Color recoginition in iTunes? - algorithm

When Selecting the Album View in iTunes and clicking on a cover art, iTunes expands a colored band, that matches the cover art. Interestingly, font colors and highlight colors are also chosen to create a good match to the cover. I am working on an algorithm that does the same, but did not come up with a good solution to automatically find dominant colors in an image. My best solution is to take the respective median values of r, g and b. Any better ideas?

There was an excellent blog post recently about finding dominant colors in images by using k-means clustering. I'm not sure how well it will apply to your situation, but it might be a great starting point.
Hope this helps!

Related

How to count the number of spots in this image?

I am trying to count the number of hairs transplanted in the following image. So practically, I have to count the number of spots I can find in the center of image.
(I've uploaded the inverted image of a bald scalp on which new hairs have been transplanted because the original image is bloody and absolutely disgusting! To see the original non-inverted image click here. To see the larger version of the inverted image just click on it). Is there any known image processing algorithm to detect these spots? I've found out that the Circle Hough Transform algorithm can be used to find circles in an image, I'm not sure if it's the best algorithm that can be applied to find the small spots in the following image though.
P.S. According to one of the answers, I tried to extract the spots using ImageJ, but the outcome was not satisfactory enough:
I opened the original non-inverted image (Warning! it's bloody and disgusting to see!).
Splited the channels (Image > Color > Split Channels). And selected the blue channel to continue with.
Applied Closing filter (Plugins > Fast Morphology > Morphological Filters) with these values: Operation: Closing, Element: Square, Radius: 2px
Applied White Top Hat filter (Plugins > Fast Morphology > Morphological Filters) with these values: Operation: White Top Hat, Element: Square, Radius: 17px
However I don't know what to do exactly after this step to count the transplanted spots as accurately as possible. I tried to use (Process > Find Maxima), but the result does not seem accurate enough to me (with these settings: Noise tolerance: 10, Output: Single Points, Excluding Edge Maxima, Light Background):
As you can see, some white spots have been ignored and some white areas which are not actually hair transplant spots, have been marked.
What set of filters do you advise to accurately find the spots? Using ImageJ seems a good option since it provides most of the filters we need. Feel free however, to advise what to do using other tools, libraries (like OpenCV), etc. Any help would be highly appreciated!
I do think you are trying to solve the problem in a bit wrong way. It might sound groundless, so I'd better show my results first.
Below I have a crop of you image on the left and discovered transplants on the right. Green color is used to highlight areas with more than one transplant.
The overall approach is very basic (will describe it later), but still it provides close to be accurate results. Please note, it was a first try, so there is a lot of room for enhancements.
Anyway, let's get back to the initial statement saying you approach is wrong. There are several major issues:
the quality of your image is awful
you say you want to find spots, but actually you are looking for hair transplant objects
you completely ignores the fact average head is far from being flat
it does look like you think filters will add some important details to your initial image
you expect algorithms to do magic for you
Let's review all these items one by one.
1. Image quality
It might be very obvious statement, but before the actual processing you need to make sure you have best possible initial data. You might spend weeks trying to find a way to process photos you have without any significant achievements. Here are some problematic areas:
I bet it is hard for you to "read" those crops, despite the fact you have the most advanced object recognition algorithms in your brain.
Also, your time is expensive and you still need best possible accuracy and stability. So, for any reasonable price try to get: proper contrast, sharp edges, better colors and color separation.
2. Better understanding of the objects to be identified
Generally speaking, you have a 3D objects to be identified. So you can analyze shadows in order to improve accuracy. BTW, it is almost like a Mars surface analysis :)
3. The form of the head should not be ignored
Because of the form of the head you have distortions. Again, in order to get proper accuracy those distortions should be corrected before the actual analysis. Basically, you need to flatten analyzed area.
3D model source
4. Filters might not help
Filters do not add information, but they can easily remove some important details. You've mentioned Hough transform, so here is interesting question: Find lines in shape
I will use this question as an example. Basically, you need to extract a geometry from a given picture. Lines in shape looks a bit complex, so you might decide to use skeletonization
All of a sadden, you have more complex geometry to deal with and virtually no chances to understand what actually was on the original picture.
5. Sorry, no magic here
Please be aware of the following:
You must try to get better data in order to achieve better accuracy and stability. The model itself is also very important.
Results explained
As I said, my approach is very simple: image was posterized and then I used very basic algorithm to identify areas with a specific color.
