I need to solve: T(n) = T(n-1) + O(1)
when I find the general T(n) = T(n-k) + k O(1)
what sum is it? I mean when I reach the base case: n-k=1; k=n-1
Is it "sum k, k=1 to n"? but the result of this sum is n(n-1)/2 and I know that the result is O(n).
So I know that I don't need a sum with this relation but what sum is correct for this recurrence relation?
Thanks
If we make the (reasonable) assumption that T(0) = 0 (or T(1) = O(1)), then we can apply your
T(n) = T(n - k) + k⋅O(1) to k = n and obtain
T(n) = T(n - n) + n⋅O(1) = 0 + n⋅O(1) = O(n).
Edit: if you insist on representing the recurrence as a sum, here it is:
T(n) = T(n - 1) + O(1) = T(n - 2) + O(1) + O(1) = ... = Σk = 1,...n O(1) = n⋅O(1) = O(n)
Related
I realize that solving this with Master's theorem gives the answer of Big Theta(log n). However, I want to know more and find the base of the logarithm. I tried reading about masters theorem more to find out about the base but could not find more information on wikipedia (https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)).
How would I solve this using recursion tree or substitution method for solving recurrences?
You can assume n = 2^K and T(0) = 0.
Don't set n=2^k but n=3^k
thus T(3^k) = T(3^{k-1}) + c
recurrence becomes w_k = w_{k-1} + c
Assuming T(1) = 1
with the general term: w_k = ck+1
and w_0 = 1
you conclude T(n) = clog_3(n) + 1
and thus T(n) = O(log_3(n))
T(n) = T(n/3) + O(1) = T(n/9) + O(1) + O(1) = T(n/27) + O(1) + O(1) + O(1) = …
After log3(n) steps, the term T vanishes and T(n) = O(log(n)).
i want to know what the Time Complexity of my recursion method :
T(n) = 2T(n/2) + O(1)
i saw a result that says it is O(n) but i don't know why , i solved it like this :
T(n) = 2T(n/2) + 1
T(n-1) = 4T(n-1/4) + 3
T(n-2) = 8T(n-2/8) + 7
...... ………….. ..
T(n) = 2^n+1 T (n/2^n+1) + (2^n+1 - 1)
I think you have got the wrong idea about recursive relations. You can think as follows:
If T(n) represents the value of function T() at input = n then the relation says that output is one more double the value at half of the current input. So for input = n-1 output i.e. T(n-1) will be one more than double the value at half of this input, that is T(n-1) = 2*T((n-1)/2) + 1
The above kind of recursive relation should be solved as answered by Yves Daoust. For more examples on recursive relations, you can refer this
Consider that n=2^m, which allows you to write
T(2^m)=2T(2^(m-1))+O(1)
or by denoting S(m):= T(2^m),
S(m)=2 S(m-1) + O(1),
2^m S(m)=2 2^(m-1)S(m-1) + 2^(m-1) O(1)
and finally,
R(m) = R(m-1) + 2^(m-1) O(1).
Now by induction,
R(m) = R(0) + (2^m-1) O(1),
T(n) = S(m) = 2^(1-m) T(2^m) + (2 - 2^(m-1)) O(1) = 2/n T(n) + (2 - n/2) O(1).
There are a couple of rules that you might need to remember. If you can remember these easy rules then Master Theorem is very easy to solve recurrence equations. The following are the basic rules which needs to be remembered
case 1) If n^(log b base a) << f(n) then T(n) = f(n)
case 2) If n^(log b base a) = f(n) then T(n) = f(n) * log n
case 3) 1) If n^(log b base a) >> f(n) then T(n) = n^(log b base a)
Now, lets solve the recurrence using the above equations.
a = 2, b = 2, f(n) = O(1)
n^(log b base a) = n = O(n)
This is case 3) in the above equations. Hence T(n) = n^(log b base a) = O(n).
I was reading a time complexity calculation related question on SO but I can't comment there (not enough reps).
What's the time complexity of this algorithm for Palindrome Partitioning?
I have a question regarding going from 1st to 2nd equation here:
Now you can write the same expression for H(n-1), then substitute back
to simplify:
H(n) = 2 H(n-1) + O(n) =========> Eq.1
And this solves to
H(n) = O(n * 2^n) =========> Eq.2
Can someone illustrate how he got Eq.2 from Eq.1? Thank you.
Eq 1. is a recurrence relation. See the link for a tutorial on how to solve these types of equations, but we can solve via expansion as below:
H(n) = 2H(n-1) + O(n)
H(n) = 2*2H(n-2) + 2O(n-1) + O(n)
H(n) = 2*2*2H(n-3) + 2*2O(n-2) + 2O(n-1) + O(n)
...
H(n) = 2^n*H(1) + 2^(n-1)*O(1) + ... + 2O(n-1) + O(n)
since H(1) = O(n) (see the original question)
H(n) = 2^n*O(n) + 2^(n-1)*O(1) + ... + 2O(n-1) + O(n)
H(n) = O(n * 2^n)
We need to homogenize the equation, in this simple case just by adding a constant to each side. First, designate O(n) = K to avoid ealing with the O notation at this stage:
H(n) = 2 H(n-1) + K
Then add a K to each side:
H(n) + K = 2 (H(n-1) + K)
Let G(n) = H(n) + K, then
G(n) = 2 G(n-1)
This is a well-known homogeneous 1-st order recurrence, with the solution
G(n) = G(0)×2n = G(1)×2n-1
Since H(1) = O(n), G(1) = H(1) + K = O(n) + O(n) = O(n),
G(n) = O(n)×2n-1 = O(n×2n-1) = O(n×2n)
and
H(n) = G(n) - K = O(n×2n) - O(n) = O(n×2n)
They are wrong.
