I have homework in PROLOG - I did software that knows how to calculate the shortest route and record all the nodes where it passed. But there is a serious performance problem if there are more than 5 nodes to the software it takes years to calculate (I have an 11th generation processor). I would be happy if you could advise how to modify the code so it would work faster + divide the code into 2 so that calculating a route was one query and calculating all the points would be another query.
path(X, Y, N, Path) :- path(X, Y, N, [], Path).
path(X, Y, N, Seen, [X]) :-
\+ check_member(X, Seen),
edge(X, Y, N).
path(X, Z, N, Seen, [X|T]) :-
\+ check_member(X, Seen),
edge(X, Y, N0),
path(Y, Z, N1, [X|Seen], T),
\+ check_member(X, T),
N is N0 + N1.
check_member(X, L) :- once(ismember(X, L)).
ismember(X, [X|_]).
ismember(X, [_|Xs]) :- ismember(X, Xs).
water_shortest_path(X, Y, MinCost, Path) :-
path(X, Y, MinCost, Path),
\+ (path(X, Y, LowerCost, OtherPath),
OtherPath \= Path,
LowerCost =< MinCost).
edge(l,l,0).
edge(r,r,0).
edge(l,p10,0).
edge(p10,j10,0).
edge(r,p335,1231).
edge(p335,j61,0).
edge(t3,j20,99).
edge(t1,j40,99).
edge(t2,j50,99).
edge(r,j60,1231).
edge(j10,j101,14200).
edge(j101,j103,1350).
edge(j101,j105,2540).
edge(j105,j107,1470).
edge(j103,j109,3940).
edge(j109,j111,2000).
edge(j111,j115,1160).
edge(j111,j113,1680).
edge(j113,j115,2000).
edge(j107,j115,1950).
edge(j113,j193,1660).
edge(j105,j263,2725).
edge(j115,j117,2180).
edge(j120,j119,730).
edge(j117,j120,1870).
edge(j120,j121,2050).
edge(j121,j119,2000).
edge(j121,j123,1500).
edge(j121,j125,930).
edge(j125,j127,3240).
edge(j127,j20,785).
edge(j127,j129,900).
edge(j129,j131,6480).
edge(j129,j139,2750).
edge(j139,j141,2050).
edge(j141,j143,1400).
edge(j15,j143,1650).
edge(j141,j145,3510).
edge(j145,j147,2200).
edge(j147,j149,880).
edge(j149,j151,1020).
edge(j151,j153,1170).
edge(j153,j125,4560).
edge(j151,j119,3460).
edge(j119,j157,2080).
edge(j157,j159,2910).
edge(j159,j161,2000).
edge(j161,j163,430).
edge(j163,j164,150).
edge(j164,j166,490).
edge(j265,j169,590).
edge(j169,j167,60).
edge(j187,j204,99.9).
edge(j169,j171,1270).
edge(j171,j173,50).
edge(j171,j271,760).
edge(j181,j35,30).
edge(j181,j177,30).
edge(j177,j179,30).
edge(j179,j183,210).
edge(j179,j40,1190).
edge(j185,j184,99.9).
edge(j185,j183,510).
edge(j184,j205,4530).
edge(j185,j204,1325).
edge(j189,j183,1350).
edge(j187,j189,500).
edge(j169,j269,646).
edge(j191,j187,2560).
edge(j267,j189,1230).
edge(j191,j193,520).
edge(j193,j195,360).
edge(j195,j161,2300).
edge(j197,j191,1150).
edge(j111,j197,2790).
edge(j173,j199,4000).
edge(j199,j201,630).
edge(j201,j203,120).
edge(j199,j273,725).
edge(j205,j207,1200).
edge(j207,j206,450).
edge(j207,j275,1430).
edge(j206,j208,510).
edge(j208,j209,885).
edge(j209,j211,1210).
edge(j211,j213,990).
edge(j213,j215,4285).
edge(j215,j217,1660).
