Why does spring use ioc and di? - spring

I'm new to spring 5 and my question is why does spring use DI and IOC? I mean why do we have to write the beans in an XML (legacy) and then create it where we need it? Why don't we use one method instead that gives us that object, until we want to use this complex mechanism that happens in the spring container?
And another question is, does not reading XML slow down the program? Because we are reading from the hard disk anyway.
Note: It is true that we can use annotations, but for now I want to ask a question about reading from xml.

Spring IoC Container is the core of Spring Framework. It creates the objects, configures and assembles their dependencies, manages their entire life cycle. The Container uses Dependency Injection(DI) to manage the components that make up the application. It gets the information about the objects from a configuration file(XML) or Java Code or Java Annotations and Java POJO class. These objects are called Beans. Since the Controlling of Java objects and their lifecycle is not done by the developers, hence the name Inversion Of Control.
More on link HERE
As for your first part of the question.
why does spring use DI
To allow the developer to keep his code loose, and not entagle classes, it keeps your code clean.
In object oriented design, the amount of coupling refers to how much the design of one class depends on the design of another class. In other words, how often do changes in class A force related changes in class B? Tight coupling means the two classes often change together, loose coupling means they are mostly independent. In general, loose coupling is recommended because it's easier to test and maintain.
You may find this paper by Martin Fowler (PDF) helpful.
I mean why do we have to write the beans in an XML (legacy) and then create it where we need it
Note: We write the bean in XML and it is created when application starts when it looks at bean defintion, techinally you are never creating a bean, you are fetching only created bean from Spring Container(IOC) that Spring created for you when you started your application.
We are writing bean blueprint, or just bean, so that it can be constructed, placed in the Spring Container when the application starts, and then we have it at our disposal that we can fetch it using getBean method.
The whole point of "why", is because by default all beans are scoped as singleton, that means, when you fetch a bean, and do with it whatever you want, you do not worry about memory or anything, Spring takes care of the beans for you if they are scoped as a Singleton.
Second question:
And another question is, does not reading XML slow down the program? Because we are reading from the hard disk anyway.
There is no difference in performance between annotation or XML, it is just a different approach, I am not sure what you mean by "reading from hard disk", but one way or another you will have to configure your application, yes, many forums prefer to run away from XML, but in my honest opinion the only reason for that is because when you write a bad configuration in XML it is lot harder to find it compared to configuration in Java that will throw an exception.
XML, application.properties files require a redeployment of the application, while annotation and java configuration require recompilation of your project, so both of them have "flaws", but it is normal and quite understandable to me.
But in the end I believe that it is a matter of preference, I know personally quite a few people that combine annotations with XML configuration and they know lot more about Spring compared to me.
So in summary, it is pain to write beans and their configuration, same as you can write a class with methods without creating an interface for it since the result will be the same, but it will help you in the long run since you do not have to worry about memory or if you destroyed that bean or if you did not.
It would be nice that you read about
1.Lazy initialization of beans
2.Eager initialization of beans
3.Singleton scope of beans
4.Prototype scope of beans

