How to know the buffer size passed from user space? - linux-kernel

I'm trying to develop a new syscall for the linux kernel. This syscall will write info on the user buffer that is taken as argument, e.g.:
asmlinkage int new_syscall(..., char *buffer,...){...}
In user space this buffer is statically allocated as:
char buffer[10000];
There's a way (as sizeof() in the user level) to know the whole buffer size (10000 in this case)?
I have tried strlen_user(buffer) but it returns me the length of the string that is currently into the buffer, so if the buffer is empty it returns 0.

You can try passing structure which will contain the buffer pointer & the size of the buffer. But the same structure should also be defined in both user-space application & inside your system-call's code in kernel.
struct new_struct
{
void *p; //set this pointer to your buffer...
int size;
};
//from user-application...
int main()
{
....
struct new_struct req_kernel;
your_system_call_function(...,(void *)&req_kernel,...);
}
........................................................................................
//this is inside your kernel...
your_system_call(...,char __user optval,...)
{
.....
struct new_struct req;
if (copy_from_user(&req, optval, sizeof(req)))
return -EFAULT;
//now you have the address or pointer & size of the buffer
//which you want in kernel with struct req...
}

Related

What is the purpose of the function "blk_rq_map_user" in the NVME disk driver?

I am trying to understand the nvme linux drivers. I am now tackling the function nvme_user_submit_cmd, which I report partially here:
static int nvme_submit_user_cmd(struct request_queue *q,
struct nvme_command *cmd, void __user *ubuffer,
unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
u32 meta_seed, u32 *result, unsigned timeout)
{
bool write = nvme_is_write(cmd);
struct nvme_ns *ns = q->queuedata;
struct gendisk *disk = ns ? ns->disk : NULL;
struct request *req;
struct bio *bio = NULL;
void *meta = NULL;
int ret;
req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
[...]
if (ubuffer && bufflen) {
ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
GFP_KERNEL);
[...]
The ubufferis a pointer to some data in the virtual address space (since this comes from an ioctl command from a user application).
Following blk_rq_map_user I was expecting some sort of mmap mechanism to translate the userspace address into a physical address, but I can't wrap my head around what the function is doing. For reference here's the call chain:
blk_rq_map_user -> import_single_range -> blk_rq_map_user_iov
Following those function just created some more confusion for me and I'd like some help.
The reason I think that this function is doing a sort of mmap is (apart from the name) that this address will be part of the struct request in the struct request queue, which will eventually be processed by the NVME disk driver (https://lwn.net/Articles/738449/) and my guess is that the disk wants the physical address when fulfilling the requests.
However I don't understand how is this mapping done.
ubuffer is a user virtual address, which means it can only be used in the context of a user process, which it is when submit is called. To use that buffer after this call ends, it has to be mapped to one or more physical addresses for the bios/bvecs. The unmap call frees the mapping after the I/O completes. If the device can't directly address the user buffer due to hardware constraints then a bounce buffer will be mapped and a copy of the data will be made.
Edit: note that unless a copy is needed, there is no kernel virtual address mapped to the buffer because the kernel never needs to touch the data.

How Memory is allocated for member in the example

I was looking at Microsoft site about single inheritance. In the example given (code is copied at the end), I am not sure how memory is allocated to Name. Memory is allocated for 10 objects. But Name is a pointer member of the class. I guess I can assign constant string something like
DocLib[i]->Name = "Hello";
But we cannot change this string. In such situation, do I need allocate memory to even Name using new operator in the same for loop something like
DocLib[i]->Name = new char[50];
The code from Microsoft site is here:
// deriv_SingleInheritance4.cpp
// compile with: /W3
struct Document {
char *Name;
void PrintNameOf() {}
};
class PaperbackBook : public Document {};
int main() {
Document * DocLib[10]; // Library of ten documents.
for (int i = 0 ; i < 10 ; i++)
DocLib[i] = new Document;
}
Yes in short. Name is just a pointer to a char (or char array). The structure instantiation does not allocate space for this char (or array). You have to allocate space, and make the pointer(Name) point to that space. In the following case
DocLib[i]->Name = "Hello";
the memory (for "Hello") is allocated in the read only data section of the executable(on load) and your pointer just points to this location. Thats why its not modifiable.
Alternatively you could use string objects instead of char pointers.

