I have to simulate facial expressions on a face image ( say open mouth ). For this I first extracted the facial feature points and found the corners of the lips. Now I need to deform the image by moving the points down.
In the above image I need to move the points ( 2 ) and ( 3 ) to some distance left and right respectively. And point ( 18 ) and ( 19 ) littele bit down. So that I will get an expression like opened mouth.
My Questions:
1) Is this the above way right to proceed to simulate facial expression?
2) If it is right how to move the points and create a new image in opencv?
A fairly recent survey and course of techniques people have used in this area is here:
http://old.siggraph.org/publications/2006cn/course30.pdf
TL:DR. There is no "right" way to do it, in any absolute sense. You need to define your goal in a way that is computable. Then figure out what additional (prior) information you need to reach it, in addition to the image data themselves. Fiddling with "texture warping" or other interpolation schemes before you decide what you need to do is a waste of time.
You mention "an expression like an opened mouth", and I interpret that to mean that you'd like to produce an image similar to what the real face would look like if the subject had been photographed with their mouth open. The markers you found obviously do not give enough information about that - in particular, they do not express any notion of "mouth". In fact, that notion is nowhere to be found in the image. So, strictly speaking, your task is unsolvable unless you throw more information into it.
I suggest you take a look at the paper pointed above, and rethink your problem again.
so, here we go again..
i've seen a lot of people using delauny triangulation from those points, and then texture warping or distortion in opengl or even opencv.
https://github.com/MasteringOpenCV/code/tree/master/Chapter7_HeadPoseEstimation
looks quite related, parts of the "MasteringOpencv" book are on google.books
Related
I have an idea for an app that takes a printed page with four squares in each corner and allows you to measure objects on the paper given at least two squares are visible. I want to be able to have a user take a picture from less than perfect angles and still have the objects be measured accurately.
I'm unable to figure out exactly how to find information on this subject due to my lack of knowledge in the area. I've been able to find examples of opencv code that does some interesting transforms and the like but I've yet to figure out what I'm asking in simpler terms.
Does anyone know of papers or mathematical concepts I can lookup to get further into this project?
I'm not quite sure how or who to ask other than people on this forum, sorry for the somewhat vague question.
What you describe is very reminiscent of augmented reality marker tracking. Maybe you can start by searching these words on a search engine of your choice.
A single marker, if done correctly, can be used to identify it without confusing it with other markers AND to determine how the surface is placed in 3D space in front of the camera.
But that's all very difficult and advanced stuff, I'd greatly advise to NOT try and implement something like this, it would take years of research... The only way you have is to use a ready-made open source library that outputs the data you need for your app.
It may even not exist. In that case you'll have to buy one. Given the niché of your problem that would be perfectly plausible.
Here I give you only the programming aspect and if you want you can find out about the mathematical aspect from those examples. Most of the functions you need can be done using OpenCV. Here are some examples in python:
To detect the printed paper, you can use cv2.findContours function. The most outer contour is possibly the paper, but you need to test on actual images. https://docs.opencv.org/3.1.0/d4/d73/tutorial_py_contours_begin.html
In case of sloping (not in perfect angle), you can find the angle by cv2.minAreaRect which return the angle of the contour you found above. https://docs.opencv.org/3.1.0/dd/d49/tutorial_py_contour_features.html (part 7b).
If you want to rotate the paper, use cv2.warpAffine. https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_geometric_transformations/py_geometric_transformations.html
To detect the object in the paper, there are some methods. The easiest way is using the contours above. If the objects are in certain colors, you can detect it by using color filter. https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_colorspaces/py_colorspaces.html
Im looking to create a program that detects HEADS with opencv, not just faces. There must be a way to do this. Besides heads, I need to identify the most high pixel of the head (the top part of the hair) and the low center point of the chin... I'm not finding any OS X OpenCV examples.. Here is a picture of what I'd like to achieve...https://pasteboard.co/GF19Fao.jpg
Looks simple enough right?
I would recommend looking into haarcascades for this.
This consists of a couple cascades not included in OpenCV.
Method 1:
The profile and frontal face ones are a good starting point.
Personally, I have not tested them yet so it is hard for me to tell you what the results look like.
