understanding three.js ray projection - three.js

I want to understand how ray projection works. Almost where ever I see, I get a code like this:
new THREE.Vector3(mouseX, mouseY, 0.5);
I'm confused about the 0.5 in the z position. As per my understanding we are projecting on to z=1 plane (not z=0.5 plane). So shouldn't we be using it like this instead?
new THREE.Vector3(mouseX, mouseY, 1.0);

The pattern often used is like this:
var vector = new THREE.Vector3(
( event.clientX / window.innerWidth ) * 2 - 1,
- ( event.clientY / window.innerHeight ) * 2 + 1,
0.5,
);
This is a point in Normalized Device Coordinate (NDC) Space.
The function
projector.unprojectVector( vector, camera );
is mapping from NDC space to world space.
The value 0.5 for vector.z can be set to any value between -1 and 1.
Why? Because these points are all on a line parallel to the z-axis in NDC space, and will all map to the same ray emanating from the camera in world space.
Setting z = -1 will map to a point on the near plane; z = 1 the far plane.
So the short answer is, it doesn't matter what the value of z is, as long as it is between -1 and 1. For numerical reasons, we stay away from the endpoints, and 0.5 is often used.

Related

Create a ring on the surface of a sphere in threejs

I have a sphere in threejs, and I'd like a ring to animate over the top of it.
I have the following progress:
https://codepen.io/EightArmsHQ/pen/zYRdQOw/2919f1a1bdcd2643390efc33bd4b73c9?editors=0010
In the animate function, I call:
const scale = Math.cos((circlePos / this.globeRadius) * Math.PI * 0.5);
console.log(scale);
this.ring.scale.set(scale, scale, 1);
My understanding is that the sin and cos functions are exactly what I need to work out how far around the circle the ring has gotten to. However, the animation actually shows the ring fall inside the sphere, before eventually hitting the 0 scale at the outside of the sphere.
Ideally, I'd also like to just be changing the radius of the sphere but I cannot work out how to do that either, so I think it may be an issue of using the scale function.
How can I keep the ring on the surface of the sphere?
Not quite. Consider this:
You have a right triangle whose bases are your x and y, with a hypotenuse of r = globeRadius. So by Pythagoras' theorem, we have:
x2 + y2 = r2.
So if we solve for the height, y, we get:
y = √(r2 - x2).
Thus, in your code, you could write it e.g. like this:
const scale = Math.sqrt(this.globeRadius * this.globeRadius - circlePos * circlePos);
However, this is the scale in terms of world units, not relative to the objects. So for this to work, you need to either divide by your radius again, or just initialise your ring with radius 1:
this.ringGeometry = new THREE.RingGeometry(1, 1.03, 32);
Here I gave it an arbitrary ring width of 0.03 - you may of course adjust it to your own needs.

three.js look at mouse. Working, but why?

I'm sure there is something simple, yet critical missing in my three.js fundamentals.
I have an eyeball always looking at the user's mouse cursor. I have it working based on a post by mr. doob, but I'm not exactly sure why/how it's working. Can someone please explain to me the math behind converting the screen coords to a scene space position. Below is my working example. I understand normalizing the mouse position, but then why do we (* 2-1), and -(* 2 + 1)?
window.addEventListener('mousemove', function(e){
var mouse3D = new THREE.Vector3(
( event.clientX / window.innerWidth ) * 2 - 1,
- ( event.clientY / window.innerHeight ) * 2 + 1,
0.5 );
pupil.lookAt(mouse3D);
})
TIA for your explanations! I really appreciate it.
The default 3D space runs from -1 to 1 along X, Y, and Z, and is centered at (0,0,0).
That code:
Converts X to the range [0,1], meaning the left edge corresponds to 0 and the right edge corresponds to 1 (( event.clientX / window.innerWidth ))
Then scales X to [0,2] (* 2)
Then shifts it to the range [-1,1] (- 1)
Converts Y to the range [-1,0], meaning the top edge corresponds to 0 and the bottom edge corresponds to -1 (-( event.clientY / window.innerHeight ))
Then scales Y to [-2,0] (* 2)
Then shifts it to the range [-1,1] (+ 1)
Uses a constant Z of 0.5 (within the range [-1,1]), since this is a 2D function.

