Understanding Ruby Closures - ruby

I'm trying to better understand Ruby closures and I came across this example code which I don't quite understand:
def make_counter
n = 0
return Proc.new { n = n + 1 }
end
c = make_counter
puts c.call # => this outputs 1
puts c.call # => this outputs 2
Can someone help me understand what actually happens in the above code when I call c = make_counter? In my mind, here's what I think is happening:
Ruby calls the make_counter method and returns a Proc object where the code block associated with the Proc will be { n = 1 }. When the first c.call is executed, the Proc object will execute the block associated with it, and returns n = 1. However, when the second c.call is executed, doesn't the Proc object still execute the block associated with it, which is still { n = 1 }? I don't get why the output will change to 2.
Maybe I'm not understanding this at all, and it would be helpful if you could provide some clarification on what's actually happening within Ruby.

The block is not evaluated when make_counter is called. The block is evaluated and run when you call the Proc via c.call. So each time you run c.call, the expression n = n + 1 will be evaluated and run. The binding for the Proc will cause the n variable to remain in scope since it (the local n variable) was first declared outside the Proc closure. As such, n will keep incrementing on each iteration.
To clarify this further:
The block that defines a Proc (or lambda) is not evaluated at initialization - the code within is frozen exactly as you see it.
Ok, the code is actually 'evaluated', but not for the purpose of changing the frozen code. Rather, it is checked for any variables that are currently in scope that are being used within the context of the Proc's code block. Since n is a local variable (as it was defined the line before), and it is used within the Proc, it is captured within the binding and comes along for the ride.
When the call method is called on the Proc, it will execute the 'frozen' code within the context of that binding that had been captured. So the n that had been originally been assigned as 0, is incremented to 1. When called again, the same n will increment again to 2. And so on...

I always feel like to understand whats going on, its always important to revisit the basics. No one ever answered the question of what is a Proc in Ruby which to a newbie reading this post, that would be crucial and would help in answering this question.
At a high-level, procs are methods that can be stored inside variables.
Procs can also take a code block as its parameter, in this case it took n = n + 1. In other programming languages a block is called a closure. Blocks allow you to group statements together and encapsulate behavior.
There are two ways to create blocks in Ruby. The example you provide is using curly braces syntax.
So why use Procs if you can use methods to perform the same functionality?
The answer is that Procs give you more flexibility than methods. With Procs you can store an entire set of processes inside a variable and then call the variable anywhere else in your program.
In this case, Proc was written inside a method and then that method was stored inside a variable called c and then called with puts each time incrementing the value of n.
Similar to Procs, Lambdas also allow you to store functions inside a variable and call the method from other parts of a program.

This here:
return Proc.new { n = n + 1 }
Actually, returns a proc object which has a block associated with it. And Ruby creates a binding with blocks! So the execution context is stored for later use and hence why we can increment n. Let me go a bit further into explaining Ruby Closures, so you can have a more broader idea.
First, we need to clarify the technical term 'binding'. In Ruby, a binding object encapsulates the execution context at some particular scope in a program and retains this context for future use in the program. This execution context includes arguments passed to a method and any local variables defined in the method, any associated blocks, the return stack and the value of self. Take this example:
class SomeClass
def initialize
#ivar = 'instance variable'
end
def m(param)
lvar = 'local variable'
binding
end
end
b = SomeClass.new.m(100) { 'block executed' }
=> #<Binding:0x007fb354b7aca0>
eval "puts param", b
=> 100
eval "puts lvar", b
=> local variable
eval "puts yield", b
=> block executed
eval "puts self", b
=> #<SomeClass:0x007fb354ad82e8>
eval "puts #ivar", b
instance variable
The last statement might seem a little tricky but it's not. Remember binding holds execution context for later use. So when we invoke yield, it is invoking yield as if it was still in that execution context and hence it invokes the block.
It's interesting, you can even reassign the value of the local variables in the closure:
eval "lvar = 'changed in eval'", b
eval "puts lvar", b
=> changed in eval
Now this is all cute, but not so useful. Bindings are really useful as it pertains to blocks. Ruby associates a binding object with a block. So when you create a proc or a lambda, the resulting Proc object holds not just the executable block but also bindings for all the variables used by the block.
You already know that blocks can use local variables and method arguments that are defined outside the block. In the following code, for example, the block associated with the collect iterator uses the method argument n:
# multiply each element of the data array by n
def multiply(data, n)
data.collect {|x| x*n }
end
puts multiply([1,2,3], 2) # Prints 2,4,6
What is more interesting is that if the block were turned into a proc or lambda, it could access n even after the method to which it is an argument had returned. That's because there is a binding associated to the block of the lambda or proc object! The following code demonstrates:
# Return a lambda that retains or "closes over" the argument n
def multiplier(n)
lambda {|data| data.collect{|x| x*n } }
end
doubler = multiplier(2) # Get a lambda that knows how to double
puts doubler.call([1,2,3]) # Prints 2,4,6
The multiplier method returns a lambda. Because this lambda is used outside of the scope in which it is defined, we call it a closure; it encapsulates or “closes over” (or just retains) the binding for the method argument n.
It is important to understand that a closure does not just retain the value of the variables it refers to—it retains the actual variables and extends their lifetime. Another way to say this is that the variables used in a lambda or proc are not statically bound when the lambda or proc is created. Instead, the bindings are dynamic, and the values of the variables are looked up when the lambda or proc is executed.

