I'm a newbie to Spring Framework and of course first thing comes to mind about spring is dependency injection. Now i could be wrong since i just started learning about Spring framework (esp. about dependency injection) but i think that dependency injection of beans to said objects is not meant for transaction data. Since the bean definition is for example defined in the spring.xml (a blue print) it is not meant for transactional data but rather for static and small amount of data. I don't see that there's any way to inject thousands of transactional objects into another object using dynamic XML (created during runtime).
So did i get this right? If that is so what's the real benefit of dependency injection?
There are several benefits from using dependency injection containers rather than having components satisfy their own dependencies. Some of these benefits are:
Reduced Dependencies
Reduced Dependency Carrying
More Reusable Code
More Testable Code
More Readable Code
These benefits are explained in more detail here.
You are right, transactional data (eg: data that represents a table row) don't normally be injected declaratively. Spring DI (dependency injection) commonly use to handle collaboration between multiple classes.
Common examples I've seen is along with DAO (data access object) and MVC (model view controller) pattern. In enterprise environment it's common to have a project with dozens or hundreds of database tables -- hence dozens / hundreds of DAO classes which get injected into controller classes.
If you don't use DI, you need to conciously manage which DAO should be created first, and which DAO should be injected into which controller etc. (this is a nightmare)
Code refactoring is (should) be a common thing as well. Business requirement always changes constantly. Without DI one simple refactoring could result in a massive and tricky untangling of 'which class depends on what and where'
Of all the articles I've read about the dependency injection, this is by far the best.
If you are using Spring for DI, I would suggest you read about #primary annotation. Spring makes it even easier to choose the implementation you want(from multiple implementations) for a given service. This article is good.
Dependency Injection and Inversion of Control change the control flow adding to a specific component the responsibility to manage de dependency graph and manage how it will be connected. The result is a great decoupling between dependant and dependency, improving the code maintainability, application reliability, and testability.
Related
I'm new to spring 5 and my question is why does spring use DI and IOC? I mean why do we have to write the beans in an XML (legacy) and then create it where we need it? Why don't we use one method instead that gives us that object, until we want to use this complex mechanism that happens in the spring container?
And another question is, does not reading XML slow down the program? Because we are reading from the hard disk anyway.
Note: It is true that we can use annotations, but for now I want to ask a question about reading from xml.
Spring IoC Container is the core of Spring Framework. It creates the objects, configures and assembles their dependencies, manages their entire life cycle. The Container uses Dependency Injection(DI) to manage the components that make up the application. It gets the information about the objects from a configuration file(XML) or Java Code or Java Annotations and Java POJO class. These objects are called Beans. Since the Controlling of Java objects and their lifecycle is not done by the developers, hence the name Inversion Of Control.
More on link HERE
As for your first part of the question.
why does spring use DI
To allow the developer to keep his code loose, and not entagle classes, it keeps your code clean.
In object oriented design, the amount of coupling refers to how much the design of one class depends on the design of another class. In other words, how often do changes in class A force related changes in class B? Tight coupling means the two classes often change together, loose coupling means they are mostly independent. In general, loose coupling is recommended because it's easier to test and maintain.
You may find this paper by Martin Fowler (PDF) helpful.
I mean why do we have to write the beans in an XML (legacy) and then create it where we need it
Note: We write the bean in XML and it is created when application starts when it looks at bean defintion, techinally you are never creating a bean, you are fetching only created bean from Spring Container(IOC) that Spring created for you when you started your application.
We are writing bean blueprint, or just bean, so that it can be constructed, placed in the Spring Container when the application starts, and then we have it at our disposal that we can fetch it using getBean method.
The whole point of "why", is because by default all beans are scoped as singleton, that means, when you fetch a bean, and do with it whatever you want, you do not worry about memory or anything, Spring takes care of the beans for you if they are scoped as a Singleton.
Second question:
And another question is, does not reading XML slow down the program? Because we are reading from the hard disk anyway.
There is no difference in performance between annotation or XML, it is just a different approach, I am not sure what you mean by "reading from hard disk", but one way or another you will have to configure your application, yes, many forums prefer to run away from XML, but in my honest opinion the only reason for that is because when you write a bad configuration in XML it is lot harder to find it compared to configuration in Java that will throw an exception.
