Correct usage of JMS-Topic communication - jms

I want to use JMS (Topic) in my JavaEE 6 project. I have one class which acts as a publisher and subscriber of a topic at once. The following code shows the most important parts of the class.
public class MessageHandler implements MessageListener {
private static TopicConnectionFactory factory;
private static Topic topic;
private TopicSubscriber subscriber;
private TopicPublisher publisher;
public MessageHandler() throws NamingException, JMSException {
if (factory == null) {
Context context = new InitialContext();
factory = (TopicConnectionFactory) new InitialContext()
.lookup("jms/myfactory");
topic = (Topic) context.lookup("jms/mytopic");
}
TopicConnection connection = factory.createTopicConnection();
connection.start();
TopicSession session = connection
.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);
subscriber = session.createSubscriber(topic);
}
#Override
public void onMessage(Message message) {
try {
ObjectMessage msg = (ObjectMessage) message;
Object someO= msg.getObject();
System.out.println(this + " receives "+someO);
} catch (JMSException e) {
e.printStackTrace();
}
}
public void sendMessage(Object someO) {
try {
ObjectMessage msg = session.createObjectMessage();
msg.setObject(someO);
publisher = session.createPublisher(topic);
publisher.publish(msg);
publisher.close();
} catch (JMSException e) {
e.printStackTrace();
}
}
}
My question is, if this is a good way to design such a class. My idea was to share one connection and session for both subscribing and publishing. But I'm scared that this could lead to some overhead or blocking because I'm not closing the connection, session, subscriber and publisher until the object is not needed anymore. All examples I found online directly close everything after a message was sent or received...
Thanks in advance!

Why do you want the class to be subscriber and publisher at once?
Whenever using a messaging system, you may well act as both, but why would you do it for the same topic, you surely don't want to receive your own messages?
So, the purpose of a topic, is to be used among several parts within an application or among several applications - one is placing a message into the topic and others receive the message they subscribed for.
And that also explains what you saw in the examples - the message processing is a one time thing, thus the connection can be closed afterwards.
By the way, since you ask this question within the "java-ee 6" area - can't you use a message driven bean, annotate your topic configuration and let the application server do the infrastructure part for you?