Related

Is Java Spring really better than straight up Java programming

I have read that dependency injection is good for testing, in that a class can be tested without its dependencies, but the question comes to my mind if Class A depends on Class B or C or any class, testing Class A independent of some class is yielding a test result of zero, not a failed or past test.
Class A was created to do something and if it is not fed anything whether using new key word or setting up the extra files in Spring, Class A won't do any work.
About the idea of making code modular, readable and maintainable: so business classes became cleaner, but all we did was shift confusion from dirty Java business classes to convoluted XML files and having to delete interfaces used to inject to our loosened objects.
In short, it seems we have to make edits and changes to a file somewhere,right?
Please feel free to put me in my place if my understanding is lacking, just a little irritated with learning Spring because I see the same amount of work just rearranged.
Dependency injection is good for unit testing because you can individually test each method without that method depending on anything else. That way each unit test can test exactly one method.
I would say that if the xml is what’s annoying you check out Spring boot. It’s based on a java configuration so no xml and it simplifies a lot of configuration for you based on your class path. When I first started spring I found the xml very daunting coming from a java background but the annotation based configuration and the auto configuring done by spring boot is extremely helpful for quickly getting applications working.
IMO biggest advantage of using the spring is dependency injection which makes your life easy. For example if you would like to create a new service with three dependencies, then you can create a class very easily using Spring. But without spring, you will end up writing different factory methods which will return you the instances you are looking for. This makes your code very verbose with static method calls. You may want to take a look at the code repositories before spring era.
Again if you would like to use Spring or not is your personal call based on project complexity. But it's other features/advantages cant be overlooked.
And XML files or Java configs are the ways of achieving spring configuration - where you would like to add your business logic is personal flavour. Only thing is you should be consistent all across your project.
I would suggest that you read Martin Fowler's great article on Inversion of Control and Dependency Injection to gain a better understanding of why frameworks like Spring can be really useful to solve a well known set of common dependency injection problems when writing software.
As others have mentioned, there is no obligation to use Spring; and whatever you can do with Spring, you can probably do it by other means like abstract factories, factory methods, or service locators.
If your project is small enough, then you probably wouldn't mind solving the dependency injection issues on your own using some design patterns like those mentioned above. However, depending on the size of your project, many would prefer to use a framework or a library that already packs a bunch of solutions to these recurrent head scratchers.
In regards to the advantages of dependency injection frameworks when doing unit testing is the idea that you don't need to test the dependencies of your class, but only your class.
For example, most likely your application has a layered design. It is very common to have a data access class or a repository that you use to retrieve data from a datasource. Logically, you also have a class where you use that DAO.
Evidently, you already wrote unit testing for your DAO, and therefore, when you're testing your business class (where the DAO is being used) you don't care about testing your DAO again.
Fortunately, since Spring requires some form of dependency injection for your DAO, this means your class must provide a constructor or a setter method through which we can inject that DAO into our business class, right?
Well, then during unit testing of your business class, you can conveniently use those injection points to inject your own fake DAO (i.e. a mock object). That way, you can focus on the testing of your business class and forget about retesting the DAO again.
Now compare this idea with other solutions you may have done on your own:
You inject the dependency directly by instantiating the DAO within your business class.
You use a static factory method within your code to gain access to the DAO.
You use a static method from a service locator within your code to gain access to the DAO.
None of these solutions would make your code easy to test because there is no simple manner to get in the way of choosing exactly what dependency I want injected into my business class while testing it (e.g. how do you change the static factory method to use a fake DAO for testing purposes?).
So, in Spring, using XML configuration or annotations, you can easily have different dependencies being injected into your service object based on a number of conditions. For example, you may have some configurations for testing that evidently would be different than those used in production. And if you have a staging environment, you may even have different XML configurations of dependencies for your application depending on whether it is running in production or integration environments.
This pluggability of dependencies is the key winning factor here in my opinion.
So, as I was saying, my suggestion to you is that you first expand your understanding of what problems Spring core (and in general all dependency injection frameworks) is trying to solve and why it matters, and that will give you a broader perspective and understanding of these problems in a way that you could to determine when it is a good idea to use Spring and when it is not.

How do I get one common instance of ApplicationContext using Spring in Java

I know that Spring is most useful for dependency injection. But what I don't understand is how do I have one common "ApplicationContext ac=....." for the whole project, lets say I have a WebApplication and it has multiple number of packages but all of them still in one project , so how do I make the ApplicationContext instantiate only once. I had read somewhere that in Spring objects are initialized only once something as singleton beans but what I dont understand is that how is it different than Singleton design pattern, there is one question on this in SO but I couldn't quite clearly understand the answer as I am a newbie to Spring trying to learn by myself. Any help would really be appreciated. Sorry if the Q is too long. Hope I was able to explain my doubt clearly.
Spring veans are by default Singleton, although it is possible to configure them as prototype which means that a new bean will be created upon each request. In practice, singleton means one instance per context and are their lifecycle is managed by Spring nwhich also provides hooks into the various stages. Spring does not manage prototype beans once they have been created.
It is common in a SpringMVC application to have more than one context (one for the business services, the other for the web controllers). You would only need to create an ApplicationContext when building a standalone application. SpringMVC applications use the ContextLoaderListener to create the necessary contexts.