If the final bounding box fits perfectly over the entire head alone, then you can make the following assumptions as a starting point
if box = (topLeft, topRight, bottomLeft, bottomRight)
then hairTop = distance(topLeft, topRight)/2
and chin = distance(bottomLeft, bottomRight)/2
If not you could do two things:
1. Make some measurement readjustments to see how far up or down to move the resulting rectangle in order to find the chin and top hair.
2. You could use a combination of other classifiers as well.
Combine the results of the front/profile face with the mouth classifier to find the chin
Combine the front/profile face with upperbody classifier to find the top hair.
Method 2
You could also use the front/profile face classifiers to find the top hair and just use mouth to find the chin.
Either methods require that you run multiple tests to find the optimal values/estimates that fulfill your task.
I am trying to count the number of hairs transplanted in the following image. So practically, I have to count the number of spots I can find in the center of image.
(I've uploaded the inverted image of a bald scalp on which new hairs have been transplanted because the original image is bloody and absolutely disgusting! To see the original non-inverted image click here. To see the larger version of the inverted image just click on it). Is there any known image processing algorithm to detect these spots? I've found out that the Circle Hough Transform algorithm can be used to find circles in an image, I'm not sure if it's the best algorithm that can be applied to find the small spots in the following image though.
P.S. According to one of the answers, I tried to extract the spots using ImageJ, but the outcome was not satisfactory enough:
I opened the original non-inverted image (Warning! it's bloody and disgusting to see!).
Splited the channels (Image > Color > Split Channels). And selected the blue channel to continue with.
Applied Closing filter (Plugins > Fast Morphology > Morphological Filters) with these values: Operation: Closing, Element: Square, Radius: 2px
Applied White Top Hat filter (Plugins > Fast Morphology > Morphological Filters) with these values: Operation: White Top Hat, Element: Square, Radius: 17px
However I don't know what to do exactly after this step to count the transplanted spots as accurately as possible. I tried to use (Process > Find Maxima), but the result does not seem accurate enough to me (with these settings: Noise tolerance: 10, Output: Single Points, Excluding Edge Maxima, Light Background):
As you can see, some white spots have been ignored and some white areas which are not actually hair transplant spots, have been marked.
What set of filters do you advise to accurately find the spots? Using ImageJ seems a good option since it provides most of the filters we need. Feel free however, to advise what to do using other tools, libraries (like OpenCV), etc. Any help would be highly appreciated!
I do think you are trying to solve the problem in a bit wrong way. It might sound groundless, so I'd better show my results first.
Below I have a crop of you image on the left and discovered transplants on the right. Green color is used to highlight areas with more than one transplant.
The overall approach is very basic (will describe it later), but still it provides close to be accurate results. Please note, it was a first try, so there is a lot of room for enhancements.
Anyway, let's get back to the initial statement saying you approach is wrong. There are several major issues:
the quality of your image is awful
you say you want to find spots, but actually you are looking for hair transplant objects
you completely ignores the fact average head is far from being flat
it does look like you think filters will add some important details to your initial image
you expect algorithms to do magic for you
Let's review all these items one by one.
1. Image quality
It might be very obvious statement, but before the actual processing you need to make sure you have best possible initial data. You might spend weeks trying to find a way to process photos you have without any significant achievements. Here are some problematic areas:
I bet it is hard for you to "read" those crops, despite the fact you have the most advanced object recognition algorithms in your brain.
Also, your time is expensive and you still need best possible accuracy and stability. So, for any reasonable price try to get: proper contrast, sharp edges, better colors and color separation.
2. Better understanding of the objects to be identified
Generally speaking, you have a 3D objects to be identified. So you can analyze shadows in order to improve accuracy. BTW, it is almost like a Mars surface analysis :)
3. The form of the head should not be ignored
Because of the form of the head you have distortions. Again, in order to get proper accuracy those distortions should be corrected before the actual analysis. Basically, you need to flatten analyzed area.
3D model source
4. Filters might not help
Filters do not add information, but they can easily remove some important details. You've mentioned Hough transform, so here is interesting question: Find lines in shape
I will use this question as an example. Basically, you need to extract a geometry from a given picture. Lines in shape looks a bit complex, so you might decide to use skeletonization
All of a sadden, you have more complex geometry to deal with and virtually no chances to understand what actually was on the original picture.
5. Sorry, no magic here
Please be aware of the following:
You must try to get better data in order to achieve better accuracy and stability. The model itself is also very important.