Related

Spring cloud function Function interface return success/failure handling

I currently have a spring cloud stream application that has a listener function that mainly listens to a certain topic and executes the following in sequence:
Consume messages from a topic
Store consumed message in the DB
Call an external service for some information
Process the data
Record the results in DB
Send the message to another topic
Acknowledge the message (I have the acknowledge mode set to manual)
We have decided to move to Spring cloud function, and I have been already able to already do almost all the steps above using the Function interface, with the source topic as input and the sink topic as an output.
#Bean
public Function<Message<NotificationMessage>, Message<ValidatedEvent>> validatedProducts() {
return message -> {
Acknowledgment acknowledgment = message.getHeaders().get(KafkaHeaders.ACKNOWLEDGMENT, Acknowledgment.class);
notificationMessageService.saveOrUpdate(notificationMessage, 0, false);
String status = restEndpoint.getStatusFor(message.getPayload());
ValidatedEvent event = getProcessingResult(message.getPayload(), status);
notificationMessageService.saveOrUpdate(notificationMessage, 1, true);
Optional.ofNullable(acknowledgment).ifPresent(Acknowledgment::acknowledge);
return MessageBuilder
.withPayload(event)
.setHeader(KafkaHeaders.MESSAGE_KEY, event.getKey().getBytes())
.build();
}
}
My problem goes with exception handling in step 7 (Acknowledge the message). We only acknowledge the message if we are sure that it was sent successfully to the sink queue, otherwise we do no acknowledge the message.
My question is, how can such a thing be implemented within Spring cloud function, specially that the send method is fully dependant on the Spring Framework (as the result of the function interface implementation evaluation).
earlier, we could do this through try/catch
#StreamListener(value = NotificationMesage.INPUT)
public void onMessage(Message<NotificationMessage> message) {
try {
Acknowledgment acknowledgment = message.getHeaders().get(KafkaHeaders.ACKNOWLEDGMENT, Acknowledgment.class);
notificationMessageService.saveOrUpdate(notificationMessage, 0, false);
String status = restEndpoint.getStatusFor(message.getPayload());
ValidatedEvent event = getProcessingResult(message.getPayload(), status);
Message message = MessageBuilder
.withPayload(event)
.setHeader(KafkaHeaders.MESSAGE_KEY, event.getKey().getBytes())
.build();
kafkaTemplate.send(message);
notificationMessageService.saveOrUpdate(notificationMessage, 1, true);
Optional.ofNullable(acknowledgment).ifPresent(Acknowledgment::acknowledge);
}catch (Exception exception){
notificationMessageService.saveOrUpdate(notificationMessage, 1, false);
}
}
Is there a listener that triggers after the Function interface have returned successfully, something like KafkaSendCallback but without specifying a template
Building upon what Oleg mentioned above, if you want to strictly restore the behavior in your StreamListener code, here is something you can try. Instead of using a function, you can switch to a consumer and then use KafkaTemplate to send on the outbound as you had previously.
#Bean
public Consumer<Message<NotificationMessage>> validatedProducts() {
return message -> {
try{
Acknowledgment acknowledgment = message.getHeaders().get(KafkaHeaders.ACKNOWLEDGMENT, Acknowledgment.class);
notificationMessageService.saveOrUpdate(notificationMessage, 0, false);
String status = restEndpoint.getStatusFor(message.getPayload());
ValidatedEvent event = getProcessingResult(message.getPayload(), status);
Message message = MessageBuilder
.withPayload(event)
.setHeader(KafkaHeaders.MESSAGE_KEY, event.getKey().getBytes())
.build();
kafkaTemplate.send(message); //here, you make sure that the data was sent successfully by using some callback.
//only ack if the data was sent successfully.
Optional.ofNullable(acknowledgment).ifPresent(Acknowledgment::acknowledge);
}
catch (Exception exception){
notificationMessageService.saveOrUpdate(notificationMessage, 1, false);
}
};
}
Another thing that is worth looking into is using Kafka transactions, in which case if it doesn't work end-to-end, no acknowledgment will happen. Spring Cloud Stream binder has support for this based on the foundations in Spring for Apache Kafka. More details here. Here is the Spring Cloud Stream doc on this.
Spring cloud stream has no knowledge of function. It is just the same message handler as it was before, so the same approach with callback as you used before would work with functions. So perhaps you can share some code that could clarify what you mean? I also don't understand what do you mean by ..send method is fully dependant on the Spring Framework..
Alright, So what I opted in was actually not to use KafkaTemplate (Or streamBridge)for that matter. While it is a feasible solution it would mean that my Function is going to be split into Consumer and some sort of an improvised supplied (the KafkaTemplate in this case).
As I wanted to adhere to the design goals of the functional interface, I have isolated the behaviour for Database update in a ProducerListener interface implementation
#Configuration
public class ProducerListenerConfiguration {
private final MongoTemplate mongoTemplate;
public ProducerListenerConfiguration(MongoTemplate mongoTemplate) {
this.mongoTemplate = mongoTemplate;
}
#Bean
public ProducerListener myProducerListener() {
return new ProducerListener() {
#SneakyThrows
#Override
public void onSuccess(ProducerRecord producerRecord, RecordMetadata recordMetadata) {
final ValidatedEvent event = new ObjectMapper().readerFor(ValidatedEvent.class).readValue((byte[]) producerRecord.value());
final var updateResult = updateDocumentProcessedState(event.getKey(), event.getPayload().getVersion(), true);
}
#SneakyThrows
#Override
public void onError(ProducerRecord producerRecord, #Nullable RecordMetadata recordMetadata, Exception exception) {
ProducerListener.super.onError(producerRecord, recordMetadata, exception);
}
};
}
public UpdateResult updateDocumentProcessedState(String id, long version, boolean isProcessed) {
Query query = new Query();
query.addCriteria(Criteria.where("_id").is(id));
Update update = new Update();
update.set("processed", isProcessed);
update.set("version", version);
return mongoTemplate.updateFirst(query, update, ProductChangedEntity.class);
}
}
Then with each successful attempt, the DB is updated with the processing result and the updated version number.

IBM MQ provider for JMS : How to automatically roll back messages?

