figuring out what to calculate where.
Spark uses lazy iterators to process data and can spill data to disk if necessary. It doesn't read all data in memory.
The difference compared to Hadoop is that Spark can chain multiple operations together.

Is one map per line in hadoop grep example justified?

I'm a hadoop newbie. While going through hadoop example for a similar implementation in a rather large cluster, I was wondering why the grep example that comes along with hadoop code, why do they have one map per line ?
I know that it makes sense from the perspective of a teaching example. But in a real hadoop cluster, where a grep is to be done on an industry(1 PB log files) scale, is it worth creating a map() per line? Is the overhead of creating a map(), and the tasktracker keeping track of it and the associated bandwidth usage justified if we create a map per line?
A separate Map task will not be done for every line; You are confusing the programming model for MapReduce with the execution model.
When you implement a mapper, you are implementing a function that operates on a single piece of data (let's say a line in a log file). The hadoop framework takes care of essentially looping over all your log files, reading each line, and passing that line into your mapper.
MapReduce allows you to write your code in such a way that you are dealing with an abstraction that's useful: a line in a log file is a good example. The advantage of using something like Hadoop is that it will take care of the parallelization of this code for you: It will distribute your program out to a bunch of processes that will execute it (TaskTracker) and those TaskTrackers will read chunks llof data from the HDFS nodes that store it (Data Nodes).

why Hadoop shuffling time takes longer than expected

I am trying to figure out which steps takes how much time in simple hadoop wordcount example.
In this example 3 maps and 1 reducer is used where each map generates ~7MB shuffle data. I have a cluster which is connected via 1Gb switches. When I look at the job details, realized that shuffling takes ~7 sec after all map tasks are completed wich is more than expected to transfer such a small data. What could be the reason behind this? Thanks
Hadoop uses heartbeats to communicate with nodes. By default hadoop uses minimal heartbeat interval equals to 3seconds. Consequently hadoop completes your task within two heartbeats (roughly 6 seconds).
More details: https://issues.apache.org/jira/browse/MAPREDUCE-1906
The transfer is not the only thing to complete after the map step. Each mapper outputs their part of a given split locally and sorts it. The reducer that is tasked with a particular split then gathers the parts from each mapper output, each requiring a transfer of 7 MB. The reducer then has to merge these segments into a final sorted file.
Honestly though, the scale you are testing on is absolutely tiny. I don't know all the parts of the Hadoop shuffle step, which I understand has some involved details, but you shouldn't expect performance of such small files to be indicative of actual performance on larger files.
I think the shuffling started after first mapper started. But waited for the next two mappers.
There is option to start reduce phase (begins with shuffling) after all the mappers were finished. But that's not really speed up anything.
(BTW. 7 seconds is considered fast in Hadoop. Hadoop is poor in performance. Especially for small files. Unless somebody else is paying for this. Don't use Hadoop.)

How does Hadoop/MapReduce scale when input data is NOT stored?

The intended use for Hadoop appears to be for when the input data is distributed (HDFS) and already stored local to the nodes at the time of the mapping process.
Suppose we have data which does not need to be stored; the data can be generated at runtime. For example, the input to the mapping process is to be every possible IP address. Is Hadoop capable of efficiently distributing the Mapper work across nodes? Would you need to explicitly define how to split the input data (i.e. the IP address space) to different nodes, or does Hadoop handle that automatically?
Let me first clarify a comment you made. Hadoop is designed to support potentially massively parallel computation across a potentially large number of nodes regardless of where the data comes from or goes. The Hadoop design favors scalability over performance when it has to. It is true that being clever about where the data starts out and how that data is distributed can make a significant difference in how well/quickly a hadoop job can run.
To your question and example, if you will generate the input data you have the choice of generating it before the first job runs or you can generate it within the first mapper. If you generate it within the mapper then you can figure out what node the mapper's running on and then generate just the data that would be reduced in that partition (Use a partitioner to direct data between mappers and reducers)
This is going to be a problem you'll have with any distributed platform. Storm, for example, lets you have some say in which bolt instance will will process each tuple. The terminology might be different, but you'll be implementing roughly the same shuffle algorithm in Storm as you would Hadoop.
You are probably trying to run a non-MapReduce task on a map reduce cluster then. (e.g. IP scanning?) There may be more appropriate tools for this, your know...
A thing few people do not realize is that MapReduce is about checkpointing. It was developed for huge clusters, where you can expect machines to fail during the computation. By having checkpointing and recovery built-in into the architecture, this reduces the consequences of failures and slow hosts.
And that is why everything goes from disk to disk in MapReduce. It's checkpointed before, and it's checkpointed after. And if it fails, only this part of the job is re-run.
You can easily outperform MapReduce by leaving away the checkpointing. If you have 10 nodes, you will win easily. If you have 100 nodes, you will usually win. If you have a major computation and 1000 nodes, chances are that one node fails and you wish you had been doing similar checkpointing...
Now your task doesn't sound like a MapReduce job, because the input data is virtual. It sounds much more as if you should be running some other distributed computing tool; and maybe just writing your initial result to HDFS for later processing via MapReduce.
But of course there are way to hack around this. For example, you could use /16 subnets as input. Each mapper reads a /16 subnet and does it's job on that. It's not that much fake input to generate if you realize that you don't need to generate all 2^32 IPs, unless you have that many nodes in your cluster...
Number of Mappers depends on the number of Splits generated by the implementation of the InputFormat.
There is NLineInputFormat, which you could configure to generate as many splits as there are lines in the input file. You could create a file where each line is an IP range. I have not used it personally and there are many reports that it does not work as expected.
If you really need it, you could create your own implementation of the InputFormat which generates the InputSplits for your virtual data and force as many mappers as you need.