Results explained
As I said, my approach is very simple: image was posterized and then I used very basic algorithm to identify areas with a specific color.
Posterization can be done in a more clever way, areas detection can be improved, etc. For this PoC I just have a simple rule to highlight areas with more than one implant. Having areas identified a bit more advanced analysis can be performed.
Anyway, better image quality will let you use even simple method and get proper results.
Finally
How did the clinic manage to get Yondu as client? :)
Update (tools and techniques)
Posterization - GIMP (default settings,min colors)
Transplant identification and visualization - Java program, no libraries or other dependencies
Having areas identified it is easy to find average size, then compare to other areas and mark significantly bigger areas as multiple transplants.
Basically, everything is done "by hand". Horizontal and vertical scan, intersections give areas. Vertical lines are sorted and used to restore the actual shape. Solution is homegrown, code is a bit ugly, so do not want to share it, sorry.
The idea is pretty obvious and well explained (at least I think so). Here is an additional example with different scan step used:
Yet another update
A small piece of code, developed to verify a very basic idea, evolved a bit, so now it can handle 4K video segmentation in real-time. The idea is the same: horizontal and vertical scans, areas defined by intersected lines, etc. Still no external libraries, just a lot of fun and a bit more optimized code.
Additional examples can be found on YouTube: RobotsCanSee
or follow the progress in Telegram: RobotsCanSee
I've just tested this solution using ImageJ, and it gave good preliminary result:
On the original image, for each channel
Small (radius 1 or 2) closing in order to get rid of the hairs (black part in the middle of the white one)
White top-hat of radius 5 in order to detect the white part around each black hair.
Small closing/opening in order to clean a little bit the image (you can also use a median filter)
Ultimate erode in order to count the number of white blob remaining. You can also certainly use a LoG (Laplacian of Gaussian) or a distance map.
[EDIT]
You don't detect all the white spots using the maxima function, because after the closing, some zones are flat, so the maxima is not a point, but a zone. At this point, I think that an ultimate opening or an ultimate eroded would give you the center or each white spot. But I am not sure that there is a function/pluggin doing it in ImageJ. You can take a look to Mamba or SMIL.
A H-maxima (after white top-hat) may also clean a little bit more your results and improve the contrast between the white spots.
As Renat mentioned, you should not expect algorithms to do magic for you, however I'm hopeful to come up with a reasonable estimate of the number of spots. Here, I'm going to give you some hints and resources, check them out and call me back if you need more information.
First, I'm kind of hopeful to morphological operations, but I think a perfect pre-processing step may push the accuracy yielded by them dramatically. I want you put my finger on the pre-processing step. Thus I'm going ti work with this image:
That's the idea:
Collect and concentrate the mass around the spot locations. What do I mean my concentrating the masses? Let's open the book from the other side: As you see, the provided image contains some salient spots surrounded by some noisy gray-level dots.
By dots, I mean the pixels that are not part of a spot, but their gray-value are larger than zero (pure black) - which are available around the spots. It is clear that if you clear these noisy dots, you surely will come up with a good estimate of spots using other processing tools such as morphological operations.
Now, how to make the image more sharp? What if we could make the dots to move forward to their nearest spots? This is what I mean by concentrating the masses over the spots. Doing so, only the prominent spots will be present in the image and hence we have made a significant step toward counting the prominent spots.
How to do the concentrating thing? Well, the idea that I just explained is available in this paper, which its code is luckily available. See the section 2.2. The main idea is to use a random walker to walk on the image for ever. The formulations is stated such that the walker will visit the prominent spots far more times and that can lead to identifying the prominent spots. The algorithm is modeled Markov chain and The equilibrium hitting times of the ergodic Markov chain holds the key for identifying the most salient spots.
What I described above is just a hint and you should read that short paper to get the detailed version of the idea. Let me know if you need more info or resources.
That is a pleasure to think on such interesting problems. Hope it helps.
You could do the following:
Threshold the image using cv::threshold
Find connected components using cv::findcontour
Reject the connected components of size larger than a certain size as you seem to be concerned about small circular regions only.
Count all the valid connected components.
Hopefully, you have a descent approximation of the actual number of spots.
To be statistically more accurate, you could repeat 1-4 for a range of thresholds and take the average.
This is what you get after applying unsharpen radius 22, amount 5, threshold 2 to your image.