copy_from_user is fetching unexpected data

I want to use the write sycall for copying a struct
from userspace to kernel.
In both user and kernel space, the struct is defined as
struct packet{
unsigned char packet[256];
int length;
}__attribute__ ((packed));
User space uses a local variable of type struct packet and passes it to the write syscall.
struct packet p;
/* ... (fill in data) */
printf("packet.length: %d\n",packet.length); /* looks correct */
result = write(uartFD, &p, sizeof(struct packet));
The kernel side looks like this, checking for correct length is done, just removed from example.
/* write syscall */
ssize_t packet_write(
struct file *file_ptr,
const char __user *user_buffer,
size_t count, loff_t *position)
{
struct packet p;
int retval;
if (copy_from_user((void*)&p, user_buffer, sizeof(struct packet))){
retval = -EACCES;
goto err;
}
/* looks wrong - different numbers like 96373062 or 96373958 */
printk("packet length: %d\n",p.length);
The opposite direction using read sycall is working as expected:
/* read syscall */
struct packet p;
/* ... (fill in data) */
copy_to_user(user_buffer, (void*)&p, sizeof(struct packet));
/* userspace */
read(uartFD, (void*)&packet, sizeof(struct packet));
What am I doing wrong with write syscall?
(Posted on behalf of the OP).
This is solved - it was my own silly. Both copying an integer and an unsigned char buffer separately was working, so it had to be something about the struct.
One site was packed, the other was not... reusing old code...

how to transfer string(char*) in kernel into user process using copy_to_user

I'm making code to transfer string in kernel to usermode using systemcall and copy_to_user
here is my code
kernel
#include<linux/kernel.h>
#include<linux/syscalls.h>
#include<linux/sched.h>
#include<linux/slab.h>
#include<linux/errno.h>
asmlinkage int sys_getProcTagSysCall(pid_t pid, char **tag){
printk("getProcTag system call \n\n");
struct task_struct *task= (struct task_struct*) kmalloc(sizeof(struct task_struct),GFP_KERNEL);
read_lock(&tasklist_lock);
task = find_task_by_vpid(pid);
if(task == NULL )
{
printk("corresponding pid task does not exist\n");
read_unlock(&tasklist_lock);
return -EFAULT;
}
read_unlock(&tasklist_lock);
printk("Corresponding pid task exist \n");
printk("tag is %s\n" , task->tag);
/*
task -> tag : string is stored in task->tag (ex : "abcde")
this part is well worked
*/
if(copy_to_user(*tag, task->tag, sizeof(char) * task->tag_length) !=0)
;
return 1;
}
and this is user
#include<stdio.h>
#include<stdlib.h>
int main()
{
char *ret=NULL;
int pid = 0;
printf("PID : ");
scanf("%4d", &pid);
if(syscall(339, pid, &ret)!=1) // syscall 339 is getProcTagSysCall
printf("pid %d does not exist\n", pid);
else
printf("Corresponding pid tag is %s \n",ret); //my output is %s = null
return 0;
}
actually i don't know about copy_to_user well. but I think copy_to_user(*tag, task->tag, sizeof(char) * task->tag_length) is operated like this code
so i use copy_to_user like above
#include<stdio.h>
int re();
void main(){
char *b = NULL;
if (re(&b))
printf("success");
printf("%s", b);
}
int re(char **str){
char *temp = "Gdg";
*str = temp;
return 1;
}
Is this a college assignment of some sort?
asmlinkage int sys_getProcTagSysCall(pid_t pid, char **tag){
What is this, Linux 2.6? What's up with ** instead of *?
printk("getProcTag system call \n\n");
Somewhat bad. All strings are supposed to be prefixed.
struct task_struct *task= (struct task_struct*) kmalloc(sizeof(struct task_struct),GFP_KERNEL);
What is going on here? Casting malloc makes no sense whatsoever, if you malloc you should have used sizeof(*task) instead, but you should not malloc in the first place. You want to find a task and in fact you just overwrite this pointer's value few lines later anyway.
read_lock(&tasklist_lock);
task = find_task_by_vpid(pid);
find_task_by_vpid requires RCU. The kernel would have told you that if you had debug enabled.
if(task == NULL )
{
printk("corresponding pid task does not exist\n");
read_unlock(&tasklist_lock);
return -EFAULT;
}
read_unlock(&tasklist_lock);
So... you unlock... but you did not get any kind of reference to the task.
printk("Corresponding pid task exist \n");
printk("tag is %s\n" , task->tag);
... in other words by the time you do task->tag, the task may already be gone. What requirements are there to access ->tag itself?
if(copy_to_user(*tag, task->tag, sizeof(char) * task->tag_length) !=0)
;
What's up with this? sizeof(char) is guaranteed to be 1.
I'm really confused by this entire business.
When you have a syscall which copies data to userspace where amount of data is not known prior to the call, teh syscall accepts both buffer AND its size. Then you can return appropriate error if the thingy you are trying to copy would not fit.
However, having a syscall in the first place looks incorrect. In linux per-task data is exposed to userspace in /proc/pid/. Figuring out how to add a file to proc is easy and left as an exercise for the reader.
It's quite obvious from the way you fixed it. copy_to_user() will only copy data between two memory regions - one accessible only to kernel and the other accessible also to user. It will not, however, handle any memory allocation. Userspace buffer has to be already allocated and you should pass address of this buffer to the kernel.
One more thing you can change is to change your syscall to use normal pointer to char instead of pointer to pointer which is useless.
Also note that you are leaking memory in your kernel code. You allocate memory for task_struct using kmalloc and then you override the only pointer you have to this memory when calling find_task_by_vpid() and this memory is never freed. find_task_by_vpid() will return a pointer to a task_struct which already exists in memory so there is no need to allocate any buffer for this.
i solved my problem by making malloc in user
I changed
char *b = NULL;
to
char *b = (char*)malloc(sizeof(char) * 100)
I don't know why this work properly. but as i guess copy_to_user get count of bytes as third argument so I should malloc before assigning a value
I don't know. anyone who knows why adding malloc is work properly tell me

