I wrote a MapReduce application which run on 6 nodes of computers.
I am sure that my MapReduce algorithm (run on a cluster of computers) outperforms the sequential algorithm (run on a single computer), but I think this does not mean that my MapReduce algorithm is efficiently enough, right?
I have searched around and found: speedup, scaleup, and sizeup metrics. Is it true that we normally consider these metrics when measuring the efficiency of MapReduce application? Is there any metric that we need to consider?
Thank you a lot.
Before specifically addressing your question, let's revisit the map-reduce model and see what's the real problem, it tries to solve. You can refer this answer (by me/ of course you can refer other good answers for the same problem), to get an idea of map-reduce model.
So what it really tries to solve? It deduces a generic model that can be applied to solve vast a range of problems that needs to process a massive amount of data (usually in GBs or even Peta Bytes). And the real deal of this model is, it can be easily parallelized and can even be easily distributed the execution among number of nodes. This article (by me) has some detailed explanation of whole model.
So let's go to your question, you are asking about measuring the efficiency of a map reduce program based on speed, memory-efficiency and scalability.
Speaking to the point, the efficiency of a map-reduce program always depend on how far it enjoys the parallelism given by the underlying computational power. This directly indicates that a map-reduce program runs on one cluster may not be the ideal program to run in a different cluster. So we need to have a good idea of our cluster, if we hope to build up our program to a precisely fine-tuned level. But practically its rare some one needs to get it tuned up to that much level.
Let's take your points one by one:
Speed up:
It depends on how you split your input to different portions. This directly deduces the amount of parallelism (in human control). So as I mentioned above, the speed-up directly depends on how your split logic going to be able to utilize your cluster.
Memory efficiency:
It mostly depends on how memory efficient your mapper logic and reducer logic are.
Scalability:
This is mostly out of concern. You can see that the map-reduce model is already highly scalable to a level that one would rarely think about an extra mile.
So speaking as a whole, efficiency of a map reduce program is rarely a concern (even speed and memory). Practically speaking the most valuable metric is the quality of its output. i.e. how good your analytic data are. (in place of marketing, research etc.)
there are many files need to process with two computers real-timely,I want to distribute them to the two computers and these tasks need to be completed as soon as possibile(means real-time processing),I am thinking about the below plan:
(1) distributed queue like Gearman
(2)distributed computing platform like hadoop/spark/storm/s4 and so on
I have two questions
(1)what is the advantage and disadvantage between (1) and (2)?
(2) How to choose in (2),hadoop?spark?storm?s4?or other?
thanks!
Maybe I have not described the question clearly. In most case,there are 1000-3000 files with the same format , these files are independent,you do not need to care their order,the size of one file maybe tens to hundreds of KB and in the future, the number of files and size of single file will rise. I have wrote a program , it can process the file and pick up the data and then store the data in mongodb. Now there are only two computers, I just want a solution that can process these files with the program quickly(as soon as possibile) and is easy to extend and maintain
distributed queue is easy to use in my case bur maybe hard to extend and maintain , hadoop/spark is to "big" in the two computers but easy to extend and maintain, which is better, i am confused.
It depends a lot on the nature of your "processing". Some dimensions that apply here are:
Are records independent from each other or you need some form of aggregation? i.e: do you need some pieces of data to go together? Say, all transactions from a single user account.
Is you processing CPU bound? Memory bound? FileSystem bound?
What will be persisted? How will you persist it?
Whenever you see new data, do you need to recompute any of the old?
Can you discard data?
Is the data somewhat ordered?
What is the expected load?
A good solution will depend on answers to these (and possibly others I'm forgetting). For instance:
If computation is simple but storage and retrieval is the main concern, you should maybe look into a distributed DB rather than either of your choices.
It could be that you are best served by just logging things into a distributed filesystem like HDFS and then run batch computations with Spark (should be generally better than plain hadoop).
Maybe not, and you can use Spark Streaming to process as you receive the data.