Using Hadoop for Parallel Processing rather than Big Data

I manage a small team of developers and at any given time we have several on going (one-off) data projects that could be considered "Embarrassingly parallel" - These generally involve running a single script on a single computer for several days, a classic example would be processing several thousand PDF files to extract some key text and place into a CSV file for later insertion into a database.
We are now doing enough of these type of tasks that I started to investigate developing a simple job queue system using RabbitMQ with a few spare servers (with an eye to use Amazon SQS/S3/EC2 for projects that needed larger scaling)
In searching for examples of others doing this I keep coming across the classic Hadoop New York Times example:
The New York Times used 100 Amazon EC2 instances and a Hadoop application to process 4 TB of raw image TIFF data (stored in S3) into 11 million finished PDFs in the space of 24 hours at a computation cost of about $240 (not including bandwidth)
Which sounds perfect? So I researched Hadoop and Map/Reduce.
But what I can't work out is how they did it? Or why they did it?
Converting TIFF's in PDF's is not a Map/Reduce problem surely? Wouldn't a simple Job Queue have been better?
The other classic Hadoop example is the "wordcount" from the Yahoo Hadoop Tutorial seems a perfect fit for Map/Reduce, and I can see why it is such a powerful tool for Big Data.
I don't understand how these "Embarrassingly parallel" tasks are put into the Map/Reduce pattern?
TL;DR
This is very much a conceptual question, basically I want to know how would I fit a task of "processing several thousand PDF files to extract some key text and place into a CSV file" into a Map/Reduce pattern?
If you know of any examples that would be perfect, I'm not asking you to write it for me.
(Notes: We have code to process the PDF's, I'm not asking for that - it's just an example, it could be any task. I'm asking about putting that processes like that into the Hadoop Map/Reduce pattern - when there is no clear "Map" or "Reduce" elements to a task.)
Cheers!
Your thinking is right.
The above examples that you mentioned used only part of the solution that hadoop offers. They definitely used parallel computing ability of hadoop plus the distributed file system. It's not necessary that you always will need a reduce step. You may not have any data interdependency between the parallel processes that are run. in which case you will eliminate the reduce step.
I think your problem also will fit into hadoop solution domain.
You have huge data - huge number of PDF files
And a long running job
You can process these files parallely by placing your files on HDFS and running a MapReduce job. Your processing time theoretically improves by the number of nodes that you have on your cluster. If you do not see the need to aggregate the data sets that are produced by the individual threads you do not need to use a reduce step else you need to design a reduce step as well.
The thing here is if you do not need a reduce step, you are just leveraging the parallel computing ability of hadoop plus you are equipped to run your jobs on not so expensive hardware.
I need to add one more thing: error handling and retry. In a distributed environment nodes fail is pretty common. I regularly run EMR cluster consisting of several hundred nodes at time for 3 - 8 days and find out that 3 or 4 fail during that period is very likely.
Hadoop JobTracker will nicely re-submit failed tasks (up to a certain number of times) in a different node.

Resources