What is the use of 'i2c_get_clientdata" and "i2c_set_clientdata"

I have been studying I2C driver (client) code for a while.
I have seen this function "i2c_get_clientdata" and "i2c_set_clientdata" every where.
I have seen the this question here .
Use of pointer to structure instead of creating static local copy
Some times i think like it is like "container_of" macro to get a pointer to the structure.
But still i didn't understood properly why to use it and when to use it.
Below i am posting a sample code where I see its usage.
If any one could help me understand why it is used there and when we shall use it when we write our own drivers.
struct max6875_data {
struct i2c_client *fake_client;
struct mutex update_lock;
u32 valid;
u8 data[USER_EEPROM_SIZE];
unsigned long last_updated[USER_EEPROM_SLICES];
};
static ssize_t max6875_read(struct file *filp, struct kobject *kobj,
struct bin_attribute *bin_attr,
char *buf, loff_t off, size_t count)
{
struct i2c_client *client = kobj_to_i2c_client(kobj);
struct max6875_data *data = i2c_get_clientdata(client);
int slice, max_slice;
if (off > USER_EEPROM_SIZE)
return 0;
if (off + count > USER_EEPROM_SIZE)
count = USER_EEPROM_SIZE - off;
/* refresh slices which contain requested bytes */
max_slice = (off + count - 1) >> SLICE_BITS;
for (slice = (off >> SLICE_BITS); slice <= max_slice; slice++)
max6875_update_slice(client, slice);
memcpy(buf, &data->data[off], count);
return count;
}
Those functions are used to get/set the void *driver_data pointer that is part of the struct device, itself part of struct i2c_client.
This is a void pointer that is for the driver to use. One would use this pointer mainly to pass driver related data around.
That is what is happening in your example. The max6875_read is a callback getting a structu kobject. That kobject is an i2c_client which is enough to communicate with the underlying device using the driver_data pointer here allows to get back the driver related data (instead of using global variables for example).

Resources