If order and consistency are important, you might be better served by a publish/subscribe architecture, especially if your load could be more than what your two servers can handle, but there are peak and slow hours where your workers can catch up.
etc. So the answer to "how you choose?" is "by carefully looking at the constraints of your particular problem, estimate the load demands to your system and picking the solution that better matches those". All of these solutions and frameworks dominate the others, that's why they are all alive and kicking. The choice is all in the tradeoffs you are willing/able to make.
Hope it helps.
First of all, dannyhow is right - this is not what real-time processing is about. There is a great book http://www.manning.com/marz/ which says a lot about lambda archtecture.
The two ways you mentioned serves completly different purposes and are connected to the definition of word "task". For example, Spark will take a whole job you got for him and divide it into "tasks", but the outcome of one task is useless for you, you still need to wait for whole job to finish. You can create small jobs working on the same dataset and use spark's caching to speed it up. But then you won't get much advantage from distribution (if they have to be run one after another).
Are the files big? Are there connected somehow to each other? If yes, I'd go with Spark. If no, distributed queue.
I parallelized a simulation engine in 12 threads to run it on a cluster of 12 nodes(each node running one thread). Since chances of availability of 12 systems is generally less, I also tweaked it for 6 threads(to run on 6 nodes), 4 threads(to run on 4 nodes), 3 threads(to run on 3 nodes), and 2 threads(to run on 2 nodes). I have noticed that more the number of nodes/threads, more is the speedup. But obviously, the more nodes I use, the more expensive(in terms of cost and power) the execution becomes.
I want to publish these results in a journal so I want to know if there are any laws/theorems which will help me to decide the optimum number of nodes on which I should run this program?
Thanks,
Akshey
How have you parallelised your program and what is inside each of your nodes ?
For instance, on one of my clusters I have several hundred nodes each containing 4 dual-core Xeons. If I were to run an OpenMP program on this cluster I would place a single execution on one node and start up no more than 8 threads, one for each processor core. My clusters are managed by Grid Engine and used for batch jobs, so there is no contention while a job is running. In general there is no point in asking for more than one node on which to run an OpenMP job since the shared-memory approach doesn't work on distributed-memory hardware. And there's not much to be gained by asking for fewer than 8 threads on an 8-core node, I have enough hardware available not to have to share it.
If you have used a distributed-memory programming approach, such as MPI, then you are probably working with a number of processes (rather than threads) and may well be executing these processes on cores on different nodes, and be paying the costs in terms of communications traffic.
As #Blank has already pointed out the most efficient way to run a program, if by efficiency one means 'minimising total cpu-hours', is to run the program on 1 core. Only. However, for jobs of mine which can take, say, a week on 256 cores, waiting 128 weeks for one core to finish its work is not appealing.
If you are not already familiar with the following terms, Google around for them or head for Wikipedia:
Amdahl's Law
Gustafson's Law
weak scaling
strong scaling
parallel speedup
parallel efficiency
scalability.
"if there are any laws/theorems which will help me to decide the optimum number of nodes on which I should run this program?"
There's no such general laws, because every problem has slightly different characteristics.
You can make a mathematical model of the performance of your problem on different number of nodes, knowing how much computational work has to be done, and how much communications has to be done, and how long each takes. (The communications times can be estimated by the amount of commuincations, and typical latency/bandwidth numbers for your nodes' type of interconnect). This can guide you as to good choices.
These models can be valuable for understanding what is going on, but to actually determine the right number of nodes to run on for your code for some given problem size, there's really no substitute for running a scaling test - running the problem on various numbers of nodes and actually seeing how it performs. The numbers you want to see are:
Time to completion as a function of number of processors: T(P)
Speedup as a function of number of processors: S(P) = T(1)/T(P)
Parallel efficiency: E(P) = S(P)/P
How do you choose the "right" number of nodes? It depends on how many jobs you have to run, and what's an acceptable use of computational resources.