Related

why pass block arguments to a function in ruby?

I'm unclear on why there is a need to pass block arguments when calling a function.
why not just pass in as function arguments and what happens to the block arguments, how are they passed and used?
m.call(somevalue) {|_k, v| v['abc'] = 'xyz'}
module m
def call ( arg1, *arg2, &arg3)
end
end
Ruby, like almost all mainstream programming languages, is a strict language, meaning that arguments are fully evaluated before being passed into the method.
Now, imagine you want to implement (a simplified version of) Integer#times. The implementation would look a little bit like this:
class Integer
def my_times(action_to_be_executed)
raise ArgumentError, "`self` must be non-negative but is `#{inspect}`" if negative?
return if zero?
action_to_be_executed
pred.my_times(action_to_be_executed)
end
end
3.my_times(puts "Hello")
# Hello
0.my_times(puts "Hello")
# Hello
-1.my_times(puts "Hello")
# Hello
# ArgumentError (`self` must be non-negative but is `-1`)
As you can see, 3.my_times(puts "Hello") printed Hello exactly once, instead of thrice, as it should do. Also, 0.my_times(puts "Hello") printed Hello exactly once, instead of not at all, as it should do, despite the fact that it returns in the second line of the method, and thus action_to_be_executed is never even evaluated. Even -1.my_times(puts "Hello") printed Hello exactly once, despite that fact that it raises an ArgumentError exception as the very first thing in the method and thus the entire rest of the method body is never evaluated.
Why is that? Because Ruby is strict! Again, strict means that arguments are fully evaluated before being passed. So, what this means is that before my_times even gets called, the puts "Hello" is evaluated (which prints Hello to the standard output stream), and the result of that evaluation (which is just nil because Kernel#puts always returns nil) is passed into the method.
So, what we need to do, is somehow delay the evaluation of the argument. One way we know how to delay evaluation, is by using a method: methods are only evaluated when they are called.
So, we take a page out of Java's playbook, and define a Single Abstract Method Protocol: the argument that is being passed to my_each must be an object which implements a method with a specific name. Let's call it call, because, well, we are going to call it.
This would look a little bit like this:
class Integer
def my_times(action_to_be_executed)
raise ArgumentError, "`self` must be non-negative but is `#{inspect}`" if negative?
return if zero?
action_to_be_executed.call
pred.my_times(action_to_be_executed)
end
end
def (hello = Object.new).call
puts "Hello"
end
3.my_times(hello)
# Hello
# Hello
# Hello
0.my_times(hello)
-1.my_times(hello)
# ArgumentError (`self` must be non-negative but is `-1`)
Nice! It works! The argument that is passed is of course still strictly evaluated before being passed (we can't change the fundamental nature of Ruby from within Ruby itself), but this evaluation only results in the object that is bound by the local variable hello. The code that we want to run is another layer of indirection away and will only be executed at the point where we actually call it.
It also has another advantage: Integer#times actually makes the index of the current iteration available to the action as an argument. This was impossible to implement with our first solution, but here we can do it, because we are using a method and methods can take arguments:
class Integer
def my_times(action_to_be_executed)
raise ArgumentError, "`self` must be non-negative but is `#{inspect}`" if negative?
__my_times_helper(action_to_be_executed)
end
protected
def __my_times_helper(action_to_be_executed, index = 0)
return if zero?
action_to_be_executed.call(index)
pred.__my_times_helper(action_to_be_executed, index + 1)
end
end
def (hello = Object.new).call(i)
puts "Hello from iteration #{i}"
end
3.my_times(hello)
# Hello from iteration 0
# Hello from iteration 1
# Hello from iteration 2
0.my_times(hello)
-1.my_times(hello)
# ArgumentError (`self` must be non-negative but is `-1`)
However, this is not actually very readable. If you didn't want to give a name to this action that we are trying to pass but instead simply literally write it down inside the argument list, it would look something like this:
3.my_times(Object.new.tap do |obj|
def obj.call(i)
puts "Hello from iteration #{i}"
end
end)
# Hello from iteration 0
# Hello from iteration 1
# Hello from iteration 2
or on one line:
3.my_times(Object.new.tap do |obj| def obj.call; puts "Hello from iteration #{i}" end end)
# Hello from iteration 0
# Hello from iteration 1
# Hello from iteration 2
# or:
3.my_times(Object.new.tap {|obj| def obj.call; puts "Hello from iteration #{i}" end })
# Hello from iteration 0
# Hello from iteration 1
# Hello from iteration 2
Now, I don't know about you, but I find that pretty ugly.
In Ruby 1.9, Ruby added Proc literals aka stabby lambda literals to the language. Lambda literals are a concise literal syntax for writing objects with a call method, specifically Proc objects with Proc#call.
Using lambda literals, and without any changes to our existing code, it looks something like this:
3.my_times(-> i { puts "Hello from iteration #{i}" })
# Hello from iteration 0
# Hello from iteration 1
# Hello from iteration 2
This does not look bad!
When Yukihiro "matz" Matsumoto designed Ruby almost thirty years ago in early 1993, he did a survey of the core libraries and standard libraries of languages like Smalltalk, Scheme, and Common Lisp to figure out how such methods that take a piece of code as an argument are actually used, and he found that the overwhelming majority of such methods take exactly one code argument and all they do with that argument is call it.