Let's assume that O refers to a tight bound and substitute O(n) with c * n for some constant c. Unrolling the recursion you will get:
When you finish to unroll recursion n = i and b = T(0).
Now finding the sum:
Summing up you will get:
So now it is clear that T(n) is O(2^n) without any n
For people who are still skeptical about the math:
solution to F(n) = 2F(n-1) + n
solution to F(n) = 2F(n-1) + 99n
I have been trying to solve a recurrence relation.
The recurrence is T(n) = T(n/3)+T(2n/3)+n^2
I solved the the recurrence n i got it as T(n)=nT(1)+ [ (9/5)(n^2)( (5/9)^(log n) ) ]
Can anyone tell me the runtime of this expression?
I think this recurrence works out to Θ(n2). To see this, we'll show that T(n) = Ω(n2) and that T(n) = O(n2).
Showing that T(n) = Ω(n2) is pretty straightforward - since T(n) has an n2 term in it, it's certainly Ω(n2).
Let's now show that T(n) = O(n2). We have that
T(n) = T(n / 3) + T(2n / 3) + n2
Consider this other recurrence:
S(n) = S(2n / 3) + S(2n / 3) + n2 = 2S(2n / 3) + n2
Since T(n) is increasing and T(n) ≤ S(n), any upper bound for S(n) should also be an upper-bound for T(n).
Using the Master Theorem on S(n), we have that a = 2, b = 3/2, and c = 2. Since logb a = log3/2 2 = 1.709511291... < c, the Master Theorem says that this will solve to O(n2). Since S(n) = O(n2), we also know that T(n) = O(n2).
We've shown that T(n) = Ω(n2) and that T(n) = O(n2), so T(n) = Θ(n2), as required.
Hope this helps!
(By the way - (5 / 9)log n = (2log 5/9)log n = 2log n log 5/9 = (2log n)log 5/9 = nlog 5/9. That makes it a bit easier to reason about.)
One can't tell about runtime from the T(n) OR the time complexity!It is simply an estimation of running time in terms of order of input(n).
One thing which I'd like to add is :-
I haven't solved your recurrence relation,but keeping in mind that your derived relation is correct and hence further putting n=1,in your given recurrence relation,we get
T(1)=T(1/3)+T(2/3)+1
So,either you'll be provided with the values for T(1/3) and T(2/3) in your question OR you have to understand from the given problem statement like what should be T(1) for Tower of Hanoi problem!
For a recurrence, the base-case is T(1), now by definition its value is as following:
T(1) = T(1/3) + T(2/3) + 1
Now since T(n) denotes the runtime-function, then the run-time of any input that will not be processed is always 0, this includes all terms under the base-case, so we have:
T(X < 1) = 0
T(1/3) = 0
T(2/3) = 0
T(1) = T(1/3) + T(2/3) + 1^2
T(1) = 0 + 0 + 1
T(1) = 1
Then we can substitute the value:
T(n) = n T(1) + [ (9/5)(n^2)( (5/9)^(log n) ) ]
T(n) = n + ( 9/5 n^2 (5/9)^(log n) )
T(n) = n^2 (9/5)^(1-log(n)) + n
We can approximate (9/5)^(1-log(n)) to 9/5 for asymptotic upper-bound, since (9/5)^(1-log(n)) <= 9/5:
T(n) ~ 9/5 n^2 + n
O(T(n)) = O(n^2)
I am trying to find the time complexity for selection sort which has the following equation T(n)=T(n-1)+O(n)
First I supposed its T(n)=T(n-1)+n .. n is easier though..
Figured T(n-1) = T(n-2) + (n-1)
and T(n-2) = T(n-3) + (n-2)
This makes T(n) = (T(n-3) + (n-2)) + (n-1) + n so its T(n) = T(n-3) + 3n - 3..
K instead of (3) .. T(n) = T(n-k) + kn - k and because n-k >= 0 .. ==> n-k = 0 and n=k Back to the eqaution its.. T(n) = T(0)// which is C + n*n - n which makes it C + n^2 -n.. so its O(n^2).. is what I did ryt??
Yes, your solution is correct. You are combining O(n) with O(n-1), O(n-2) ... and coming up with O(n^2). You can apply O(n) + O(n-1) = O(n), but only finitely. In a series it is different.
T(n) = (0 to n)Σ O(n - i)
Ignore i inside O(), your result is O(n^2)
The recurrence relationship you gave T(n)=T(n-1)+O(n) is true for Selection Sort, which has overall time complexity as O(n^2). Check this link to verify
In selection sort:
In iteration i, we find the index min of smallest remaining entry.
And then swap a[i] and a[min].
As such the selection sort uses
(n-1)+(n-2)+....+2+1+0 = (n-1)*(n-2)/2 = O(n*n) compares
and exactly n exchanges(swappings).
FROM ABOVE
And from the recurrence relation given above
=> T(n) = T(n-1)+ O(n)
=> T(n) = T(n-1)+ cn, where c is some positive constant
=> T(n) = cn + T(n-2) + c(n-1)
=> T(n) = cn + c(n-1) +T(n-3)+ c(n-2)
And this goes on and we finally get
=> T(n) = cn + c(n-1) + c(n-2) + ...... c (total no of n terms)
=> T(n) = c(n*(n-1)/2)
=> T(n) = O(n*n)
EDIT
Its always better to replace theta(n) as cn, where c is some constant. Helps in visualizing the equation more easily.