XML, application.properties files require a redeployment of the application, while annotation and java configuration require recompilation of your project, so both of them have "flaws", but it is normal and quite understandable to me.
But in the end I believe that it is a matter of preference, I know personally quite a few people that combine annotations with XML configuration and they know lot more about Spring compared to me.
So in summary, it is pain to write beans and their configuration, same as you can write a class with methods without creating an interface for it since the result will be the same, but it will help you in the long run since you do not have to worry about memory or if you destroyed that bean or if you did not.
It would be nice that you read about
1.Lazy initialization of beans
2.Eager initialization of beans
3.Singleton scope of beans
4.Prototype scope of beans
We are creating a web based application using, JSF (Primefaces as presentation library) and Spring Data JPA for data access tier. And the project is Spring Boot enabled.
The project is divided into multiple modules (according to tiers), and one of them is the presentation tier.
Do you suggest creating a dependency from presentation tier to Spring Data (so have access to PageRequest and Slice and ... classes) or not?
Otherwise we shall re-implement these classes in this tier and convert them to Spring Data classes, which seems some how verbose.
Do you suggest creating a dependency from presentation tier to Spring Data (so have access to PageRequest and Slice and ... classes) or not?
Every decision you make will have it's Pros and Cons and it really depends on your specific situation if this is a problem or not.
I see the following things in favor of a dependency:
reuse of PageRequest and similar classes. They represent concepts that are needed when working with persistence but aren't really persistence specific. Therefore there is really no point in duplicating them.
On the other hand, Spring Data contains many classes that don't have any business in a presentation layer. For example, those dealing with creating repositories.
Your task is to determine if the risk/damage of having those classes around is bigger than the benefit of having PageRequest and co available.
With all teams and projects I worked with so far I'd opt for just having a dependency.
Here is why:
The domain has a dependency on JPA and Spring Data anyway. So by depending on the domain-layer, you get a transient dependency, no matter if you want or not.
The persistence specific classes inside Spring Data are so specific that I never experienced anybody trying to use them directly.
Note that especially the first point assumes that you are not copying over your JPA entities in separate transport objects, which would kind of negate the benefits of JPA.
I have read that dependency injection is good for testing, in that a class can be tested without its dependencies, but the question comes to my mind if Class A depends on Class B or C or any class, testing Class A independent of some class is yielding a test result of zero, not a failed or past test.
Class A was created to do something and if it is not fed anything whether using new key word or setting up the extra files in Spring, Class A won't do any work.
About the idea of making code modular, readable and maintainable: so business classes became cleaner, but all we did was shift confusion from dirty Java business classes to convoluted XML files and having to delete interfaces used to inject to our loosened objects.
In short, it seems we have to make edits and changes to a file somewhere,right?
Please feel free to put me in my place if my understanding is lacking, just a little irritated with learning Spring because I see the same amount of work just rearranged.
Dependency injection is good for unit testing because you can individually test each method without that method depending on anything else. That way each unit test can test exactly one method.
I would say that if the xml is what’s annoying you check out Spring boot. It’s based on a java configuration so no xml and it simplifies a lot of configuration for you based on your class path. When I first started spring I found the xml very daunting coming from a java background but the annotation based configuration and the auto configuring done by spring boot is extremely helpful for quickly getting applications working.
IMO biggest advantage of using the spring is dependency injection which makes your life easy. For example if you would like to create a new service with three dependencies, then you can create a class very easily using Spring. But without spring, you will end up writing different factory methods which will return you the instances you are looking for. This makes your code very verbose with static method calls. You may want to take a look at the code repositories before spring era.
Again if you would like to use Spring or not is your personal call based on project complexity. But it's other features/advantages cant be overlooked.
And XML files or Java configs are the ways of achieving spring configuration - where you would like to add your business logic is personal flavour. Only thing is you should be consistent all across your project.
I would suggest that you read Martin Fowler's great article on Inversion of Control and Dependency Injection to gain a better understanding of why frameworks like Spring can be really useful to solve a well known set of common dependency injection problems when writing software.