This increases the contrast between the dots and the surrounding areas. I used the ballpark assumption that the dots are somewhere between 18 and 25 pixels in diameter.
Now you can take the local maxima of white as a "dot" and fill it in with a black circle until the circular neighborhood of the dot (a circle of radius 10-12) erases the dot. This should let you "pick off" the dots joined to each other in clusters more than 2. Then look for local maxima again. Rinse and repeat.
The actual "dot" areas are in stark contrast to the surrounding areas, so this should let you pick them off as well as you would by eyeballing it.
I 'm trying to find an efficient way of acceptable complexity to
detect an object in an image so I can isolate it from its surroundings
segment that object to its sub-parts and label them so I can then fetch them at will
It's been 3 weeks since I entered the image processing world and I've read about so many algorithms (sift, snakes, more snakes, fourier-related, etc.), and heuristics that I don't know where to start and which one is "best" for what I'm trying to achieve. Having in mind that the image dataset in interest is a pretty large one, I don't even know if I should use some algorithm implemented in OpenCV or if I should implement one my own.
Summarize:
Which methodology should I focus on? Why?
Should I use OpenCV for that kind of stuff or is there some other 'better' alternative?
Thank you in advance.
EDIT -- More info regarding the datasets
Each dataset consists of 80K images of products sharing the same
concept e.g. t-shirts, watches, shoes
size
orientation (90% of them)
background (95% of them)
All pictures in each datasets look almost identical apart from the product itself, apparently. To make things a little more clear, let's consider only the 'watch dataset':
All the pictures in the set look almost exactly like this:
(again, apart form the watch itself). I want to extract the strap and the dial. The thing is that there are lots of different watch styles and therefore shapes. From what I've read so far, I think I need a template algorithm that allows bending and stretching so as to be able to match straps and dials of different styles.
Instead of creating three distinct templates (upper part of strap, lower part of strap, dial), it would be reasonable to create only one and segment it into 3 parts. That way, I would be confident enough that each part was detected with respect to each other as intended to e.g. the dial would not be detected below the lower part of the strap.
From all the algorithms/methodologies I've encountered, active shape|appearance model seem to be the most promising ones. Unfortunately, I haven't managed to find a descent implementation and I'm not confident enough that that's the best approach so as to go ahead and write one myself.
If anyone could point out what I should be really looking for (algorithm/heuristic/library/etc.), I would be more than grateful. If again you think my description was a bit vague, feel free to ask for a more detailed one.
From what you've said, here are a few things that pop up at first glance:
Simplest thing to do it binarize the image and do Connected Components using OpenCV or CvBlob library. For simple images with non-complex background this usually yeilds objects
HOwever, looking at your sample image, texture-based segmentation techniques may work better - the watch dial, the straps and the background are wisely variant in texture/roughness, and this could be an ideal way to separate them.
The roughness of a portion can be easily found by the Eigen transform (explained a bit on SO, check the link to the research paper provided there), then the Mean Shift filter can be applied on the output of the Eigen transform. This will give regions clearly separated according to texture. Both the pyramidal Mean Shift and finding eigenvalues by SVD are implemented in OpenCV, so unless you can optimize your own code its better (and easier) to use inbuilt functions (if present) as far as speed and efficiency is concerned.
I think I would turn the problem around. Instead of hunting for the dial, I would use a set of robust features from the watch to 'stitch' the target image onto a template. The first watch has a set of squares in the dial that are white, the second watch has a number of white circles. I would per type of watch:
Segment out the squares or circles in the dial. Segmentation steps can be tricky as they are usually both scale and light dependent
Estimate the centers or corners of the above found feature areas. These are the new feature points.
Use the Hungarian algorithm to match features between the template watch and the target watch. Alternatively, one can take the surroundings of each feature point in the original image and match these using cross correlation
Use matching features between the template and the target to estimate scaling, rotation and translation
Stitch the image
As the image is now in a known form, one can extract the regions simply via pre set coordinates
I am thinking of implement a image processing based solution for industrial problem.
The image is consists of a Red rectangle. Inside that I will see a matrix of circles. The requirement is to count the number of circles under following constraints. (Real application : Count the number of bottles in a bottle casing. Any missing bottles???)
The time taken for the operation should be very low.