Working versions in the app
IBM AllClient version : 'com.ibm.mq:com.ibm.mq.allclient:9.1.1.0'
org.springframework:spring-jms : 4.3.9.RELEASE
javax.jms:javax.jms-api : 2.0.1
My requirement is that in case of the failure of a message processing due to say, consumer not being available (eg. DB is unavailable), the message remains in the queue or put back on the queue (if that is even possible). This is because the order of the messages is important, messages have to be consumed in the same order that they are received. The Java app is single-threaded.
I have tried the following
#Override
public void onMessage(Message message)
{
try{
if(message instanceOf Textmessage)
{
}
:
:
throw new Exception("Test");// Just to test the retry
}
catch(Exception ex)
{
try
{
int temp = message.getIntProperty("JMSXDeliveryCount");
throw new RuntimeException("Redlivery attempted ");
// At this point, I am expecting JMS to put the message back into the queue.
// But it is actually put into the Bakout queue.
}
catch(JMSException ef)
{
String temp = ef.getMessage();
}
}
}
I have set this in my spring.xml for the jmsContainer bean.
<property name="sessionTransacted" value="true" />
What is wrong with the code above ?
And if putting the message back in the queue is not practical, how can one browse the message, process it and, if successful, pull the message (so it is consumed and no longer on the queue) ? Is this scenario supported in IBM provider for JMS?
The IBM MQ Local queue has BOTHRESH(1).
To preserve message ordering, one approach might be to stop the message listener temporarily as part of your rollback strategy. Looking at the Spring Boot doc for DefaultMessageListenerContainer there is a stop(Runnable callback) method. I've experimented with using this in a rollback as follows.
To ensure my Listener is single threaded, on my DefaultJmsListenerContainerFactory I set containerFactory.setConcurrency("1").
In my Listener, I set an id
#JmsListener(destination = "DEV.QUEUE.2", containerFactory = "listenerTwoFactory", concurrency="1", id="listenerTwo")
And retrieve the DefaultMessageListenerContainer instance.
JmsListenerEndpointRegistry reg = context.getBean(JmsListenerEndpointRegistry.class);
DefaultMessageListenerContainer mlc = (DefaultMessageListenerContainer) reg.getListenerContainer("listenerTwo");
For testing, I check JMSXDeliveryCount and throw an exception to rollback.
retryCount = Integer.parseInt(msg.getStringProperty("JMSXDeliveryCount"));
if (retryCount < 5) {
throw new Exception("Rollback test "+retryCount);
}
In the Listener's catch processing, I call stop(Runnable callback) on the DefaultMessageListenerContainer instance and pass in a new class ContainerTimedRestart as defined below.
//catch processing here and decide to rollback
mlc.stop(new ContainerTimedRestart(mlc,delay));
System.out.println("#### "+getClass().getName()+" Unable to process message.");
throw new Exception();
ContainerTimedRestart extends Runnable and DefaultMessageListenerContainer is responsible for invoking the run() method when the stop call completes.
public class ContainerTimedRestart implements Runnable {
//Container instance to restart.
private DefaultMessageListenerContainer theMlc;
//Default delay before restart in mills.
private long theDelay = 5000L;
//Basic constructor for testing.
public ContainerTimedRestart(DefaultMessageListenerContainer mlc, long delay) {
theMlc = mlc;
theDelay = delay;
}
public void run(){
//Validate container instance.
try {
System.out.println("#### "+getClass().getName()+"Waiting for "+theDelay+" millis.");
Thread.sleep(theDelay);
System.out.println("#### "+getClass().getName()+"Restarting container.");
theMlc.start();
System.out.println("#### "+getClass().getName()+"Container started!");
} catch (InterruptedException ie) {
ie.printStackTrace();
//Further checks and ensure container is in correct state.
//Report errors.
}
}
I loaded my queue with three messages with payloads "a", "b", and "c" respectively and started the listener.
Checking DEV.QUEUE.2 on my queue manager I see IPPROCS(1) confirming only one application handle has the queue open. The messages are processed in order after each is rolled five times and with a 5 second delay between rollback attempts.
IBM MQ classes for JMS has poison message handling built in. This handling is based on the QLOCAL setting BOTHRESH, this stands for Backout Threshold. Each IBM MQ message has a "header" called the MQMD (MQ Message Descriptor). One of the fields in the MQMD is BackoutCount. The default value of BackoutCount on a new message is 0. Each time a message rolled back to the queue this count is incremented by 1. A rollback can be either from a specific call to rollback(), or due to the application being disconnected from MQ before commit() is called (due to a network issue for example or the application crashing).
Poison message handling is disabled if you set BOTHRESH(0).
If BOTHRESH is >= 1, then poison message handling is enabled and when IBM MQ classes for JMS reads a message from a queue it will check if the BackoutCount is >= to the BOTHRESH. If the message is eligible for poison message handling then it will be moved to the queue specified in the BOQNAME attribute, if this attribute is empty or the application does not have access to PUT to this queue for some reason, it will instead attempt to put the message to the queue specified in the queue managers DEADQ attribute, if it can't put to either of these locations it will be rolled back to the queue.
You can find more detailed information on IBM MQ classes for JMS poison message handling in the IBM MQ v9.1 Knowledge Center page Developing applications>Developing JMS and Java applications>Using IBM MQ classes for JMS>Writing IBM MQ classes for JMS applications>Handling poison messages in IBM MQ classes for JMS
In Spring JMS you can define your own container. One container is created for one Jms Destination. We should run a single-threaded JMS listener to maintain the message ordering, to make this work set the concurrency to 1.
We can design our container to return null once it encounters errors, post-failure all receive calls should return null so that no messages are polled from the destination till the destination is active once again. We can maintain an active state using a timestamp, that could be simple milliseconds. A sample JMS config should be sufficient to add backoff. You can add small sleep instead of continuously returning null from receiveMessage method, for example, sleep for 10 seconds before making the next call, this will save some CPU resources.
#Configuration
#EnableJms
public class JmsConfig {
#Bean
public JmsListenerContainerFactory<?> jmsContainerFactory(ConnectionFactory connectionFactory,
DefaultJmsListenerContainerFactoryConfigurer configurer) {
DefaultJmsListenerContainerFactory factory = new DefaultJmsListenerContainerFactory() {
#Override
protected DefaultMessageListenerContainer createContainerInstance() {
return new DefaultMessageListenerContainer() {
private long deactivatedTill = 0;
#Override
protected Message receiveMessage(MessageConsumer consumer) throws JMSException {
if (deactivatedTill < System.currentTimeMillis()) {
return receiveFromConsumer(consumer, getReceiveTimeout());
}
logger.info("Disabled due to failure :(");
return null;
}
#Override
protected void doInvokeListener(MessageListener listener, Message message)
throws JMSException {
try {
super.doInvokeListener(listener, message);
} catch (Exception e) {
handleException(message);
throw e;
}
}
private long getDelay(int retryCount) {
if (retryCount <= 1) {
return 20;
}
return (long) (20 * Math.pow(2, retryCount));
}
private void handleException(Message msg) throws JMSException {
if (msg.propertyExists("JMSXDeliveryCount")) {
int retryCount = msg.getIntProperty("JMSXDeliveryCount");
deactivatedTill = System.currentTimeMillis() + getDelay(retryCount);
}
}
#Override
protected void doInvokeListener(SessionAwareMessageListener listener, Session session,
Message message)
throws JMSException {
try {
super.doInvokeListener(listener, session, message);
} catch (Exception e) {
handleException(message);
throw e;
}
}
};
}
};
// This provides all boot's default to this factory, including the message converter
configurer.configure(factory, connectionFactory);
// You could still override some of Boot's default if necessary.
return factory;
}
}

