I am asked to asses possible chice of technology we need to use for the problem described below. Possible options are Hadoop, Hive, and Pig. I do not have much experience with either of those. If you could point out a good source to read. I google and find tons of references but it is hard to find a step by step explanation or comparison.
Here is the task I need to solve.
Users enter sentences into the system. Sentences are broken out by words and stored in Cassandra column family. Each row is a single word (key) and column names are the time stamp this record was entered with no column values.
I need to be able to query the database and extract N words that are taken from the following breakdown:
a_1% must be the top words from period T1 from now into the past
a_2% must be the top words from period T2 from now into the past
a_3% must be the top words from period T3 from now into the past
a_n% must be the top words from period T_n from now into the past
a_1+a_2+...a_n = 100%
and T1, T2, etc are arbitrary time intervals.
any suggestion for a choice of technology I should use for this task would be greatly appreciate. We are using Cassandra and we are quite familiar with it. Now we need to decide which analytical tool to put on top of it.
Links or specifics would be quite appreciated.
If you have the data partitioned ( by time intervals ) in HIVE, finding such 'top words combination' sentences could be achived by one query in HIVE. Also HIVEQL sytnax might help with additional analytic in future, especially for people who know SQL. Question is how to integrate Cassandra with Hadoop. I hope someone might say something about it. GL!
EDITED: There is nice chapter about intergarating Cassandra and HIVE.
The term Big Data is not very much unknown for most of the tech guys albeit there is some sort of confusion about it in everyone's mind. If we explain the term from layman's point of view, then it means the large volume of structured as well as unstructured data. Now a very usual question will arise in our mind after knowing the definition of the term big data that how we can get this large amount of data? As an answer to this question, we can say that we usually produce data when we communicate with our friends or when we do some digital transactions or when we shop whenever we go online.
What are the solutions Big Data is providing which seem to be impossible even a few years ago?
We already know that information, photographs, text, voice, and video data is the base of big data and big data is now involved in so many projects for helping the mankind.
Related
I'm working on a project for university. Do you guys know what kind of algorithms i could implement that would help with the proper design and general performance of a database? Until now i came up with an algorithm that can help the user pick candidate keys and also an algorithm for normalization up to 3NF. Do you have any other ideas or suggestions? Thanks.
This is like asking how you can figure out how to make a car be more efficient. It's such a broad question that it's essentially unanswerable. There are so many moving parts to a car, and each one has its own problems. You really need to understand what each component is doing. In the case of databases, you need to understand the data before you try and fix it. And if you want a good answer, you have to ask the right questions.
A good question should include context on what you are working with, and what you are trying to do. And when it comes to data manipulation, the details are extremely important. How is your data represented? What kind of infrastructure are you working with? What purpose does the data serve, and what processes use this data? If you are working with floating point numbers, are your processes tolerant of small rounding errors? Would your organization even let you make changes to how the data is stored?
In general, adding algorithms to improve data performance is probably largely unnecessary. Databases are designed out of the box to be simple and efficient. If there were a known method to increase efficiency in general without any drawbacks, there's no reason why the designers of the system wouldn't have implemented it already.
I am just putting an answer because I have no way to tell this in the comment section. You need to understand a basic principle in database design and data model construction. What your database is for ? That is the main question, and believe it or not, sometimes people with experience make the same mistake.
As you were saying, 3NF could be good for OLTP systems, but it would be horrendous for Data Warehouse or Reporting Databases where the queries are huge and they work on big batch operations. In those systems denormalization offers always better results.
Once you know what you're database is for, then you can start to apply some "Best Practices" , but even here there is a lot of room for interpretation, and even worse, same principles could be good in one place but very bad in another. I am just going to provide you an example of my real experience
8 years ago I started a project and we have to design a database for a financial application. After some analysis, we decided to use a start model, or dimension-fact model. We decided to create indexes ( including bitmap ) for some tables, even though we were rebuild them during batch to avoid performance degradation.