edge(j217,j219,2050).
edge(j217,j225,1560).
edge(j213,j229,2200).
edge(j229,j231,1960).
edge(j211,j237,2080).
edge(j237,j229,790).
edge(j237,j239,510).
edge(j239,j241,35 ).
edge(j241,j243,2200).
edge(j241,j247,445).
edge(j239,j249,430).
edge(j247,j249,10).
edge(j247,j255,1390).
edge(j255,j50,925).
edge(j255,j253,1100).
edge(j255,j251,1100).
edge(j251,j249,1450).
edge(j257,j120,645).
edge(j259,j257,350).
edge(j259,j263,1400).
edge(j257,j261,1400).
edge(j161,j117,645).
edge(j261,j263,350).
edge(j267,j265,1580).
edge(j267,j163,1170).
edge(j189,j269,646).
edge(j181,j271,260).
edge(j273,j275,2230).
edge(j205,j273,645).
edge(j265,j163,1200).
edge(j201,j275,300).
edge(j269,j271,1290).
edge(j61,j123,45500).
edge(j60,j601,1).
edge(j601,j61,1).
edge(p10,l,0).
edge(j10,p10,0).
edge(p335,r,1231).
edge(j61,p335,0).
edge(j20,t3,99).
edge(j40,t1,99).
edge(j50,t2,99).
edge(j60,r,1231).
edge(j101,j10,14200).
edge(j103,j101,1350).
edge(j105,j101,2540).
edge(j107,j105,1470).
edge(j109,j103,3940).
edge(j111,j109,2000).
edge(j115,j111,1160).
edge(j113,j111,1680).
edge(j115,j113,2000).
edge(j115,j107,1950).
edge(j193,j113,1660).
edge(j263,j105,2725).
edge(j117,j115,2180).
edge(j119,j120,730).
edge(j120,j117,1870).
edge(j121,j120,2050).
edge(j119,j121,2000).
edge(j123,j121,1500).
edge(j125,j121,930).
edge(j127,j125,3240).
edge(j20,j127,785).
edge(j129,j127,900).
edge(j131,j129,6480).
edge(j139,j129,2750).
edge(j141,j139,2050).
edge(j143,j141,1400).
edge(j143,j15,1650).
edge(j145,j141,3510).
edge(j147,j145,2200).
edge(j149,j147,880).
edge(j151,j149,1020).
edge(j153,j151,1170).
edge(j125,j153,4560).
edge(j119,j151,3460).
edge(j157,j119,2080).
edge(j159,j157,2910).
edge(j161,j159,2000).
edge(j163,j161,430).
edge(j164,j163,150).
edge(j166,j164,490).
edge(j169,j265,590).
edge(j167,j169,60).
edge(j204,j187,99.9).
edge(j171,j169,1270).
edge(j173,j171,50).
edge(j271,j171,760).
edge(j35,j181,30).
edge(j177,j181,30).
edge(j179,j177,30).
edge(j183,j179,210).
edge(j40,j179,1190).
edge(j184,j185,99.9).
edge(j183,j185,510).
edge(j205,j184,4530).
edge(j204,j185,1325).
edge(j183,j189,1350).
edge(j189,j187,500).
edge(j269,j169,646).
edge(j187,j191,2560).
edge(j189,j267,1230).
edge(j193,j191,520).
edge(j195,j193,360).
edge(j161,j195,2300).
edge(j191,j197,1150).
edge(j197,j111,2790).
edge(j199,j173,4000).
edge(j201,j199,630).
edge(j203,j201,120).
edge(j273,j199,725).
edge(j207,j205,1200).
edge(j206,j207,450).
edge(j275,j207,1430).
edge(j208,j206,510).
edge(j209,j208,885).
edge(j211,j209,1210).
edge(j213,j211,990).
edge(j215,j213,4285).
edge(j217,j215,1660).
edge(j219,j217,2050).
edge(j225,j217,1560).