So, he decided to add special language support for a single argument that contains code and can only be called. This argument is both syntactically and semantically lightweight, in particular, it looks syntactically exactly like any other control structure, and it is semantically not an object.
This special language feature, you probably guessed it, are blocks.
Every method in Ruby has an optional block parameter. I can always pass a block to a method. It's up to the method to do anything with the block. Here, for example, the block is useless because Kernel#puts doesn't do anything with a block:
puts("Hello") { puts "from the block" }
# Hello
Because blocks are not objects, you cannot call methods on them. Also, because there can be only one block argument, there is no need to give it a name: if you refer to a block, it's always clear which block because there can be only one. But, if the block doesn't have methods and doesn't have a name, how can we call it?
That's what the yield keyword is for. It temporarily "yields" control flow to the block, or, in other words, it calls the block.
With blocks, our solution would look like this:
class Integer
def my_times(&action_to_be_executed)
raise ArgumentError, "`self` must be non-negative but is `#{inspect}`" if negative?
return enum_for(__callee__) unless block_given?
__my_times_helper(&action_to_be_executed)
end
protected
def __my_times_helper(&action_to_be_executed, index = 0)
return if zero?
yield index
pred.__my_times_helper(&action_to_be_executed, index + 1)
end
end
3.my_times do
puts "Hello from iteration #{i}"
end
# Hello from iteration 0
# Hello from iteration 1
# Hello from iteration 2
0.my_times do
puts "Hello from iteration #{i}"
end
-1.my_times do
puts "Hello from iteration #{i}"
end
# ArgumentError (`self` must be non-negative but is `-1`)
Okay, you might notice that I simplified a bit when I wrote above that the only thing you can do with a block is call it. There are two other things you can do with it:
You can check whether a block argument was passed using Kernel#block_given?. Since blocks are always optional, and blocks have no names, there must be a way to check whether a block was passed or not.
You can "roll up" a block (which is not an object and doesn't have a name) into a Proc object (which is an object) and bind it to a parameter (which gives it a name) using the & ampersand unary prefix sigil in the parameter list of the method. Now that we have an object, and a way to refer to it, we can store it in a variable, return it from a method, or (as we are doing here) pass it along as an argument to a different method, which otherwise wouldn't be possible.
There is also the opposite operation: with the & ampersand unary prefix operator, you can "unroll" a Proc object into a block in an argument list; this makes it so that the method behaves as if you had passed the code that is stored inside the Proc as a literal block argument to the method.
And there you have it! That's what blocks are for: a semantically and syntactically lightweight form of passing code to a method.
There are other possible approaches, of course. The approach that is closest to Ruby is probably Smalltalk. Smalltalk also has a concept called blocks (in fact, that is where Ruby got both the idea and the name from). Similarly to Ruby, Smalltalk blocks have a syntactically light-weight literal form, but they are objects, and you can pass more than one to a method. Thanks to Smalltalk's generally light-weight and simple syntax, especially the keyword method syntax which intersperses parts of the method name with the arguments, even passing multiple blocks to a method call is very concise and readable.
For example, Smalltalk actually does not have an if / then / else conditional expression, in fact, Smalltalk has no control structures at all. Everything is done with methods. So, the way that a conditional works, is that the two boolean classes TrueClass and FalseClass each have a method named ifTrue:ifFalse: which takes two block arguments, and the two implementations will simply either evaluate the first or the second block. For example, the implementation in TrueClass might look a little bit like this (note that Smalltalk has no syntax for classes or methods, instead classes and methods are created in the IDE by creating class objects and method objects via the GUI):
True>>ifTrue: trueBlock ifFalse: falseBlock
"Answer with the value of `trueBlock`."
↑trueBlock value
The corresponding implementation in FalseClass would then look like this:
FalseClass>>ifTrue: trueBlock ifFalse: falseBlock
"Answer with the value of `falseBlock`."
↑falseBlock value
And you would call it like this:
2 < 3 ifTrue: [ Transcript show: 'yes' ] ifFalse: [ Transcript show: 'no' ].
"yes"
4 < 3 ifTrue: [ Transcript show: 'yes' ] ifFalse: [ Transcript show: 'no' ].
"no"
In ECMAScript, you can simply use function definitions as expressions, and there is also lightweight syntax for functions.
In the various Lisps, code is just data, and data is code, so you can just pass the code as an argument as data, then inside the function, treat that data as code again.
Scala has call-by-name parameters which are only evaluated when you use their name, and they are evaluated every time you use their name. It would look something like this:
implicit class IntegerTimes(val i: Int) extends AnyVal {
#scala.annotation.tailrec
def times(actionToBeExecuted: => Unit): Unit = {
if (i < 0) throw new Error()
if (i == 0) () else { actionToBeExecuted; (i - 1).times(actionToBeExecuted) }
}
}
3.times { println("Hello") }
// Hello
// Hello
// Hello