Funny thing is that after some months, I realised that the indexes were useless, as the users were running queries that were accessing the whole data, mostly analytics and aggregation. Consequence: I drop all indexes.
Is it a good thing to do ? No, it is not, but in my scenario it was the best thing and the performance increased a lot, both in batch and also in user experience.
Summary, like an old friend of mine that that was working in Oracle Support used to tell me: "Performance is an art my friend, not a science"
There are too many database algorithms to list, but below is a structured way of thinking about classes of algorithms that affect database performance.
Algorithm analysis is a helpful way of categorizing and thinking about many database performance problems. While most performance problems are solved with best practices and trial-and-error, we'll never truly understand why one solution is better than another without understanding the algorithms behind them. Below is a list of functions that describe the algorithmic complexity of different database operations, ordered from fastest to slowest.
O(1/N) – Batching to reduce overhead for bulk collect, sequences, fetching rows
O(1) - Hashing for hash partitioning, hash clusters, hash joins
O(LOG(N)) – Index access for b-trees
1/((1-P)+P/N) – Amdahl's Law and its implications for parallelizing large data warehouse workloads
O(N) - Full table scans, hash joins (in theory)
O(N*LOG(N)) – Full table scan versus repeated index reads, sorting, global versus local indexes, gathering statistics (distinct approximations and partition birthday problems)
O(N^2) – Cross joins, nested loops, parsing
O(N!) – Join order
O(∞) – The optimizer (satisficing and avoiding the halting problem)
One suggestion - based on the way you phrased your questions and comments, you're thinking of a database as merely a place to store data. But the most interesting parts of a database happen when you think of them as joining machines. There's not much to optimize about data sitting around, the real work happens when data is combined.
The above list is based on Chapter 16 of my book, Pro Oracle SQL Development. You can read an early version of the entire chapter for free here. While the chapter mostly stands alone, it requires an advanced understanding of Oracle. But each of the topics could be the basis for a lifetime of academic study, so you only need to pick one.
Due to being locked down by Corona, I don't have easy access to my more knowledgeable colleagues, so I'm hoping for a few possible recommendations here.
We do quarterly and yearly "freezes" of a number of statistical entities with a large number (1-200) of columns. Everyone then uses these "frozen" versions as a common basis for all statistical releases in Denmark. Currently, we simply create a new table for each version.
There's a demand to test if we can consolidate these several hundred tables to 26 entity-based tables to make programming against them easier, while not harming performance too much.
A "freeze" is approximately 1 million rows and consists of: Year + Period + Type + Version.
For example:
2018_21_P_V1 = Preliminary Data for 2018 first quarter version 1
2019_41_F_V2 = Final Data for 2019 yearly version 2
I am simply not very experienced in the world of partitions. My initial thought was to partition on Year + Period and Subpartiton on Type + Version, but I am no longer sure this is the right approach, nor do I have a clear picture of which partitioning type would solve the problem best.
I am hoping someone can recommend an approach as it would help me tremendously and save me a lot of time "brute force" testing a lot of different combinations.
Based on your current situation which you explained I highly recommend that "USE THE PARTITIONING". No doubt.
It's highly effective and easy to use. You can read Oracle documentation about partitioning or search on the web for that to understand how to start.
In general, when you partition a table, Oracle looks at each partition as a separate table so don't worry about the speed of fetching data.
The most important step is to choose the best field(s) to establish your partitions based on. I used the date format (20190506) in number or int data type for my daily basis. Or (201907) for a monthly basis. You should design and test it.
The next is to decide about the sub-partitions. In some cases, you don't really need one. It depends on your data structure and your expectations from the data. What do you want to do with the data? Which fields are more important? (used in where clause, ...)
Then make some index(es) for each partition. Very important.
Another important point is that using partitions may have some changes in the way you code in pl/sql. For example, you can not use 2 or more partitions in a single query at the same time. You should select and fetch data from different partitions one by one.
And don't worry about 1 million records. I used partitioning for tables way larger than this and it works fine.