edge(j229,j213,2200).
edge(j231,j229,1960).
edge(j237,j211,2080).
edge(j229,j237,790).
edge(j239,j237,510).
edge(j241,j239,35 ).
edge(j243,j241,2200).
edge(j247,j241,445).
edge(j249,j239,430).
edge(j249,j247,10).
edge(j255,j247,1390).
edge(j50,j255,925).
edge(j253,j255,1100).
edge(j251,j255,1100).
edge(j249,j251,1450).
edge(j120,j257,645).
edge(j257,j259,350).
edge(j263,j259,1400).
edge(j261,j257,1400).
edge(j117,j161,645).
edge(j263,j261,350).
edge(j265,j267,1580).
edge(j163,j267,1170).
edge(j269,j189,646).
edge(j271,j181,260).
edge(j275,j273,2230).
edge(j273,j205,645).
edge(j163,j265,1200).
edge(j275,j201,300).
edge(j271,j269,1290).
edge(j123,j61,45500).
edge(j601,j60,1).
edge(j61,j601,1).
Taking advantage of backtracking:
% path_best(l, r, Cost, Path).
path_best(Start, End, Cost, Path) :-
assert_new_best_path(Start, End, notfound, _),
path_best_(Start, End, Cost, Path).
path_best_(Start, End, Cost, Path) :-
% Find a good path
path_edge_to_edge_good(Start, End, Cost, Path),
% Record it
assert_new_best_path(Start, End, Cost, Path),
% Keep searching via backtracking for an even better path
fail.
% Finally, return path with best cost
path_best_(Start, End, Cost, Path) :-
path_best_upto(Cost, [Start, End, Path]).
% "Good" because it backtracks if going over the current-best cost
path_edge_to_edge_good(Start, End, Cost, Path) :-
path_edge_to_edge_(Start, End, 0, Cost, [Start], Seen),
reverse(Seen, Path).
path_edge_to_edge_(End, End, Cost, Cost, Seen, Seen).
path_edge_to_edge_(PathStart, PathEnd, CostUpto, Cost, SeenUpto, Seen) :-
edge(PathStart, EdgeEnd, EdgeCost),
% Prevent infinite loops
\+ member(EdgeEnd, SeenUpto),
CostUpto1 is CostUpto + EdgeCost,
% Fail quickly if this is worse than the already-known best-so-far path cost
cost_under_best(CostUpto1),
path_edge_to_edge_(EdgeEnd, PathEnd, CostUpto1, Cost, [EdgeEnd|SeenUpto], Seen).
cost_under_best(CostUpto1) :-
path_best_upto(BestCost, _),
(BestCost = notfound -> true ; CostUpto1 < BestCost).
:- dynamic path_best_upto/2.
assert_new_best_path(Start, End, Cost, Path) :-
retractall(path_best_upto(_, _)),
asserta(path_best_upto(Cost, [Start, End, Path])).
Result after 12 seconds (in swi-prolog, but should be identical in gprolog):
?- path_best(l, r, Cost, Path).
Cost = 72141,
Path = [l,p10,j10,j101,j105,j263,j259,j257,j120,j121,j123,j61,p335,r].
It would however be more efficient to always select alternatives based on their lower cost, and then stop at the first path found, which by definition will be the lowest cost (or joint lowest with other paths).
It's the best so far:
findPath(_Limit, [Goal | Rest], Goal, Temp, Temp, [Goal | Rest]) :- !.
findPath(Limit, [A | Rest], Goal, Cost, Temp, Path) :-
edge(A,B,C),
\+member(B, Rest),
NewCosts is (Temp + C),
NewCosts < Limit,
findPath(Limit, [B, A | Rest], Goal, Cost, NewCosts, Path).