How to dead letter a RabbitMQ messages when an exceptions happens in a service after an aggregator's forceRelease

I am trying to figure out the best way to handle errors that might have occurred in a service that is called after a aggregate's group timeout occurred that mimics the same flow as if the releaseExpression was met.
Here is my setup:
I have a AmqpInboundChannelAdapter that takes in messages and send them to my aggregator.
When the releaseExpression has been met and before the groupTimeout has expired, if an exception gets thrown in my ServiceActivator, the messages get sent to my dead letter queue for all the messages in that MessageGroup. (10 messages in my example below, which is only used for illustrative purposes) This is what I would expect.
If my releaseExpression hasn't been met but the groupTimeout has been met and the group times out, if an exception gets throw in my ServiceActivator, then the messages do not get sent to my dead letter queue and are acked.
After reading another blog post,
link1
it mentions that this happens because the processing happens in another thread by the MessageGroupStoreReaper and not the one that the SimpleMessageListenerContainer was on. Once processing moves away from the SimpleMessageListener's thread, the messages will be auto ack.
I added the configuration mentioned in the link above and see the error messages getting sent to my error handler. My main question, is what is considered the best way to handle this scenario to minimize message getting lost.
Here are the options I was exploring:
Use a BatchRabbitTemplate in my custom error handler to publish the failed messaged to the same dead letter queue that they would have gone to if the releaseExpression was met. (This is the approach I outlined below but I am worried about messages getting lost, if an error happens during publishing)
Investigate if there is away I could let the SimpleMessageListener know about the error that occurred and have it send the batch of messages that failed to a dead letter queue? I doubt this is possible since it seems the messages are already acked.
Don't set the SimpleMessageListenerContainer to AcknowledgeMode.AUTO and manually ack the messages when they get processed via the Service when the releaseExpression being met or the groupTimeOut happening. (This seems kinda of messy, since there can be 1..N message in the MessageGroup but wanted to see what others have done)
Ideally, I want to have a flow that will that will mimic the same flow when the releaseExpression has been met, so that the messages don't get lost.
Does anyone have recommendation on the best way to handle this scenario they have used in the past?
Thanks for any help and/or advice!
Here is my current configuration using Spring Integration DSL
#Bean
public SimpleMessageListenerContainer workListenerContainer() {
SimpleMessageListenerContainer container =
new SimpleMessageListenerContainer(rabbitConnectionFactory);
container.setQueues(worksQueue());
container.setConcurrentConsumers(4);
container.setDefaultRequeueRejected(false);
container.setTransactionManager(transactionManager);
container.setChannelTransacted(true);
container.setTxSize(10);
container.setAcknowledgeMode(AcknowledgeMode.AUTO);
return container;
}
#Bean
public AmqpInboundChannelAdapter inboundRabbitMessages() {
AmqpInboundChannelAdapter adapter = new AmqpInboundChannelAdapter(workListenerContainer());
return adapter;
}
I have defined a error channel and defined my own taskScheduler to use for the MessageStoreRepear
#Bean
public ThreadPoolTaskScheduler taskScheduler(){
ThreadPoolTaskScheduler ts = new ThreadPoolTaskScheduler();
MessagePublishingErrorHandler mpe = new MessagePublishingErrorHandler();
mpe.setDefaultErrorChannel(myErrorChannel());
ts.setErrorHandler(mpe);
return ts;
}
#Bean
public PollableChannel myErrorChannel() {
return new QueueChannel();
}
public IntegrationFlow aggregationFlow() {
return IntegrationFlows.from(inboundRabbitMessages())
.transform(Transformers.fromJson(SomeObject.class))
.aggregate(a->{
a.sendPartialResultOnExpiry(true);
a.groupTimeout(3000);
a.expireGroupsUponCompletion(true);
a.expireGroupsUponTimeout(true);
a.correlationExpression("T(Thread).currentThread().id");
a.releaseExpression("size() == 10");
a.transactional(true);
}
)
.handle("someService", "processMessages")
.get();
}
Here is my custom error flow
#Bean
public IntegrationFlow errorResponse() {
return IntegrationFlows.from("myErrorChannel")
.<MessagingException, Message<?>>transform(MessagingException::getFailedMessage,