Rotate camera based on angle

I would like to rotate an object on a certain angle along Y axis.
Based on this answer How to rotate a Three.js Vector3 around an axis? I suppose to get an updated vector.
My code is :
var vec = new THREE.Vector3( 0,0,0 );
var axis = new THREE.Vector3( 0,1,0 );
var angle = Math.PI / 2;
vec.applyAxisAngle( axis, angle );
I'm using r67 and it returns me 0,0,0. I've tried r69 as well and it is returns me the same. I'm not quiet ready to move to r69. Could you guys tell me please how to do the same thing but using r67. Thanks.
Your are rotating vector (0, 0, 0) which is center and whatever angle you use to rotate center around any axis you will always get (0, 0, 0). Just imagine you are doing simple 2d rotation. After all, rotation around Y axis can be viewed as 2d rotation in X-Z plane.
Try with some other values for vec variable, for example (1, 0, 0) or (0, 0, 1) and you will see results

Three.js: change the pivot point of a sprite

I've created a 3D map and I'm labelling points on this map through Sprites. This in itself works fine, except for the positioning of the sprite labels.
Because I'm creating a map the camera can tilt from 0 to 90 degrees, while ideally the label always stays some distance directly above the item it is labelling on the screen. But unfortunately, as sprites are always centred around their origin and that overlaps the item, I have to move the sprite up on the Y world axis and with that the centre location of the sprite changes as the camera is tilted. This looks weird if the item looked at is off centre, and doesn't work too well when the camera is looking straight down.
No jsfiddle handy, but my application at http://leeft.eu/starcitizen/ should give a good impression of what it looks like.
The code of THREE.SpritePlugin suggests to me it should be possible to use "matrixWorld" to shift the sprite some distance up on the screen's Y axis while rendering, but I can't work out how to use that, nor am I entirely sure that's what I need to use in the first place.
Is it possible to shift the sprites up on the screen while rendering, or perhaps change their origin? Or is there maybe some other way I can achieve the same effect?
Three.js r.67
As suggested by WestLangley, I've created a workable solution by changing the sprite position based on the viewing angle though it took me hours to work out the few lines of code needed to get the math working. I've updated my application too, so see that for a live demo.
With the tilt angle phi and the heading angle theta as computed from the camera in OrbitControls.js the following code computes a sprite offset that does exactly what I want it to:
// Given:
// phi = tilt; 0 = top down view, 1.48 = 85 degrees (almost head on)
// theta = heading; 0 = north, < 0 looking east, > 0 looking west
// Compute an "opposite" angle; note the 'YXZ' axis order is important
var euler = new THREE.Euler( phi + Math.PI / 2, theta, 0, 'YXZ' );
// Labels are positioned 5.5 units up the Y axis relative to its parent
var spriteOffset = new THREE.Vector3( 0, -5.5, 0 );
// Rotate the offset vector to be opposite to the camera
spriteOffset.applyMatrix4( new THREE.Matrix4().makeRotationFromEuler( euler ) );
scene.traverse( function ( object ) {
if ( ( object instanceof THREE.Sprite ) && object.userData.isLabel ) {
object.position.copy( spriteOffset );
}
} );
Note for anyone using this code: that the sprite labels are children of the object group they're referring to, and this only sets a local offset from that parent object.
I had a similar problem, but with flat sprites; I put trees on a map and wanted them to rotate in such a way that they'd rotate around their base, rather than their center. To do that, i simply edited the image files of the trees to be twice as tall, with the bottom as just a transparency:
http://imgur.com/ogFxyFw
if you turn the first image into a sprite, it'll rotate around the tree's center when the camera rotates. The second tree will rotate around it's base when the camera rotates.
For your application, if you resize the textbox in such a way that the center of it would be coincide with the star; perhaps by adding a few newlines or editing the height of the sprite
This is very much a hack, but if you will only use sprites in this way, and could tolerate a global change to how sprites were rendered, you could change the following line in the compiled three.js script:
Find (ctrl+F) THREE.SpritePlugin = function, and you'll see:
this.init = function ( renderer ) {
_gl = renderer.context;
_renderer = renderer;
vertices = new Float32Array( [
- 0.5, - 0.5, 0, 0,
0.5, - 0.5, 1, 0,
0.5, 0.5, 1, 1,
- 0.5, 0.5, 0, 1
] );
I changed the definition of the array to the following:
var vertices = new Float32Array( [
- 0.5, - 0.0, 0, 0,
0.5, - 0.0, 1, 0,
0.5, 1.0, 1, 1,
- 0.5, 1.0, 0, 1
] );
And now all my sprites render with the rotation origin at the bottom.
If you use the minified version, search for THREE.SpritePlugin=function and move the cursor right until you find the Float32Array defined, and make the same changes there.
Note: this changes how things render only when using WebGL. For the canvas renderer you'll have to play a function called renderSprite() in the THREE.CanvasRenderer. I suspect playing with these lines will do it:
var dist = 0.5 * Math.sqrt( scaleX * scaleX + scaleY * scaleY ); // allow for rotated sprite
_elemBox.min.set( v1.x - dist, v1.y - dist );
_elemBox.max.set( v1.x + dist, v1.y + dist );
This function will also be a lot more difficult to find in the minified version, since renderSprite() is not an outward facing function, it'll likely be renamed to something obscure and small.
Note 2: I did try making these modifications with "polyfills" (or rather, redefining the SpritePlugin after Three is defined), but it caused major problems with things not being properly defined for some reason. Scoping is also an issue with the "polyfill" method.
Note 3: My version of three.js is r69. So there may be differences above.