%test ?- searchPath(l, j101, Path, Length).
searchPath(Start, Goal, Path_to_goal, L) :-
S = path_len([], 200000),
arg(2, S, Limit),
( findPath(Limit, [Start], Goal, Cost, 0, Path)
-> ( Cost < Limit
-> setarg(1, S, Path),
setarg(2, S, Cost),
true
)
; fail
),
arg(1, S, Rev),
reverse(Rev, Path_to_goal),
arg(2, S, L).
I currently have to make some sort of Wumpus World implementation in SWI Prolog and give all possible paths over a board of size NxN, I have done several prolog tutorials but I can't figure how to solve this particular task in Prolog. I'm trying to get all possible paths for my agent to the gold and nothing else. It has to start from the initial position (X0, Y0).
I attach the code that I've managed to write so far. I have tried to do a simple DFS which sort of works but I struggle with the variable "parsing" to complete the code.
:- dynamic getAllPathsRec/2, agent/2, visited/2, visited/2.
gold(5,5).
worldSize(10).
agent(1,1).
getAllPaths :-
getAllPathsRec(1,1).
getAllPathsRec(X,Y) :-
format(X), format(Y), format('~n'),
gold(X1,Y1),
\+visited(X,Y),
assert(visited(X,Y)),
(X = X1, Y = Y1) -> print('Found GOLD');
move(_,X,Y).
move(right, X, Y) :-
X1 is X + 1,
X1 > 0 , X1 < 11,
getAllPathsRec(X1,Y).
move(left, X, Y) :-
X1 is X - 1,
X1 > 0 , X1 < 11,
getAllPathsRec(X1,Y).
move(up, X, Y) :-
Y1 is Y + 1,
Y1 > 0 , Y1 < 11,
getAllPathsRec(X,Y1).
move(down, X, Y) :-
Y1 is Y - 1,
Y1 > 0 , Y1 < 11,
getAllPathsRec(X,Y1).
I expect to find the gold in any possible way, ideally printing each path the algorithm has taken. Thank you in advance.
EDIT:
I've noticed that this solution has some efficiency problems for boards of enough size. It's being discussed here. I'll update the answer when we come up with a result.
Take care with assert/1 predicate, as it adds the fact to the knowledge base permanently and it's not undone while trying other combinations, so you won't be able to visit the same cell twice.
Instead of that, I approached it with an extra parameter V (that stands for visited), in which you can append the element treated in each exploration step. Also I stored the chosen directions in every step into a list L to print it when the target is found.
The or operator ; allows to not keep exploring the same path once the target is found and goes back to keep trying other combinations.
Notes:
If you face any use case where you can use assert/1, take care, because it's deprecated.
The _ variable it's not necessary in the move function as you can simply add 4 different "implementations" and just append the four directions.
As an advice use the facts or knowledge (a.k.a. World Size, Target position and Player position) as variables and don't hard code it. It'll be easier to debug and try different parameters.
Here you have the working code and some output example:
:- dynamic
getAllPathsRec/2,
agent/2,
visited/2.
gold(3, 3).
worldSize(5).
agent(1, 1).
getAllPaths :-
agent(X, Y),
getAllPathsRec(X, Y, [], []).
getAllPathsRec(X, Y, V, L) :-
hashPos(X, Y, H), \+member(H, V), append(V, [H], VP),
((gold(X, Y), print(L)) ; move(X, Y, VP, L)).
% Hash H from h(X, Y)
hashPos(X, Y, H) :- H is (X*100 + Y).
% Left
move(X, Y, V, L) :-
XP is X - 1, XP > 0,
append(L, [l], LP),
getAllPathsRec(XP, Y, V, LP).
% Right
move(X, Y, V, L) :-
XP is X + 1, worldSize(MS), XP =< MS,
append(L, [r], LP),
getAllPathsRec(XP, Y, V, LP).
% Up
move(X, Y, V, L) :-
YP is Y + 1, worldSize(MS), YP =< MS,
append(L, [u], LP),
getAllPathsRec(X, YP, V, LP).
% Down
move(X, Y, V, L) :-
YP is Y - 1, YP > 0,
append(L, [d], LP),
getAllPathsRec(X, YP, V, LP).