Are there special rules for naming and calling Procs?

I completed a Ruby challenge on Hacker Rank, but I don't understand why a Proc is able to be called with an abbreviated version of its saved name.
The proc was defined as:
proc_sum_array = proc {|arr| arr.reduce(:+)}
But it was called like this:
proc_sum.call(my_array)
...without the "_array" part of the name proc_sum_array
This confused me, so I changed 'proc_sum.call(my_array)' to 'proc_sum_array.call(my_array)' but then I got the error:
undefined local variable or method `proc_sum_array' for main:Object (NameError)
Did you mean? proc_sum
So it appears that it is important that the proc is called as proc_sum and not proc_sum_array, as it was named.
def square_of_sum (my_array, proc_square, proc_sum)
sum = proc_sum.call(my_array) # QUESTION: Why is this proc_sum, and not proc_sum_array ?
proc_square.call(sum)
end
proc_square_number = proc {|x| x ** 2}
proc_sum_array = proc {|arr| arr.reduce(:+)} # This is where the proc is defined.
my_array = gets.split().map(&:to_i)
puts square_of_sum(my_array, proc_square_number, proc_sum_array)
I would expect that proc_sum_arry would be called as proc_sum_array.call. Why is this not the case?
This is called a parameter. A parameter is kind of like a "hole" that you leave in the definition of a subroutine. When you invoke that subroutine, you "fill" that "hole" with an argument. (This is called "passing an argument".)
Here:
def square_of_sum (my_array, proc_square, proc_sum)
# ↑↑↑↑↑↑↑↑
You define a method named square_of_sum with a couple of parameters. The third one of those parameters is called proc_sum.
Here:
puts square_of_sum(my_array, proc_square_number, proc_sum_array)
# ↑↑↑↑↑↑↑↑↑↑↑↑↑↑
You pass the object that is referenced by the local variable proc_sum_array as an argument to the invocation of the square_of_sum method.
What this means is that inside the body of the method, the object that you passed as an argument will be bound to the parameter (this is called binding an argument to a parameter), i.e. when you dereference the parameter proc_sum inside the body of square_of_sum, it will evaluate to whatever object was passed as an argument.
Note that proc_sum_array is a local variable (you know that it is a local variable because 1) it starts with a lowercase letter and 2) it is not a method). Local variables are called "local" variables because they are local to the scope they are defined in. In this particular case, proc_sum_array is local to the script scope, which means that it doesn't even exist inside the method scope of square_of_sum, so you simply can't refer to it at all!
Note also that this is exactly the same as for every other parameter of square_of_sum: you refer to the object that is passed as an argument for the proc_square parameter as proc_square and not as proc_square_number.
Ok, now as you linked actual example, I can answer you.
The reason why it's referred to as proc_sum, not proc_sum_array is because it's how the argument passed into square_of_sum method is named. It's not magical at all. It's similar to:
a = 2
def sqr(b)
b * b
end
sqr(a)
You see, you define a local variable, but you pass it as b argument in the sqr method, so inside of this method you refer to it as b.