So for instance, in plotting your timing results you might find that you have a minimum time to completion T(P) at some number of processors -- say, 32. So that might seem like the "best" choice. But when you look at the efficiency numbers, it might become clear that the efficiency started dropping precipitously long before that; and you only got (say) a 20% decrease in run time over running at 16 processors - that is, for 2x the amount of computational resources, you only got a 1.25x increase in speed. That's usually going to be a bad trade, and you'd prefer to run at fewer processors - particularly if you have a lot of these simulations to run. (If you have 2 simulations to run, for instance, in this case you could get them done in 1.25 time units insetad of 2 time units by running the two simulations each on 16 processors simultaneously rather than running them one at a time on 32 processors).
On the other hand, sometimes you only have a couple runs to do and time really is of the essence, even if you're using resources somewhat inefficiently. Financial modelling can be like this -- they need the predictions for tomorrow's markets now, and they have the money to throw at computational resources even if they're not used 100% efficiently.
Some of these concepts are discussed in the "Introduction to Parallel Performance" section of any parallel programming tutorials; here's our example, https://support.scinet.utoronto.ca/wiki/index.php/Introduction_To_Performance
Increasing the number of nodes leads to diminishing returns. Two nodes is not twice as fast as one node; four nodes even less so than two. As such, the optimal number of nodes is always one; it is with a single node that you get most work done per node.
I want to create a system that delivers user interface response within 100ms, but which requires minutes of computation. Fortunately, I can divide it up into very small pieces, so that I could distribute this to a lot of servers, let's say 1500 servers. The query would be delivered to one of them, which then redistributes to 10-100 other servers, which then redistribute etc., and after doing the math, results propagate back again and are returned by a single server. In other words, something similar to Google Search.
The problem is, what technology should I use? Cloud computing sounds obvious, but the 1500 servers need to be prepared for their task by having task-specific data available. Can this be done using any of the existing cloud computing platforms? Or should I create 1500 different cloud computing applications and upload them all?
Edit: Dedicated physical servers does not make sense, because the average load will be very, very small. Therefore, it also does not make sense, that we run the servers ourselves - it needs to be some kind of shared servers at an external provider.
Edit2: I basically want to buy 30 CPU minutes in total, and I'm willing to spend up to $3000 on it, equivalent to $144,000 per CPU-day. The only criteria is, that those 30 CPU minutes are spread across 1500 responsive servers.
Edit3: I expect the solution to be something like "Use Google Apps, create 1500 apps and deploy them" or "Contact XYZ and write an asp.net script which their service can deploy, and you pay them based on the amount of CPU time you use" or something like that.
Edit4: A low-end webservice provider, offering asp.net at $1/month would actually solve the problem (!) - I could create 1500 accounts, and the latency is ok (I checked), and everything would be ok - except that I need the 1500 accounts to be on different servers, and I don't know any provider that has enough servers that is able to distribute my accounts on different servers. I am fully aware that the latency will differ from server to server, and that some may be unreliable - but that can be solved in software by retrying on different servers.
Edit5: I just tried it and benchmarked a low-end webservice provider at $1/month. They can do the node calculations and deliver results to my laptop in 15ms, if preloaded. Preloading can be done by making a request shortly before the actual performance is needed. If a node does not respond within 15ms, that node's part of the task can be distributed to a number of other servers, of which one will most likely respond within 15ms. Unfortunately, they don't have 1500 servers, and that's why I'm asking here.
[in advance, apologies to the group for using part of the response space for meta-like matters]
From the OP, Lars D:
I do not consider [this] answer to be an answer to the question, because it does not bring me closer to a solution. I know what cloud computing is, and I know that the algorithm can be perfectly split into more than 300,000 servers if needed, although the extra costs wouldn't give much extra performance because of network latency.
Lars,
I sincerely apologize for reading and responding to your question at a naive and generic level. I hope you can see how both the lack of specifity in the question itself, particularly in its original form, and also the somewhat unusual nature of the problem (1) would prompt me respond to the question in like fashion. This, and the fact that such questions on SO typically emanate from hypotheticals by folks who have put but little thought and research into the process, are my excuses for believing that I, a non-practionner [of massively distributed systems], could help your quest. The many similar responses (some of which had the benefits of the extra insight you provided) and also the many remarks and additional questions addressed to you show that I was not alone with this mindset.