Spring - dependency injection benefits

I'm a newbie to Spring Framework and of course first thing comes to mind about spring is dependency injection. Now i could be wrong since i just started learning about Spring framework (esp. about dependency injection) but i think that dependency injection of beans to said objects is not meant for transaction data. Since the bean definition is for example defined in the spring.xml (a blue print) it is not meant for transactional data but rather for static and small amount of data. I don't see that there's any way to inject thousands of transactional objects into another object using dynamic XML (created during runtime).
So did i get this right? If that is so what's the real benefit of dependency injection?
There are several benefits from using dependency injection containers rather than having components satisfy their own dependencies. Some of these benefits are:
Reduced Dependencies
Reduced Dependency Carrying
More Reusable Code
More Testable Code
More Readable Code
These benefits are explained in more detail here.
You are right, transactional data (eg: data that represents a table row) don't normally be injected declaratively. Spring DI (dependency injection) commonly use to handle collaboration between multiple classes.
Common examples I've seen is along with DAO (data access object) and MVC (model view controller) pattern. In enterprise environment it's common to have a project with dozens or hundreds of database tables -- hence dozens / hundreds of DAO classes which get injected into controller classes.
If you don't use DI, you need to conciously manage which DAO should be created first, and which DAO should be injected into which controller etc. (this is a nightmare)
Code refactoring is (should) be a common thing as well. Business requirement always changes constantly. Without DI one simple refactoring could result in a massive and tricky untangling of 'which class depends on what and where'
Of all the articles I've read about the dependency injection, this is by far the best.
If you are using Spring for DI, I would suggest you read about #primary annotation. Spring makes it even easier to choose the implementation you want(from multiple implementations) for a given service. This article is good.
Dependency Injection and Inversion of Control change the control flow adding to a specific component the responsibility to manage de dependency graph and manage how it will be connected. The result is a great decoupling between dependant and dependency, improving the code maintainability, application reliability, and testability.

Spring core container is the basis for complete Spring framework?

All websites state that the Spring core container is the basis for complete Spring framework i.e., it is used across
the all modules like AOP, JDBC module, Web module, etc. As per my understanding, the Spring core container's main purpose is
to inject dependencies, so avoiding the need of factory classes and methods. Is that correct?
Second question: When it is said, Spring core container is the basis for complete Spring framework (e.g., for Spring AOP). As per my understanding, in Spring AOP also, getting the object of classes like
ProxyFactoryBean is achieved by core container. Right?
Thirdly, it is stated that Spring core container avoids the need for programming the use of singletons. How come singleton
classes are avoided by core container?
yep
yep
All beans declared in Spring config files are singleton by default. They are instantiated when your application starts.
First off, your understanding of what you get from Spring is about right. So let's get on to your third question, the interesting one.
The key is it's not that you don't have singletons, it's that they're singletons by configuration. This is a vital difference, as it means you can avoid all the complicated singleton enforcement code (the source of frequent problems) and instead just write exceptionally simple programs that focus on the business end of things. This is particularly important when you are writing a program with non-trivial object lifetimes: for example, in a webapp it makes it very easy to manage the lifespan of objects that hold state associated with a user's session, since if the objects have session scope, they'll be “singleton per user session”. That's enormously easier to work with than many of the alternatives.
The fact that Spring can also help out with transactions is just perfect as transaction handling is distinctly non-trivial, and AOP is the best solution to them in Java that I've seen (other languages have other options open) with Spring supporting a pretty straight-forward way of doing it. Try to do it properly without if you don't believe me. Spring's pretty much wonderful.

Is it bad practice for a spring-based jar project to provide a bean configuration file?

If you have a library containing Spring beans that need to be wired together before an application can use them, does it make sense to include any sort of bean configuration file in the JAR (such as the /META-INF directory)? The idea is to give the application the option of importing this into its master Spring context configuration.
There may be more than one way to wire these beans, so I could provide a bean configuration file for each of the standard ways in which you'd typically wire them together.
Or, do I force the application to wire these up explicitly?
If it helps, the specifics of my problem involve a library I created to encapsulate our product's persistence layer. It contains Service, DAO and model beans. The DAO implementations currently use Hibernate (this probably won't change). Some of the DAO implementations need different kinds of Strategy beans injected into them (database encryption logic), depending on the type of database we are deploying on (MySQL vs SQL Server, etc). So we have potentially a few different configuration scenarios. I could also provide datasource bean configurations, relying on property substitution at the app level to inject all the particulars needed by the datasource.
Thanks for your input!
In this case, it's a good idea to provide some beans files, either as examples for documentation purposes, or as fully-fledged files ready for including into a wider context.
If your beans' wiring can get complex, then you shouldn't really leave it entirely up to the library client to figure it out.
This is more of a documentation and education task, really.

Resources