?- getAllPaths.
[r,r,r,r,u,l,l,l,l,u,r,r]
true ;
[r,r,r,r,u,l,l,l,l,u,r,u,l,u,r,r,r,r,d,l,l,d]
true ;
[r,r,r,r,u,l,l,l,l,u,r,u,l,u,r,r,r,r,d,l,d,l]
true ;
[r,r,r,r,u,l,l,l,l,u,r,u,l,u,r,r,r,r,d,d,l,l]
true ;
[r,r,r,r,u,l,l,l,l,u,r,u,l,u,r,r,r,r,d,d,l,u,l,d]
true ;
[r,r,r,r,u,l,l,l,l,u,r,u,l,u,r,r,r,d,l,d]
true ;
[r,r,r,r,u,l,l,l,l,u,r,u,l,u,r,r,r,d,r,d,l,l]
true ;
[r,r,r,r,u,l,l,l,l,u,r,u,l,u,r,r,r,d,d,l]
...
I have a problem in my code with turbo prolog which searches all paths and the shortest path in a graph between 2 nodes.
The problem that i have is to test if the node is in the list or not (exactly in the clause of member)
1 ---- b ---- 3
--- | ---
--- | -----
a |5 d
--- | -----
--- | ---
2 --- | --- 4
-- c --
for example we have for b--->c
([b,c],5) , ([b,a,c],3) and ([b,d,c],7) : possible paths.
([b,a,c],3) : the shortest path.
and this is my code :
DOMAINS
list=Symbol *
PREDICATES
distance(Symbol, Symbol)
path1(Symbol, Symbol, list, integer)
path(Symbol, Symbol,list, list, integer)
distance(Symbol, list, integer)
member(Symbol, list)
shortest(Symbol, Symbol, list, integer)
CLAUSES
distance(a, b, 1).
distance(a, c, 2).
distance(b, d, 3).
distance(c, d, 4).
distance(b, c, 5).
distance(b, a, 1).
distance(c, a, 2).
distance(d, b, 3).
distance(d, c, 4).
distance(c, b, 5).
member(X, [X|T]).
member(X, [Y|T]) :- member(X, T).
absent(X, L) :-
member(X, L),
!,
fail.
absent(_, _).
/* find all paths */
path1(X, Y, L, C) :- path(X, Y, L, I, C).
path(X, X, [X], I, C) :- absent(X, I).
path(X, Y, [X|R], I, C) :-
distance(X, Z, A),
absent(Z, I),
path(Z, Y, R, [X|I], C1),
C = C1 + A
.
/* to find the shortest path */
shortest(X, Y, L, C) :-
path(X, Y, L, C),
path(X, Y, L1, C1),
C < C1.
This shows the shortest path and it's weight:
edge(a,b,6).
edge(a,c,1).
edge(b,d,5).
edge(c,e,4).
edge(c,f,1).
edge(d,h,3).
edge(e,h,7).
edge(f,g,2).
edge(g,h,1).
path(X,Y,M,[Y]) :- edge(X,Y,M).
path(X,Y,P,[Z|T]) :- edge(X,Z,M),path(Z,Y,N,T),
P is M+N.
pravilo(X,Y,Z) :- assert(min(100)),assert(minpath([])),!,
path(X,Y,K,PATH1),
(min(Z),K<Z,
retract(min(Z));assert(min(K))),
minpath(Q),retract(minpath(Q)),
assert(minpath([X|PATH1])),
fail.
?- pravilo(a,h,X);
write("Minimal Path:"),
minpath(PATH),
write(PATH),
nl,
write("Path weight:"),
min(Z),
write(Z).
Without knowing what the actual problem is, I can at least suggest that maybe shortest() and path() should take a maximum-length parameter that short-circuits the search.
Also, shortest() doesn't find the shortest path. It finds, for every possible pair of paths, the shortest of each pair.