I need to detect the red rectangle as well. My objective is to count the
items in package and there are no
mechanism (sensors) to trigger the
camera. So camera will need to capture
the photos continuously but the
program should have a way to discard
the unnecessary images.
Processing should be realtime.
There may be a "noise" in image capturing. You may see ovals instead of circles.
My questions are as follows,
What is the best edge detection algorithm that matches with the given
scenario?
Are there any other mechanisms that I can use other than the edge
detection?
Is there a big impact between the language I use and the performance of
the system?
AHH - YOU HAVE NOW TOLD US THE BOTTLES ARE IN FIXED LOCATIONS!
IT IS AN INCREDIBLY EASIER PROBLEM.
All you have to do is look at each of the 12 spots and see if there is a black area there or not. Nothing could be easier.
You do not have to do any edge or shape detection AT ALL.
It's that easy.
You then pointed out that the box might be rotatated, things could be jiggled. That the box might be rotated a little (or even a lot, 0 to 360 each time) is very easily dealt with. The fact that the bottles are in "slots" (even if jiggled) massively changes the nature of the problem. You're main problem (which is easy) is waiting until each new red square (crate) is centered under the camera. I just realised you meant "matrix" literally and specifically in the sentence in your original questions. That changes everything totally, compared to finding a disordered jumble of circles. Finding whether or not a blob is "on" at one of 12 points, is a wildly different problem to "identifying circles in an image". Perhaps you could post an image to wrap up the question.
Finally I believe Kenny below has identified the best solution: blob analysis.
"Count the number of bottles in a bottle casing"...
Do the individual bottles sit in "slots"? ie, there are 4x3 = 12 holes, one for each bottle.
In other words, you "only" have to determine if there is, or is not, a bottle in each of the 12 holes.
Is that correct?
If so, your problem is incredibly easier than the more general problem of a pile of bottles "anywhere".
Quite simply, where do we see the bottles from? The top, sides, bottom, or? Do we always see the tops/bottoms, or are they mixed (ie, packed top-to-tail). These issues make huge, huge differences.
Surf/Sift = overkill in this case you certainly don't need it.
If you want real time speed (about 20fps+ on a 800x600 image) I recommend using Cuda to implement edge detection using a standard filter scheme like sobel, then implement binarization + image closure to make sure the edges of circles are not segmented apart.
The hardest part will be fitting circles. This is assuming you already got to the step where you have taken edges and made sure they are connected using image closure (morphology.) At this point I would proceed as follows:
run blob analysis/connected components to segment out circles that do not touch. If circles can touch the next step will be trickier
for each connected componet/blob fit a circle or rectangle using RANSAC which can run in realtime (as opposed to Hough Transform which I believe is very hard to run in real time.)
Step 2 will be much harder if you can not segment the connected components that form circles seperately, so some additional thought should be invested on how to guarantee that condition.
Good luck.
Edit
Having thought about it some more, I feel like RANSAC is ideal for the case where the circle connected components do touch. RANSAC should hypothetically fit the circle to only a part of the connected component (due to its ability to perform well in the case of mostly outlier points.) This means that you could add an extra check to see if the fitted circle encompasses the entire connected component and if it does not then rerun RANSAC on the portion of the connected component that was left out. Rinse and repeat as many times as necessary.
Also I realize that I say circle but you could just as easily fit an ellipse instead of circles using RANSAC.
Also, I'd like to comment that when I say CUDA is a good choice I mean CUDA is a good choice to implement the sobel filter + binirization + image closing on. Connected components and RANSAC are probably best left to the CPU, but you can try pushing them onto CUDA though I don't know how much of an advantage a GPU will give you for those 2 over a CPU.
For the circles, try the Hough transform.
other mechanisms: dunno
Compiled languages will possibly be faster.
SIFT should have a very good response to circular objects - it is patented, though. GLOHis a similar algorithm, but I do not know if there are any implementations readily available.
Actually, doing some more research, SURF is an improved version of SIFT with quite a few implementations available, check out the links on the wikipedia page.
Sum of colors + convex hull to detect boundary. You need, mostly, 4 corners of a rectangle, and not it's sides?
No motion, no second camera, a little choice - lot of math methods against a little input (color histograms, color distribution matrix). Dunno.
Java == high memory consumption, Lisp == high brain consumption, C++ == memory/cpu/speed/brain use optimum.
If the contrast is good, blob analysis is the algorithm for the job.