Goodluck
I'm not really trying to compress a database. This is more of a logical problem. Is there any algorithm that will take a data table with lots of columns and repeated data and find a way to organize it into many tables with ID's in such a way that in total there are as few cells as possible, and that this tables can be then joined with a query to replicate the original one.
I don't care about any particular database engine or language. I just want to see if there is a logical way of doing it. If you will post code, I like C# and SQL but you can use any.
I don't know of any automated algorithms but what you really need to do is heavily normalize your database. This means looking at your actual functional dependencies and breaking this off wherever it makes sense.
The problem with trying to do this in a computer program is that it isn't always clear if your current set of stored data represents all possible problem cases. You can't only look at numbers of values either. It makes little sense to break off booleans into their own table because they have only two values, for example, and this is only the tip of the iceberg.
I think that at this point, nothing is going to beat good ol' patient, hand-crafted normalization. This is something to do by hand. Any possible computer algorithm will either make a total mess of things or make you define the relationships such that you might as well do it all yourself.
I am currently trying to improve the performance of a web application. The goal of the application is to provide (real time) analytics. We have a database model that is similiar to a star schema, few fact tables and many dimensional tables. The database is running with Mysql and MyIsam engine.
The Fact table size can easily go into the upper millions and some dimension tables can also reach the millions.
Now the point is, select queries can get awfully slow if the dimension tables get joined on the fact tables and also aggretations are done. First thing that comes in mind when hearing this is, why not precalculate the data? This is not possible because the users are allowed to use several freely customizable filters.
So what I need is an all-in-one system suitable for every purpose ;) Sadly it wasn't invented yet. So I came to the idea to combine 2 existing systems. Mixing a row oriented and a column oriented database (e.g. like infinidb or infobright). Keeping the mysql MyIsam solution (for fast inserts and row based queries) and add a column oriented database (for fast aggregation operations on few columns) to it and fill it periodically (nightly) via cronjob. Problem would be when the current data (it must be real time) is queried, therefore I maybe would need to get data from both databases which can complicate things.
First tests with infinidb showed really good performance on aggregation of a few columns, so I really think this could help me speed up the application.
So the question is, is this a good idea? Has somebody maybe already done this? Maybe there is are better ways to do it.
I have no experience in column oriented databases yet and I'm also not sure how the schema of it should look like. First tests showed good performance on the same star schema like structure but also in a big table like structure.
I hope this question fits on SO.
Greenplum, which is a proprietary (but mostly free-as-in-beer) extension to PostgreSQL, supports both column-oriented and row-oriented tables with high customizable compression. Further, you can mix settings within the same table if you expect that some parts will experience heavy transactional load while others won't. E.g., you could have the most recent year be row-oriented and uncompressed, the prior year column-oriented and quicklz-compresed, and all historical years column-oriented and bz2-compressed.
Greenplum is free for use on individual servers, but if you need to scale out with its MPP features (which are its primary selling point) it does cost significant amounts of money, as they're targeting large enterprise customers.
(Disclaimer: I've dealt with Greenplum professionally, but only in the context of evaluating their software for purchase.)
As for the issue of how to set up the schema, it's hard to say much without knowing the particulars of your data, but in general having compressed column-oriented tables should make all of your intuitions about schema design go out the window.
In particular, normalization is almost never worth the effort, and you can sometimes get big gains in performance by denormalizing to borderline-comical levels of redundancy. If the data never hits disk in an uncompressed state, you might just not care that you're repeating each customer's name 40,000 times. Infobright's compression algorithms are designed specifically for this sort of application, and it's not uncommon at all to end up with 40-to-1 ratios between the logical and physical sizes of your tables.
I have a database, consisting of a whole bunch of records (around 600,000) where some of the records have certain fields missing. My goal is to find a way to predict what the missing data values should be (so I can fill them in) based on the existing data.
One option I am looking at is clustering - i.e. representing the records that are all complete as points in some space, looking for clusters of points, and then when given a record with missing data values try to find out if there are any clusters that could belong in that are consistent with the existing data values. However this may not be possible because some of the data fields are on a nominal scale (e.g. color) and thus can't be put in order.