In Ruby, is an if/elsif/else statement's subordinate block the same as a 'block' that is passed as a parameter?

I was doing some reading on if/elsif/else in Ruby, and I ran into some differences in terminology when describing how control expressions work.
In the Ruby Programming Wikibooks (emphasis added):
A conditional Branch takes the result of a test expression and executes a block of code depending whether the test expression is true or false.
and
An if expression, for example, not only determines whether a subordinate block of code will execute, but also results in a value itself.
Ruby-doc.org, however, does not mention blocks at all in the definitions:
The simplest if expression has two parts, a “test” expression and a “then” expression. If the “test” expression evaluates to a true then the “then” expression is evaluated.
Typically, when I have read about 'blocks' in Ruby, it has almost always been within the context of procs and lambdas. For example, rubylearning.com defines a block:
A Ruby block is a way of grouping statements, and may appear only in the source adjacent to a method call; the block is written starting on the same line as the method call's last parameter (or the closing parenthesis of the parameter list).
The questions:
When talking about blocks of code in Ruby, are we talking about
the group of code that gets passed in to a method or are we simply
talking about a group of code in general?
Is there a way to easily differentiate between the two (and is there
a technical difference between the two)?
Context for these questions: I am wondering if referring to the code inside of conditionals as blocks will be confusing to to new Ruby programmers when they are later introduced to blocks, procs, and lambdas.
TL;DR if...end is an expression, not a block
The proper use of the term block in Ruby is the code passed to a method in between do...end or curly braces {...}. A block can be and often is implicitly converted into a Proc within a method by using the &block syntax in the method signature. This new Proc is an object with its own methods that can be passed to other methods, stored in variables and data structures, called repeatedly, etc...
def block_to_proc(&block)
prc = block
puts prc
prc.class
end
block_to_proc { 'inside the block' }
# "#<Proc:0x007fa626845a98#(irb):21>"
# => Proc
In the code above, a Proc is being implicitly created with the block as its body and assigned to the variable block. Likewise, a Proc (or a lambda, a type of Proc) can be "expanded" into blocks and passed to methods that are expecting them, by using the &block syntax at the end of an arguments list.
def proc_to_block
result = yield # only the return value of the block can be saved, not the block itself
puts result
result.class
end
block = Proc.new { 'inside the Proc' }
proc_to_block(&block)
# "inside the Proc"
# => String
Although there's somewhat of a two-way street between blocks and Procs, they're not the same. Notice that to define a Proc we had to pass a block to Proc.new. Strictly speaking a block is just a chunk of code passed to a method whose execution is deferred until explicitly called. A Proc is defined with a block, its execution is also deferred until called, but it is a bonafide object just like any other. A block cannot survive on its own, a Proc can.
On the other hand, block or block of code is sometimes casually used to refer to any discreet chunk of code enclosed by Ruby keywords terminating with end: if...else...end, begin...rescue...end, def...end, class...end, module...end, until...end. But these are not really blocks, per se, and only really resemble them on the surface. Often they also have deferred execution until some condition is met. But they can stand entirely on their own, and always have return values. Ruby-doc.org's use of "expression" is more accurate.
From wikipedia
An expression in a programming language is a combination of one or
more explicit values, constants, variables, operators, and functions
that the programming language interprets (according to its particular
rules of precedence and of association) and computes to produce ("to
return", in a stateful environment) another value.
This is why you can do things like this
return_value = if 'expression'
true
end
return_value # => true
Try doing that with a block
return_value = do
true
end
# SyntaxError: (irb):24: syntax error, unexpected keyword_do_block
# return_value = do
# ^
A block is not an expression on its own. It needs either yield or a conversion to a Proc to survive. What happens when we pass a block to a method that doesn't want one?
puts("indifferent") { "to blocks" }
# "indifferent"
# => nil
The block is totally lost, it disappears with no return value, no execution, as if it never existed. It needs yield to complete the expression and produce a return value.
class Object
def puts(*args)
super
yield if block_given?
end
end
puts("mindful") { "of blocks" }
# "mindful"
# => "of blocks"