e -> e.poller(p -> p.fixedDelay(100)))
.channel("myErrorChannelHandler")
.handle("myErrorHandler","handleFailedMessage")
.log()
.get();
}
Here is the custom error handler
#Component
public class MyErrorHandler {
#Autowired
BatchingRabbitTemplate batchingRabbitTemplate;
#ServiceActivator(inputChannel = "myErrorChannelHandler")
public void handleFailedMessage(Message<?> message) {
ArrayList<SomeObject> payload = (ArrayList<SomeObject>)message.getPayload();
payload.forEach(m->batchingRabbitTemplate.convertAndSend("some.dlq","#", m));
}
}
Here is the BatchingRabbitTemplate bean
#Bean
public BatchingRabbitTemplate batchingRabbitTemplate() {
ThreadPoolTaskScheduler scheduler = new ThreadPoolTaskScheduler();
scheduler.setPoolSize(5);
scheduler.initialize();
BatchingStrategy batchingStrategy = new SimpleBatchingStrategy(10, Integer.MAX_VALUE, 30000);
BatchingRabbitTemplate batchingRabbitTemplate = new BatchingRabbitTemplate(batchingStrategy, scheduler);
batchingRabbitTemplate.setConnectionFactory(rabbitConnectionFactory);
return batchingRabbitTemplate;
}
Update 1) to show custom MessageGroupProcessor:
public class CustomAggregtingMessageGroupProcessor extends AbstractAggregatingMessageGroupProcessor {
#Override
protected final Object aggregatePayloads(MessageGroup group, Map<String, Object> headers) {
return group;
}
}
Example Service:
#Slf4j
public class SomeService {
#ServiceActivator
public void processMessages(MessageGroup messageGroup) throws IOException {
Collection<Message<?>> messages = messageGroup.getMessages();
//Do business logic
//ack messages in the group
for (Message<?> m : messages) {
com.rabbitmq.client.Channel channel = (com.rabbitmq.client.Channel)
m.getHeaders().get("amqp_channel");
long deliveryTag = (long) m.getHeaders().get("amqp_deliveryTag");
log.debug(" deliveryTag = {}",deliveryTag);
log.debug("Channel = {}",channel);
channel.basicAck(deliveryTag, false);
}
}
}
Updated integrationFlow
public IntegrationFlow aggregationFlowWithCustomMessageProcessor() {
return IntegrationFlows.from(inboundRabbitMessages()).transform(Transformers.fromJson(SomeObject.class))
.aggregate(a -> {
a.sendPartialResultOnExpiry(true);
a.groupTimeout(3000);
a.expireGroupsUponCompletion(true);
a.expireGroupsUponTimeout(true);
a.correlationExpression("T(Thread).currentThread().id");
a.releaseExpression("size() == 10");
a.transactional(true);
a.outputProcessor(new CustomAggregtingMessageGroupProcessor());
}).handle("someService", "processMessages").get();
}
New ErrorHandler to do nack
public class MyErrorHandler {
#ServiceActivator(inputChannel = "myErrorChannelHandler")
public void handleFailedMessage(MessageGroup messageGroup) throws IOException {
if(messageGroup!=null) {
log.debug("Nack messages size = {}", messageGroup.getMessages().size());
Collection<Message<?>> messages = messageGroup.getMessages();
for (Message<?> m : messages) {
com.rabbitmq.client.Channel channel = (com.rabbitmq.client.Channel)
m.getHeaders().get("amqp_channel");
long deliveryTag = (long) m.getHeaders().get("amqp_deliveryTag");
log.debug("deliveryTag = {}",deliveryTag);
log.debug("channel = {}",channel);
channel.basicNack(deliveryTag, false, false);
}
}
}
}
Update 2 Added custom ReleaseStratgedy and change to aggegator
public class CustomMeasureGroupReleaseStratgedy implements ReleaseStrategy {
private static final int MAX_MESSAGE_COUNT = 10;
public boolean canRelease(MessageGroup messageGroup) {
return messageGroup.getMessages().size() >= MAX_MESSAGE_COUNT;
}
}
public IntegrationFlow aggregationFlowWithCustomMessageProcessorAndReleaseStratgedy() {
return IntegrationFlows.from(inboundRabbitMessages()).transform(Transformers.fromJson(SomeObject.class))
.aggregate(a -> {
a.sendPartialResultOnExpiry(true);
a.groupTimeout(3000);
a.expireGroupsUponCompletion(true);
a.expireGroupsUponTimeout(true);
a.correlationExpression("T(Thread).currentThread().id");
a.transactional(true);
a.releaseStrategy(new CustomMeasureGroupReleaseStratgedy());
a.outputProcessor(new CustomAggregtingMessageGroupProcessor());
}).handle("someService", "processMessages").get();
}
There are some flaws in your understanding.If you use AUTO, only the last message will be dead-lettered when an exception occurs. Messages successfully deposited in the group, before the release, will be ack'd immediately.
The only way to achieve what you want is to use MANUAL acks.
There is no way to "tell the listener container to send messages to the DLQ". The container never sends messages to the DLQ, it rejects a message and the broker sends it to the DLX/DLQ.