As others have mentioned, there is no obligation to use Spring; and whatever you can do with Spring, you can probably do it by other means like abstract factories, factory methods, or service locators.
If your project is small enough, then you probably wouldn't mind solving the dependency injection issues on your own using some design patterns like those mentioned above. However, depending on the size of your project, many would prefer to use a framework or a library that already packs a bunch of solutions to these recurrent head scratchers.
In regards to the advantages of dependency injection frameworks when doing unit testing is the idea that you don't need to test the dependencies of your class, but only your class.
For example, most likely your application has a layered design. It is very common to have a data access class or a repository that you use to retrieve data from a datasource. Logically, you also have a class where you use that DAO.
Evidently, you already wrote unit testing for your DAO, and therefore, when you're testing your business class (where the DAO is being used) you don't care about testing your DAO again.
Fortunately, since Spring requires some form of dependency injection for your DAO, this means your class must provide a constructor or a setter method through which we can inject that DAO into our business class, right?
Well, then during unit testing of your business class, you can conveniently use those injection points to inject your own fake DAO (i.e. a mock object). That way, you can focus on the testing of your business class and forget about retesting the DAO again.
Now compare this idea with other solutions you may have done on your own:
You inject the dependency directly by instantiating the DAO within your business class.
You use a static factory method within your code to gain access to the DAO.
You use a static method from a service locator within your code to gain access to the DAO.
None of these solutions would make your code easy to test because there is no simple manner to get in the way of choosing exactly what dependency I want injected into my business class while testing it (e.g. how do you change the static factory method to use a fake DAO for testing purposes?).
So, in Spring, using XML configuration or annotations, you can easily have different dependencies being injected into your service object based on a number of conditions. For example, you may have some configurations for testing that evidently would be different than those used in production. And if you have a staging environment, you may even have different XML configurations of dependencies for your application depending on whether it is running in production or integration environments.
This pluggability of dependencies is the key winning factor here in my opinion.
So, as I was saying, my suggestion to you is that you first expand your understanding of what problems Spring core (and in general all dependency injection frameworks) is trying to solve and why it matters, and that will give you a broader perspective and understanding of these problems in a way that you could to determine when it is a good idea to use Spring and when it is not.
What is the Difference between Spring IOC and Spring AOP and their Importance ?
Have you searched the web for IoC and AOP? There are a lot of references to both.
In a nutshell, IoC allows an external force to determine what implementation will be used by code rather than the code determining the implementation. The "external force" might be a configuration file, a unit test, other different code, etc.
AOP allows cross-cutting concerns to be implemented outside of the code affected by those concerns.
The "purpose" of Spring includes IoC and AOP, but goes quite a ways beyond that in its scope.
For more details please check.
Inversion of Control Containers and the Dependency Injection pattern and
Aspect-oriented programming
Also check this
What is AOP, Dependency Injection and Inversion Of Control in Simple English
IoC, AOP and more
Spring IOC: In simple answer normally you create object with new operator and set yourself for getter and setter. So, yes we use new operator in Java to create object. There is no any bad in doing this. But, when your project size grows and lots of developers are working, and you want to achieve POJO-based programming, you can use DI. So then maybe your question arises - why I can not code it myself? Of course you can use the power of reflection, annotation, and XML. But, some other had already coded this then why not reuse the third party one? There are lots of options for you to choose; Spring can be the best one. It manages your object life cycle from object creation to its destruction. You use the objects created and set by Spring DI container but you do not create them yourself.
Spring AOP: It is related to cross cutting concern. What it mean is in large system the common functionality is scattered throughout different modules. So AOP provides an easiest way to take out a common implementation in the form of 'aspect'. You can also in this case write own implementation using proxy concept but you can reuse the code of proxy based that is implementation of APO alliance using Spring.
Objective of Spring IOC is to reduce explicit dependencies between components, while purpose of Spring AOP is to wire components together possibly by enforcing certain common behavior (read: NOT Interface)
Since purpose of Spring AOP is to enforce certain behavior across components.So, Spring IOC comes in handy to achieve this purpose
I have a project in which I am using NHibernate and ASP.Net MVC. The application is intended to allow users to track certain data and then produce views of statistics based upon the data entered. The structure of my application thus far looks something like this:
NHibernate Layer: Contains Repository<T> and UnitOfWork classes, as well as entity mapping definitions.