How `[]` works with lambdas

I have this lambda (or is closure the correct usage?) and I understand the usage of .call
def multi(m)
lambda { |n| n * m }
end
two = multi(2)
two.call(10) #=> 20 #call the proc
But I am trying to understand why/how this works?
two.(20) #=> 40
two[20] #=> 40
I don't know whether it should or shouldn't work. Most of the time I have used square brackets with arrays.
The documentation
prc[params,...] → obj
Invokes the block, setting the block’s parameters to the values in params using something close to method calling semantics. Generates a warning if multiple values are passed to a proc that expects just one (previously this silently converted the parameters to an array). Note that prc.() invokes prc.call() with the parameters given. It’s a syntax sugar to hide “call”.
For procs created using lambda or ->() an error is generated if the wrong number of parameters are passed to a Proc with multiple parameters. For procs created using Proc.new or Kernel.proc, extra parameters are silently discarded.
For your first question, proc.() is a hack because Ruby doesn't let you define () on an object. It's just syntaxic sugar for proc.call().
For your second question, using square brackets on a Proc calls it.

Can someone explain Ruby's use of pipe characters in a block?

Can someone explain to me Ruby's use of pipe characters in a block? I understand that it contains a variable name that will be assigned the data as it iterates. But what is this called? Can there be more than one variable inside the pipes? Anything else I should know about it? Any good links to more information on it?
For example:
25.times { | i | puts i }
Braces define an anonymous function, called a block. Tokens between the pipe are the arguments of this block. The number of arguments required depends on how the block is used. Each time the block is evaluated, the method requiring the block will pass a value based on the object calling it.
It's the same as defining a method, only it's not stored beyond the method that accepts a block.
For example:
def my_print(i)
puts i
end
will do the same as this when executed:
{|i| puts i}
the only difference is the block is defined on the fly and not stored.
Example 2:
The following statements are equivalent
25.times &method(:my_print)
25.times {|i| puts i}
We use anonymous blocks because the majority of functions passed as a block are usually specific to your situation and not worth defining for reuse.
So what happens when a method accepts a block? That depends on the method. Methods that accept a block will call it by passing values from their calling object in a well defined manner. What's returned depends on the method requiring the block.
For example: In 25.times {|i| puts i} .times calls the block once for each value between 0 and the value of its caller, passing the value into the block as the temporary variable i. Times returns the value of the calling object. In this case 25.
Let's look at method that accepts a block with two arguments.
{:key1 => "value1", :key2 => "value2"}.each {|key,value|
puts "This key is: #{key}. Its value is #{value}"
}
In this case each calls the block ones for each key/value pair passing the key as the first argument and the value as the second argument.
The pipes specify arguments that are populated with values by the function that calls your block. There can be zero or more of them, and how many you should use depends on the method you call.
For example, each_with_index uses two variables and puts the element in one of them and the index in the other.
here is a good description of how blocks and iterators work
Block arguments follow all the same conventions as method parameters (at least as of 1.9): you can define optional arguments, variable length arg lists, defaults, etc. Here's a pretty decent summary.
Some things to be aware of: because blocks see variables in the scope they were defined it, if you pass in an argument with the same name as an existing variable, it will "shadow" it - your block will see the passed in value and the original variable will be unchanged.
i = 10
25.times { | i | puts i }
puts i #=> prints '10'
Will print '10' at the end. Because sometimes this is desirable behavior even if you are not passing in a value (ie you want to make sure you don't accidentally clobber a variable from surrounding scope) you can specify block-local variable names after a semicolon after the argument list:
x = 'foo'
25.times { | i ; x | puts i; x = 'bar' }
puts x #=> prints 'foo'
Here, 'x' is local to the block, even though no value is passed in.

Resources