Posterization can be done in a more clever way, areas detection can be improved, etc. For this PoC I just have a simple rule to highlight areas with more than one implant. Having areas identified a bit more advanced analysis can be performed.
Anyway, better image quality will let you use even simple method and get proper results.
Finally
How did the clinic manage to get Yondu as client? :)
Update (tools and techniques)
Posterization - GIMP (default settings,min colors)
Transplant identification and visualization - Java program, no libraries or other dependencies
Having areas identified it is easy to find average size, then compare to other areas and mark significantly bigger areas as multiple transplants.
Basically, everything is done "by hand". Horizontal and vertical scan, intersections give areas. Vertical lines are sorted and used to restore the actual shape. Solution is homegrown, code is a bit ugly, so do not want to share it, sorry.
The idea is pretty obvious and well explained (at least I think so). Here is an additional example with different scan step used:
Yet another update
A small piece of code, developed to verify a very basic idea, evolved a bit, so now it can handle 4K video segmentation in real-time. The idea is the same: horizontal and vertical scans, areas defined by intersected lines, etc. Still no external libraries, just a lot of fun and a bit more optimized code.
Additional examples can be found on YouTube: RobotsCanSee
or follow the progress in Telegram: RobotsCanSee
I've just tested this solution using ImageJ, and it gave good preliminary result:
On the original image, for each channel
Small (radius 1 or 2) closing in order to get rid of the hairs (black part in the middle of the white one)
White top-hat of radius 5 in order to detect the white part around each black hair.
Small closing/opening in order to clean a little bit the image (you can also use a median filter)
Ultimate erode in order to count the number of white blob remaining. You can also certainly use a LoG (Laplacian of Gaussian) or a distance map.
[EDIT]
You don't detect all the white spots using the maxima function, because after the closing, some zones are flat, so the maxima is not a point, but a zone. At this point, I think that an ultimate opening or an ultimate eroded would give you the center or each white spot. But I am not sure that there is a function/pluggin doing it in ImageJ. You can take a look to Mamba or SMIL.
A H-maxima (after white top-hat) may also clean a little bit more your results and improve the contrast between the white spots.
As Renat mentioned, you should not expect algorithms to do magic for you, however I'm hopeful to come up with a reasonable estimate of the number of spots. Here, I'm going to give you some hints and resources, check them out and call me back if you need more information.
First, I'm kind of hopeful to morphological operations, but I think a perfect pre-processing step may push the accuracy yielded by them dramatically. I want you put my finger on the pre-processing step. Thus I'm going ti work with this image:
That's the idea:
Collect and concentrate the mass around the spot locations. What do I mean my concentrating the masses? Let's open the book from the other side: As you see, the provided image contains some salient spots surrounded by some noisy gray-level dots.
By dots, I mean the pixels that are not part of a spot, but their gray-value are larger than zero (pure black) - which are available around the spots. It is clear that if you clear these noisy dots, you surely will come up with a good estimate of spots using other processing tools such as morphological operations.
Now, how to make the image more sharp? What if we could make the dots to move forward to their nearest spots? This is what I mean by concentrating the masses over the spots. Doing so, only the prominent spots will be present in the image and hence we have made a significant step toward counting the prominent spots.
How to do the concentrating thing? Well, the idea that I just explained is available in this paper, which its code is luckily available. See the section 2.2. The main idea is to use a random walker to walk on the image for ever. The formulations is stated such that the walker will visit the prominent spots far more times and that can lead to identifying the prominent spots. The algorithm is modeled Markov chain and The equilibrium hitting times of the ergodic Markov chain holds the key for identifying the most salient spots.
What I described above is just a hint and you should read that short paper to get the detailed version of the idea. Let me know if you need more info or resources.
That is a pleasure to think on such interesting problems. Hope it helps.
You could do the following:
Threshold the image using cv::threshold
Find connected components using cv::findcontour
Reject the connected components of size larger than a certain size as you seem to be concerned about small circular regions only.
Count all the valid connected components.
Hopefully, you have a descent approximation of the actual number of spots.
To be statistically more accurate, you could repeat 1-4 for a range of thresholds and take the average.
This is what you get after applying unsharpen radius 22, amount 5, threshold 2 to your image.
This increases the contrast between the dots and the surrounding areas. I used the ballpark assumption that the dots are somewhere between 18 and 25 pixels in diameter.
Now you can take the local maxima of white as a "dot" and fill it in with a black circle until the circular neighborhood of the dot (a circle of radius 10-12) erases the dot. This should let you "pick off" the dots joined to each other in clusters more than 2. Then look for local maxima again. Rinse and repeat.
The actual "dot" areas are in stark contrast to the surrounding areas, so this should let you pick them off as well as you would by eyeballing it.