Another idea I had is to create some sort of probabilistic model that would predict the data, train it on the existing data, and then use it to extrapolate.
What algorithms are available for doing the above, and is there any freely available software that implements those algorithms (This software is going to be in c# by the way).
This is less of an algorithmic and more of a philosophical and methodological question. There are a few different techniques available to tackle this kind of question. Acock (2005) gives a good introduction to some of the methods. Although it may seem that there is a lot of math/statistics involved (and may seem like a lot of effort), it's worth thinking what would happen if you messed up.
Andrew Gelman's blog is also a good resource, although the search functionality on his blog leaves something to be desired...
Hope this helps.
Acock (2005)
http://oregonstate.edu/~acock/growth-curves/working%20with%20missing%20values.pdf
Andrew Gelman's blog
http://www.stat.columbia.edu/~cook/movabletype/mlm/
Dealing with missing values is a methodical question that has to do with the actual meaning of the data.
Several methods you can use (detailed post on my blog):
Ignore the data row. This is usually done when the class label is missing (assuming you data mining goal is classification), or many attributes are missing from the row (not just one). However you'll obviously get poor performance if the percentage of such rows is high
Use a global constant to fill in for missing values. Like "unknown", "N/A" or minus infinity. This is used because sometimes is just doesnt make sense to try and predict the missing value. For example if you have a DB if, say, college candidates and state of residence is missing for some, filling it in doesn't make much sense...
Use attribute mean. For example if the average income of a US family is X you can use that value to replace missing income values.
Use attribute mean for all samples belonging to the same class. Lets say you have a cars pricing DB that, among other things, classifies cars to "Luxury" and "Low budget" and you're dealing with missing values in the cost field. Replacing missing cost of a luxury car with the average cost of all luxury cars is probably more accurate then the value you'd get if you factor in the low budget cars
Use data mining algorithm to predict the value. The value can be determined using regression, inference based tools using Baysian formalism , decision trees, clustering algorithms used to generate input for step method #4 (K-Mean\Median etc.)
I'd suggest looking into regression and decision trees first (ID3 tree generation) as they're relatively easy and there are plenty of examples on the net.
As for packages, if you can afford it and you're in the Microsoft world look at SQL Server Analysis Services (SSAS for short) that implement most of the mentioned above.
Here are some links to free data minning software packages:
WEKA - http://www.cs.waikato.ac.nz/ml/weka/index.html
ORANGE - http://www.ailab.si/orange
TANAGRA - http://eric.univ-lyon2.fr/~ricco/tanagra/en/tanagra.html
Although not C# he's a pretty good intro to decision trees and baysian learning (using Ruby):
http://www.igvita.com/2007/04/16/decision-tree-learning-in-ruby/
http://www.igvita.com/2007/05/23/bayes-classification-in-ruby/
There's also this Ruby library that I find very useful (also for learning purposes):
http://ai4r.rubyforge.org/machineLearning.html
There should be plenty of samples for these algorithms online in any language so I'm sure you'll easily find C# stuff too...
Edited:
Forgot this in my original post. This is a definately MUST HAVE if you're playing with data mining...
Download Microsoft SQL Server 2008 Data Mining Add-ins for Microsoft Office 2007 (It requires SQL Server Analysis Services - SSAS - which isn't free but you can download a trial).
This will allow you to easily play and try out the different techniques in Excel before you go and implement this stuff yourself. Then again, since you're in the Microsoft ecosystem, you might even decide to go for an SSAS based solution and count on the SQL Server guys to do it for ya :)
Predicting missing values is generally considered to be part of data cleansing phase which needs to be done before the data is mined or analyzed further. This is quite prominent in real world data.
Please have a look at this algorithm http://arxiv.org/abs/math/0701152
Currently Microsoft SQL Server Analysis Services 2008 also comes with algorithms like these http://technet.microsoft.com/en-us/library/ms175312.aspx which help in predictive modelling of attributes.
cheers