(1) Unsual problem: An [apparently] mostly computational process (no mention of distributed/replicated storage structures), very highly paralellizable (1,500 servers), into fifty-millisecondish-sized tasks which collectively provide a sub-second response (? for human consumption?). And yet, a process that would only be required a few times [daily..?].
Enough looking back!
In practical terms, you may consider some of the following to help improve this SO question (or move it to other/alternate questions), and hence foster the help from experts in the domain.
re-posting as a distinct (more specific) question. In fact, probably several questions: eg. on the [likely] poor latency and/or overhead of mapreduce processes, on the current prices (for specific TOS and volume details), on the rack-awareness of distributed processes at various vendors etc.
Change the title
Add details about the process you have at hand (see many questions in the notes of both the question and of many of the responses)
in some of the questions, add tags specific to a give vendor or technique (EC2, Azure...) as this my bring in the possibly not quite unbuyist but helpful all the same, commentary from agents at these companies
Show that you understand that your quest is somewhat of a tall order
Explicitly state that you wish responses from effective practionners of the underlying technologies (maybe also include folks that are "getting their feet wet" with these technologies as well, since with the exception of the physics/high-energy folks and such, who BTW traditionnaly worked with clusters rather than clouds, many of the technologies and practices are relatively new)
Also, I'll be pleased to take the hint from you (with the implicit non-veto from other folks on this page), to delete my response, if you find that doing so will help foster better responses.
-- original response--
Warning: Not all processes or mathematical calculations can readily be split in individual pieces that can then be run in parallel...
Maybe you can check Wikipedia's entry from Cloud Computing, understanding that cloud computing is however not the only architecture which allows parallel computing.
If your process/calculation can efficitively be chunked in parallelizable pieces, maybe you can look into Hadoop, or other implementations of MapReduce, for an general understanding about these parallel processes. Also, (and I believe utilizing the same or similar algorithms), there also exist commercially available frameworks such as EC2 from amazon.
Beware however that the above systems are not particularly well suited for very quick response time. They fare better with hour long (and then some) data/number crunching and similar jobs, rather than minute long calculations such as the one you wish to parallelize so it provides results in 1/10 second.
The above frameworks are generic, in a sense that they could run processes of most any nature (again, the ones that can at least in part be chunked), but there also exist various offerings for specific applications such as searching or DNA matching etc. The search applications in particular can have very short response times (cf Google for example) and BTW this is in part tied to fact that such jobs can very easily and quickly be chunked for parallel processing.
Sorry, but you are expecting too much.
The problem is that you are expecting to pay for processing power only. Yet your primary constraint is latency, and you expect that to come for free. That doesn't work out. You need to figure out what your latency budgets are.
The mere aggregating of data from multiple compute servers will take several milliseconds per level. There will be a gaussian distribution here, so with 1500 servers the slowest server will respond after 3σ. Since there's going to be a need for a hierarchy, the second level with 40 servers , where again you'll be waiting for the slowest server.
Internet roundtrips also add up quickly; that too should take 20 to 30 ms of your latency budget.
Another consideration is that these hypothethical servers will spend much of their time idle. That means they're powered on, drawing electricity yet not generating revenue. Any party with that many idle servers would turn them off, or at the very least in sleep mode just to conserve electricity.
MapReduce is not the solution! Map Reduce is used in Google, Yahoo and Microsoft for creating the indexes out of the huge data (the whole Web!) they have on their disk. This task is enormous and Map Reduce was built to make it happens in hours instead of years, but starting a Master controller of Map Reduce is already 2 seconds, so for your 100ms this is not an option.
Now, from Hadoop you may get advantages out of the distributed file system. It may allow you to distribute the tasks close to where the data is physically, but that's it. BTW: Setting up and managing an Hadoop Distributed File System means controlling your 1500 servers!