Alien tiles heuristic function

I am trying to find a good A* heuristic function for the problem "alien tiles", found at www.alientiles.com for a uni project.
In alien tiles you have a board with NxN tiles, all colored red. By clicking on a tile, all tiles in the same row and column advance by a color, the color order being red->green->blue->purple, resetting to red after purple. The goal is to change all tiles to the specified colors. The simplest goal state is all the tiles going from red to green, blue or purple. The board doesn't have to be 7x7 as the site suggests.
I've thought of summing the difference between each tile and the target tile and dividing by 2N-1 for an NxM board or or finding possible patterns of clicks as the minimum number of clicks, but neither has been working well. I can't think of a way to apply relaxation to the problem or divide it into sub-problems either, since a single click affects an entire row and column.
Of course I'm not asking for anyone to find a solution for me, but some tips or some relevant, simpler problems that I can look at (rubik's cube is such an example that I'm looking at).
Thanks in advance.
The problem you are trying to solve is similar to NIM FOCUS name. Please have a look at it. The solutions for it can be found in Stuart J. Russell book under heuristics section. Hope this helps
Although it is a relatively 'dumb' way of thinking around the problem, one heuristic mechanism i have found that drastically cuts down on the number of states that a star expands, tries to figure out a relationship between the cell that has been clicked most recently and the number of states that clicking on it again would expand. Its like telling a star: "If you have clicked on a cell in your last move, try clicking on another one this time." Obviously in special scenarios,
(e.g. having all the board on your target colour, say green, and only a purple cross where clicking on the center of the cross twice changes the cross colour to green and then you are done)
this way of thinking is actually detrimental. But, it is a place to start.
Please let me know if u figure anything out, as it is something i am working on as well.

Application of Maximizing area in a histogram algorithm

I solved this question Maximize the rectangular area under Histogram today.
This left me thinking, are there any real life application to this algorithm ?
If you wanted to attach a label or some text to a histogram inside the bars, one good place to put it is the center of the maximum rectangle.
And even if this particular problem isn't very interesting at first glance, there are a ton of data visualization problems that are related. And the techniques used to solve this problem can be applied elsewhere.

