Is it possible to, when preprocessing occurs, request gcc (or cpp?) to link header file imports in code to different headers? For example, if I have a large codebase which uses a lot of #import <GL/gl.h>, while on the system I'm compiling on OpenGL headers reside in #import <OpenGL/gl.h>, could I request the preprocessor to link all import requests in GL to OpenGL?
Edit: The point is not to edit the source code. Like if hypothetically the only file you had access to was the Makefile.
Yes you can preprocess include or import names. Technique is called "computed includes" and documented here
#define GL_H "GL/gl.h"
...
#include GL_H
Behavior of #import in such cases must be identical to #include.
Related
Got a new issue I've not come across before that's appeared when using the Espressif ESP32 ESP-IDF standard setup under VSCode. It uses the GNU compiler.
I'm getting "multiple definition of" errors on variables that share the same name, but which should be local.
So I use a .c and .h pair of files approach.
In my .c files I do this at the top
#define IO_EXPANDER_C //<<<This is a unique define for this file pair
#include "io-pca9539.h"
In my .h files I do this:
#ifdef IO_EXPANDER_C
//----- INTERNAL ONLY MEMORY DEFINITIONS -----
uint8_t *NextReadDataPointer;
//----- INTERNAL & EXTERNAL MEMORY DEFINITIONS -----
//(Also defined below as extern)
int SomeVariableIWantAvailableGlobally;
#else
//----- EXTERNAL MEMORY DEFINITIONS -----
extern int SomeVariableIWantAvailableGlobally;
#endif
It's a great simple system, any other .c file that includes the .h file (without the #define above its include statemnt), gets all of its extern variables, none of its local variables.
But, compiling in VSCode with my ESP-IDF based project, I'm getting "multiple definition of" errors relating to "NextReadDataPointer"
I use the same variable name NextReadDataPointer in another file pair in just the same way, but it's never declared anywhere as extern and each file pair uses a separate #define (IO_EXPANDER_C and LED_C). I do this all the time normally and I can't see any obvious mistakes.
I've never seen a C compiler do this before, it's as if it's mixing up the local definitions somehow. A #define should only have scope in the file it is declared in and in any includes within that file.
Even odder, the error is not generated if the project is built but a function is called from just one of the file pairs that share the same local variable name. It's only generated when functions are called from both file pairs from my main application.
Can anyone shed light on whether the GNU C compiler does something funky for a standard ESP-IDF project as it's got me baffled?
uint8_t *NextReadDataPointer; creates a variable which is visible across all translation units, i.e. it's the opposite of "private". If you include this header in multiple c files and the linker tries to link those together; it'll see a conflict. The keyword you're looking for is static, for example static uint8_t *NextReadDataPointer; creates a variable that is not visible across translation units. The reason you don't see the problem if calling a function from only one of those two files is because in this case the linker doesn't bother looking into the other one.
Personally I'd avoid such clever preprocessor hacks because it's quite difficult to see how files include one another and debug the resulting problems. I'd suggest sticking to the standard way of declaring shared things in header files and keeping the private stuff inside the c file (prepended by static).
I am investigating using precompiled headers to reduce our compile times.
I have read the documentaiton on the subject here: https://gcc.gnu.org/onlinedocs/gcc/Precompiled-Headers.html, where I read the following:
Only one precompiled header can be used in a particular compilation.
On the project whose build time I would like to improve, there are often very Long lists of includes. The above leads me to Think that to get the most performance improvements, I would have to make a collection of common includes, put them into a single Header file, compile and include that Header file.
On the other hand, I prefer to list my dependancies in particular file explicitly, so I would be inclined to include first the precompiled Header, followed by the Manual list of actual Header files.
I have two questions related to this:
Is my analysis and approach correct? Have I interpreted the statement correctly?
Doing this, I will use this file (say stdafx.h) in many places, thereby including files I don't need. I would like to explicitly list my dependencies however, for code documentation purposes.
Where I to do something like the following:
#ifdef USE_PRECOMPILED_HEADERS
#include "stdafx.h"
#else
#include "dep1.h"
#include "dep2.h"
#endif
I could periodically run a build without pre-compiled headers to check if all my dependencis are listed. This is a bit clunky however. Does anyone have a better solution?
If anyone has Information to help us obtain better results in our Investigation, I am happy to hear them.
Yes, your observation is absolutely fine!
You "would have to make a collection of common includes, put them into a single Header file, compile and include that Header file". This common header file is generally named as stdafx.h (although you can name it anything you want!)
I am afraid I don't really understand this part of the question.
EDIT :
Do you also want the standard headers (like iostream, map, vector, etc.) to be included as dependencies in the code documentation?
Generally this must be a NO. Hence, you must include only those header files in stdafx.h which are not under your control (i.e., [1] standard language includes [2] includes from dependent modules (mostly exposed interface headers)). Rest all includes (whose source is in the current project/module) must be explicitly included in each header file wherever required, and not put in the pre-compiled stdafx.h.
The above leads me to Think that to get the most Performance
improvements, I would have to make a collection of common
includes, put them into a single Header file, compile and
include that Header file.
Yes, this observation is correct: You put most (all?) includes in one single header file, which is then precompiled.
Which, in turn, means that...
any compilation without the aid of that header being precompiled will take ages;
you are relying on naming conventions or other means (documentation?) to make the information link between things referenced in your individual translation unit and their declaration.
I don't much like precompiled headers for those reasons...
In the library I am using there is a trouble: all paths are relative.
I mean, file from path1/path2/file.h has #include "interface.h", which (interface) is located in anotherpath/anotherpath2/interface.h.