Frankly in your budget I don't see any "cloud" service that will allow you to rent 1500 servers. The only viable solution, is renting time on a Grid Computing solution like Sun and IBM are offering, but they want you to commit to hours of CPU from what I know.
BTW: On Amazon EC2 you have a new server up in a couple of minutes that you need to keep for an hour minimum!
Hope you'll find a solution!
I don't get why you would want to do that, only because "Our user interfaces generally aim to do all actions in less than 100ms, and that criteria should also apply to this".
First, 'aim to' != 'have to', its a guideline, why would u introduce these massive process just because of that. Consider 1500 ms x 100 = 150 secs = 2.5 mins. Reducing the 2.5 mins to a few seconds its a much more healthy goal. There is a place for 'we are processing your request' along with an animation.
So my answer to this is - post a modified version of the question with reasonable goals: a few secs, 30-50 servers. I don't have the answer for that one, but the question as posted here feels wrong. Could even be 6-8 multi-processor servers.
Google does it by having a gigantic farm of small Linux servers, networked together. They use a flavor of Linux that they have custom modified for their search algorithms. Costs are software development and cheap PC's.
It would seem that you are indeed expecting at least 1000-fold speedup from distributing your job to a number of computers. That may be ok. Your latency requirement seems tricky, though.
Have you considered the latencies inherent in distributing the job? Essentially the computers would have to be fairly close together in order to not run into speed of light issues. Also, the data center in which the machines would be would again have to be fairly close to your client so that you can get your request to them and back in less than 100 ms. On the same continent, at least.
Also note that any extra latency requires you to have many more nodes in the system. Losing 50% of available computing time to latency or anything else that doesn't parallelize requires you to double the computing capacity of the parallel portions just to keep up.
I doubt a cloud computing system would be the best fit for a problem like this. My impression at least is that the proponents of cloud computing would prefer to not even tell you where your machines are. Certainly I haven't seen any latency terms in the SLAs that are available.
You have conflicting requirements. You're requirement for 100ms latency is directly at odds with your desire to only run your program sporadically.
One of the characteristics of the Google-search type approach you mentioned in your question is that the latency of the cluster is dependent on the slowest node. So you could have 1499 machines respond in under 100ms, but if one machine took longer, say 1s - whether due to a retry, or because it needed to page you application in, or bad connectivity - your whole cluster would take 1s to produce an answer. It's inescapable with this approach.
The only way to achieve the kinds of latencies you're seeking would be to have all of the machines in your cluster keep your program loaded in RAM - along with all the data it needs - all of the time. Having to load your program from disk, or even having to page it in from disk, is going to take well over 100ms. As soon as one of your servers has to hit the disk, it is game over for your 100ms latency requirement.
In a shared server environment, which is what we're talking about here given your cost constraints, it is a near certainty that at least one of your 1500 servers is going to need to hit the disk in order to activate your app.
So you are either going to have to pay enough to convince someone to keep you program active and in memory at all times, or you're going to have to loosen your latency requirements.
Two trains of thought:
a) if those restraints are really, absolutely, truly founded in common sense, and doable in the way you propose in the nth edit, it seems the presupplied data is not huge. So how about trading storage for precomputation to time. How big would the table(s) be? Terabytes are cheap!
b) This sounds a lot like a employer / customer request that is not well founded in common sense. (from my experience)
Let´s assume the 15 minutes of computation time on one core. I guess thats what you say.
For a reasonable amount of money, you can buy a system with 16 proper, 32 hyperthreading cores and 48 GB RAM.
This should bring us in the 30 second range.
Add a dozen Terabytes of storage, and some precomputation.
Maybe a 10x increase is reachable there.
3 secs.
Are 3 secs too slow? If yes, why?
Sounds like you need to utilise an algorithm like MapReduce: Simplified Data Processing on Large Clusters
Wiki.