Algorithm Arrange images on screen

I need to start building a image application and my customer wants to arrange the picutes in the screen like google tv does, as well as everpix. I have been looking for it for a while but I was unable to find it. The result of arranging the pictures this way is amazing and makes the best use of the screen space.
http://www.google.com//tv/static/images/photos_tv_straight.png
Is this a known algorithm? Does it have a name?
Many thanks
T
Like jwpat7 suggested look for "photo collage layout" algorithms. Particularly things like "treemap" and similar (squarified trieemap). I am working on similar algorithm and for some small number of images you just need to solve simple system of linear equations. There is another HP article that is probably more close to what are you looking for.
Mixed-Initiative Photo Collage Authoring - look at part 4.
Following image is done with some squarified treemap and ratio optimization.
Search for photo montage and photo collage algorithms, as well as photo tiling.
An HP article called "Structured Layout for Resizable Background Art" may be helpful.
Numerous collage programs are available for purchase and some software is available in source form; e.g. see hlrnet list, software.informer list, and perhaps this resizing blurb.
The algebra for scaling photos for a collage while maintaining aspect ratios is straightforward and easily described for specific cases, but not for too-general ones.
In css you can arrange images from horizontal to vertical. A good example is the Google image search. There is the Jquery Masonry plugin to arrange from vertical to horizontal and it has some nice animation. In your example you want to have rather a rectangle arrangement I suggest a treemap algorithm where you can also rotate the rectangle in 90°.

How does Content-Aware fill work?

In the upcoming version of Photoshop there is a feature called Content-Aware fill.
This feature will fill a selection of an image based on the surrounding image - to the point it can generate bushes and clouds while being seamless with the surrounding image.
See http://www.youtube.com/watch?v=NH0aEp1oDOI for a preview of the Photoshop feature I'm talking about.
My question is:
How does this feature work algorithmically?
I am a co-author of the PatchMatch paper previously mentioned here, and I led the development of the original Content-Aware Fill feature in Photoshop, along with Ivan Cavero Belaunde and Eli Shechtman in the Creative Technologies Lab, and Jeff Chien on the Photoshop team.
Photoshop's Content-Aware Fill uses a highly optimized, multithreaded variation of the algorithm described in the PatchMatch paper, and an older method called "SpaceTime Video Completion." Both papers are cited on the following technology page for this feature:
http://www.adobe.com/technology/projects/content-aware-fill.html
You can find out more about us on the Adobe Research web pages.
I'm guessing that for the smaller holes they are grabbing similarly textured patches surrounding the area to fill it in. This is described in a paper entitled "PatchMatch: A Randomized Correspondence Algorithm for Structural Image Editing" by Connelly Barnes and others in SIGGRAPH 2009. For larger holes they can exploit a large database of pictures with similar global statistics or texture, as describe in "Scene Completion Using Millions of Photographs". If they somehow could fused the two together I think it should work like in the video.
There is very similar algorithm for GIMP for a quite long time. It is called resynthesizer and probably you should be able to find a source for it (maybe at the project site)
EDIT
There is also source available at the ubuntu repository
And here you can see processing the same images with GIMP: http://www.youtube.com/watch?v=0AoobQQBeVc&feature=related
Well, they are not going to tell for the obvious reasons. The general name for the technique is "inpainting", you can look this up.
Specifically, if you look at what Criminisi did while in Microsoft http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.67.9407 and what Todor Georgiev does now at Adobe http://www.tgeorgiev.net/Inpainting.html, you'll be able to make a very good guess. A 90% guess, I'd say, which should be good enough.
I work on a similar problem. From what i read they use "PatchMatch" or "non-parametric patch sampling" in general.
PatchMatch: A Randomized Correspondence Algorithm
for Structural Image Editing
As a guess (and that's all that it would be) I'd expect that it does some frequency analysis (some like a Fourier transform) of the image. By looking only at the image at the edge of the selection and ignoring the middle, it could then extrapolate back into the middle. If the designers choose the correct color plains and what not, they should be able to generate a texture that seamlessly blends into the image at the edges.
edit: looking at the last example in the video; if you look at the top of the original image on either edge you see that the selection line runs right down a "gap" in the clouds and that right in the middle there is a "bump". These are the kind of artifacts I'd expect to see if my guess is correct. (OTOH, I'd also expect to see them is it was using some kind of sudo-mirroring across the selection boundary.)
The general approach is either content-aware fill or seam-carving. Ariel Shamir's group is responsible for the seminal work here, which was presented in SIGGRAPH 2007. See:
http://www.faculty.idc.ac.il/arik/site/subject-seam-carve.asp
Edit: Please see answer from the co-author of Content-Aware fill. I will be deleting this soon.

Resources