Are there any ways how can I force linker to look for includes in different directories?
The linker couldn't care less for header files. It's the compiler you are looking at. (To be really nitpicking, it's the preprocessor. ;-) )
CMake has the include_directories() command:
include_directories( "anotherpath/anotherpath2" )
This, in ./CMakeLists.txt, would make #include "interface.h" possible.
But is that what you really want? Usually, directories are used to segregate modules. #include "anotherpath/anotherpath2/interface.h" would send a much clearer message as to what is actually included here, and where a human could find that header file to look up its declarations. Perhaps a refactoring of your include statements would be better than to add lots of include directories to the CMake configuration...
Generally speaking, your question gives very little context, so it's hard to give advice.
I'm trying to use the WinSCard-library to read data from a Myfare Card.
To do so I link against WinSCard.lib and include the header "WinSCard.h".
from my .pro file:
win32: PRE_TARGETDEPS += $$PWD/Lib/WinSCard.lib
win32: LIBS += -L$$PWD/Lib/ -lWinSCard
from my .cpp file:
#include "WinSCard.h"
But now I get dozens of errors (337 to be precise) of undefined symbols like '_in', '_out', '__reserved' and so on.
I use QtCreator/mingw++ as environment. My guess is, that these are typedefs which are library specific or windows specific.
These errors happen by including the header file, I did not use any of the API-functions yet.
Can anybody give me a hint, what I need to include/link to satisfy the compiler?
Thanks
I need to be override certain macro definition by my header file. And I am not allowed to change source code. And I have to use gcc, but if anyone is aware of something similar on any other compiler then also it will help.
Here is what I exactly need:
Lets say I have code base with lot of .c files. These .c files include .h files. After all the .h files have been included for each file I want the compiler to behave as if I have another extra.h file which I want to specify when invoking the compiler. What I do in that .h file is #undef some macro and re-define the macro the way I want them to be.
Note: I am aware of --preinclude option in gcc, but using --preinclude over-rides my extra.h by the .h of the original source code. What I need is some kind of post include option.
Unless you uniformly have one specific header that is always included last in the source files, this is going to be tricky.
I think the way I'd approach it, if I had to, would be:
Create a new directory, call it headers.
Put in there suitable dummy headers with the same name as the regular headers, which would contain #include "extra.h" at the end (or possibly #include <extra.h>, but I would try to avoid that).
The dummy headers would also include the original files by some mechanism, possibly even using #include "/usr/include/header.h" but preferably some other technique - such as #include "include/header.".
The extra.h header would always redefine all its macros - it would not have the normal #ifndef EXTRA_H_INCLUDED / #define EXTRA_H_INCLUDED / #endif multiple inclusion guards, so that each time it is included, it would redefine the relevant macros.
Consequently, extra.h cannot define any types. (Or, more precisely, if it does, those must be protected against multiple definition by multiple include guards; the key point is that the macros must be defined each time the file is included - a bit like <assert.h>.)
Each redefined macro would be explicitly protected by #undef REDEFINED_MACRO and then #define REDEFINED_MACRO ....
There is no point in testing whether the macro is defined before undefining it.
The build process would be modified to look in the headers directory before looking anywhere else. The compiler option would be -I./headers or something similar, depending on exactly where you locate the headers directory.
Depending on how you have decided to locate the normal versions of the headers, you might need another -I option (such as -I/usr if you've used #include "include/header.h" notation) to locate the standard headers again.
The upshot is that your private headers get used directly by the compiler, but they include the standard headers and then your extra.h header - thus achieving what you wanted without modifying the C source or the normal headers.
But there is something misguided about the whole attempt...you would be better off not trying this.
Makefile could be used to redefine the macros through the -U and -D compiler(gcc) options. But why redefine them after the originals are evaluated? I cannot think of a need for such a thing. Can you tell what are you hoping to achieve through this?
The requirement is to insert extra.h after all the other .h files in a .c file. So adding it at the end of each .h file will insert it between two .h files included in sequence inside a .c file, which is not the intention.
You can use sed/awk inside makefile(s) to:
- first create duplicate .c files inserting '#include "extra.h"' after other #include lines inside each of the .c files (it will be tedious/ticky to resole #ifdef blocks inside the .c files)
- then achieve your target compiling those duplicate .c files
- finally delete the duplicate .c files
You can use
-include file option of GCC, because of this feature:
If multiple -include options are given, the files are included in the order they appear on the command line.
So as I understand you must include ALL *.h files from the command line,- just keep your "extra.h" the last header in -include option list and you should get what you want.
There are two ways I can think of doing this according to your requirements, and both should be relatively simple, I hope.
The first way does not touch the source code at all, however it requires that each header file you are #undef'ing things from has a header guard. You can copy and concatenate every header file that you need to "change" things in into one monolithic file, your "extra.h" file. Then at the end of that file, go ahead and redefine all the macros you need. Then include this file when you compile. The header guards will prevent the original headers from being included. Obviously, there are a number of potential problems with this approach, and it certainly wouldn't work in general.
The second way is a lot cleaner and more reliable, but it requires you to edit the code directly, albeit non-intrusively. For each header you need to redefine things in, make a copy of that header with an ".orig" suffix or something, then edit the actual header file directly. After you are all done doing whatever you are doing, then just copy all the ".orig" files back into the actual headers before your customers obtain the code. I assume your requirements aren't so draconian that you can't change the code even temporarily.
If none of that works, then I doubt you are going to find an effective answer from anybody short of hacking GCC directly and adding a "-postinclude" option yourself.