Check out Parallel computing and related articles in this WikiPedia-article - "Concurrent programming languages, libraries, APIs, and parallel programming models have been created for programming parallel computers." ... http://en.wikipedia.org/wiki/Parallel_computing
Although Cloud Computing is the cool new kid in town, your scenario sounds more like you need a cluster, i.e. how can I use parallelism to solve a problem in a shorter time.
My solution would be:
Understand that if you got a problem that can be solved in n time steps on one cpu, does not guarantee that it can be solved in n/m on m cpus. Actually n/m is the theoretical lower limit. Parallelism is usually forcing you to communicate more and therefore you'll hardly ever achieve this limit.
Parallelize your sequential algorithm, make sure it is still correct and you don't get any race conditions
Find a provider, see what he can offer you in terms of programming languages / APIs (no experience with that)
What you're asking for doesn't exist, for the simple reason that doing this would require having 1500 instances of your application (likely with substantial in-memory data) idle on 1500 machines - consuming resources on all of them. None of the existing cloud computing offerings bill on such a basis. Platforms like App Engine and Azure don't give you direct control over how your application is distributed, while platforms like Amazon's EC2 charge by the instance-hour, at a rate that would cost you over $2000 a day.
As far as I understand, MPI gives me much more control over how exactly different nodes in the cluster will communicate.
In MapReduce/Hadoop, each node does some computation, exchanges data with other nodes, and then collates its partition of results. Seems simple, but since you can iterate the process, even algorithms like K-means or PageRank fit the model quite well. On a distributed file system with locality of scheduling, the performance is apparently good. In comparison, MPI gives me explicit control over how nodes send messages to each other.
Can anyone describe a cluster programming scenario where the more general MPI model is an obvious advantage over the simpler MapReduce model?
Almost any scientific code -- finite differences, finite elements, etc. Which kind of leads to the circular answer, that any distributed program which doesn't easily map to MapReduce would be better implemented with a more general MPI model. Not sure that's much help to you, I'll downvote this answer right after I post it.
Athough, this question has been answered, I would like to add/reiterate one very important point.
MPI is best suited for problems that require a lot of interprocess communication.
When Data becomes large (petabytes, anyone?), and there is little interprocess communication, MPI becomes a pain. This is so because the processes will spend all the time sending data to each other (bandwidth becomes a limiting factor) and your CPUs will remain idle. Perhaps an even bigger problem is reading all that data.
This is the fundamental reason behind having something like Hadoop. The Data also has to be distributed - Hadoop Distributed File System!
To say all this in short, MPI is good for task parallelism and Hadoop is good for Data Parallelism.
The best answer that I could come up with is that MPI is better than MapReduce in two cases:
For short tasks rather than batch processing. For example, MapReduce cannot be used to respond to individual queries - each job is expected to take minutes. I think that in MPI, you can build a query response system where machines send messages to each other to route the query and generate the answer.
For jobs nodes need to communicate more than what iterated MapReduce jobs support, but not too much so that the communication overheads make the computation impractical. I am not sure how often such cases occur in practice, though.
I expect that MPI beats MapReduce easily when the task is iterating over a data set whose size is comparable with the processor cache, and when communication with other tasks is frequently required. Lots of scientific domain-decomposition parallelization approaches fit this pattern. If MapReduce requires sequential processing and communication, or ending of processes, then the computational performance benefit from dealing with a cache-sized problem is lost.
When the computation and data that you are using have irregular behaviors that mostly translates to many message-passings between objects, or when you need low level hardware level accesses e.g. RDMA then MPI is better. In some answers that you see in here the latency of tasks or memory consistency model gets mentioned, frameworks like Spark or Actor Models like AKKA have shown that they can compete with MPI. Finally one should consider that MPI has benefit of being for years the main base for development of libraries needed for scientific computations (This are the most important missing parts missing from new frameworks using DAG/MapReduce Models).
All in all, I think the benefits that MapReduce/DAG models are bringing to the table like dynamic resource managers, and fault tolerance computation will make make them feasible for scientific computing groups.