WebGL - What are some performant ways to select 3d objects? [duplicate]

I'm building a boardgame in WebGL. The board can be rotated/zoomed. I need a way to translate a click on the canvas element (x,y) into the relevant point in 3D space (x, y, z). The ultimate result is that I want to know the (x, y, z) coordinate that contains the point that touches the object closest to the user. For instance, the user clicks a piece, and you imagine a ray traveling through 3D space that goes through both the piece and the game board, but I want the (x, y, z) coord of the piece at the point where it was touched.
I feel like this must be a very common problem, but I can't seem to find a solution in my googles. There must be some way to project the current view of the 3D space into 2D so you can map each point in 2D space to the relevant point in 3D space. I want to the user to be able to mouse over a space on the board, and have the spot change color.
You're looking for an unproject function, which converts screen coordinates into a ray cast from the camera position into the 3D world. You must then perform ray/triangle intersection tests to find the closest triangle to the camera which also intersects the ray.
I have an example of unprojecting available at jax/camera.js#L568 -- but you'll still need to implement ray/triangle intersection. I have an implementation of that at jax/triangle.js#L113.
There is a simpler and (usually) faster alternative, however, called 'picking'. Use this if you want to select an entire object (for instance, a chess piece), and if you don't care about where the mouse actually clicked. The WebGL way to do this is to render the entire scene in various shades of blue (the blue is a key, while red and green are used for unique IDs of the objects in the scene) to a texture, then read back a pixel from that texture. Decoding the RGB into the object's ID will give you the object that was clicked. Again, I've implemented this and it's available at jax/world.js#L82. (See also lines 146, 162, 175.)
Both approaches have pros and cons (discussed here and in some of the comments after) and you'll need to figure out which approach best serves your needs. Picking is slower with huge scenes, but unprojecting in pure JS is extremely slow (since JS itself isn't all that fast) so my best recommendation would be to experiment with both.
FYI, you could also look at the GLU project and unproject code, which I based my code loosely upon: http://www.opengl.org/wiki/GluProject_and_gluUnProject_code
I'm working on this problem at the moment - the approach I'm taking is
Render objects to pick buffer each with unique colour
Read buffer pixel, map back to picked object
Render picked object to buffer with each pixel colour a function of Z-depth
Read buffer pixel, map back to Z-depth
We have picked object and approximate Z for the pick coords
This is the working demo
function onMouseUp(event) {
event.preventDefault();
x_pos = (event.clientX / window.innerWidth) * 2 - 1;
y_pos = -(event.clientY / window.innerHeight) * 2 + 1;
z_pos = 0.5;
var vector = new THREE.Vector3( x_pos , y_pos , z_pos );
var projector = new THREE.Projector();
projector.unprojectVector(vector, camera);
var raycaster = new THREE.Raycaster(camera.position, vector.sub(camera.position).normalize());
var intersects = raycaster.intersectObjects(intersectObjects);
if (intersects.length > 0) {
xp = intersects[0].point.x.toFixed(2);
yp = intersects[0].point.y.toFixed(2);
zp = intersects[0].point.z.toFixed(2);
destination = new THREE.Vector3( xp , yp , zp );
radians = Math.atan2( ( driller.position.x - xp) , (driller.position.z - zp));
radians += 90 * (Math.PI / 180);
console.log(radians);
var tween = new TWEEN.Tween(driller.rotation).to({ y : radians },200).easing(TWEEN.Easing.Linear.None).start();
}
weissner-doors.de/drone/
culted from one of the threads.
not sure about (x,y,z) but you can get the canvas(x,y) using
getBoundingClientRect()
function getCanvasCoord(){
var mx = event.clientX;
var my = event.clientY;
var canvas = document.getElementById('canvasId');
var rect = canvas.getBoundingClientRect();// check if your browser supports this
mx = mx - rect.left;
my = my - rect.top;
return {x: mx , y: my};
}

Resources