Core/Service Layer: Contains generic EntityService class. At the moment, this simply defines transaction scope via IUnitOfWork and interfaces with IRepository to provide higher-level data access services.
Presentation Layer (MVC Application): Not yet implemented, but contains the usual stuff plus dependency injection.
I have a couple of questions:
Is it poor design to allow my MVC application to handle dependency injection for ALL layers? For example, as well as dependency injection of EntityService instances into controllers, it will handle the dependency injection of IRepository into the EntityService classes. Should the service layer handle this itself, even though this would mean performing dependency injection in two distinct places?
Where should I produce my statistics? This business logic doesn't seem to belong in my service layer, which, at present, only contains entity type definitions and an interface for modifying and accessing entity properties. I have a few thoughts on this, but I'm not sure which I like best:
Keep my service layer as is and create a separate Statistics project - this is completely independent of the entity types for which it will be used, meaning my MVC controllers will have to pass raw numerical information between my business entities and my (presumably static) statistics classes. This is quite a neat separation but potentially means a lot of business logic still remaining in the presentation layer.
Create a Statistics project; however, create a tight coupling between the classes in this project and my business entities. For example, instead of passing a Reading object's values into a method, I will pass the entire object (or define them as extension methods). This will shift business logic out of my MVC app but the tight coupling seems a bit messy.
Keep all of my business logic inside my service layer. Define strongly-typed subclasses of EntityService, so my services contain both entity-specific business methods and data storage methods, while keeping the entity classes themselves as pure data containers. Create a separate Statistics project for any generic statistical processing and call its methods via my derived service classes. My service classes effectively merge business functions with the storage functionality provided created by IRepository<T>.
I am erring toward the third option but does anyone have any thoughts? Alternative suggestions?
Thanks in advance!
Preliminary observation:
I like the way in which you described your project, I just didn't get why your Data Access Layer (DAL) is called NHibernate Layer: it is odd with all the rest in which you didn't use technology name to describe a logical layer (correctly). So I suggest you to rename it DAL, and use it to abstract your app from NHibernate.
My opinions about your questions:
Absolutely no. It is good to apply Dependency Injection to All Layers. A couple or reasons for which it is good:
1.1 Testing: you can mock DAL interfaces and do unit test Service Layer w/o DAL using another DI config file. In the same way you can mock Service for Web Controllers layer and so on.
1.2 Different DAL implementations: suppose you need different DAL implementation (NOSQL, SQL or LINQ instead of NHibernate, etc..) technologies for different deployment of you project or to scale in the future. You can do that easily maintaining different DI config files.
You can have the same layer deployed in different projects. In the same way you can have a project containing different layers. I think their relation is orthogonal: project is describing a physical (development time and run time) implementation. Layers are logical. So initially I would keep it simple with the third option.
I just don't understand why you saying the following regarding this option:
Create a separate Statistics project for any generic statistical
processing and call its methods via my derived service classes. My
service classes effectively merge business functions with the storage
functionality provided created by IRepository.
I see Statistics as one or more services so you can implement it as namespace with classes inside your Service Layer. And, as any other service, you can inject DAL Repository classes. And, as any other Service/DAL, the Model classes can be shared between different Services and DAL classes.
StatsService.AverageReadingFor(Person p, DateTime start, DateTime end) sounds good.
There are several implementation options:
Using underlying repository features (for example: SQL avg function)
Using Observer Pattern which is implementable also using Dependency Injection
Using Aspect Oriented Programming. See that Spring.Net chapter as an example.
If you have more than one Service Layer instance (more than one server) than 2 and 3 must be adapted for out of process communication using a messaging system.
Just an update - Regarding my second question, I have decided to define an IStatsService<T> which expects an IEntityService<T> to be passed into its constructor. I'll use this for generic statistical processing of business entities and create further interfaces that implement IStatsService<T> where I need more type-specific information.
Hopefully this will help someone who has been scratching their head about a similar problem!