odd behaviour - websocket spring - send message to user using listen / notify postgresql

I am experiencing an odd behavior of my spring boot websocket set-up.
Sometimes it works, sometimes it doesn't, it just feels random.
I have tried the several setups, none proved solid: I moved the last piece of code in a commandlinerunner inside the primary class of the application and the last choice was a different class with #Component annotation.
My setup is the following: I use a jdbc driver (pgjdbc-ng) to use the listen notify function of postgres.I have a function and a trigger that listens to a specific postgres table for inserations. If any occur, notifications are sent through the websocket. The other and is an angular app that uses ng2-stompjs to listen to /topic/notificari for notifications. I am not posting the code because the notifications don't get out of spring, the angular is not the problem.
Kind regards,
This is my WebSocketConfiguration
Override
public void configureMessageBroker(MessageBrokerRegistry registry) {
registry.enableSimpleBroker("/topic", "/queue", "/user", "/notificari");
registry.setApplicationDestinationPrefixes("/app");
registry.setUserDestinationPrefix("/user");
}
#Override
public void registerStompEndpoints(StompEndpointRegistry registry) {
registry.addEndpoint("/socket").setAllowedOrigins("*")
.setHandshakeHandler(new CustomHandshakeHandler());
}
I am using a class ListenNotify and the JDBC driver pgjdbc-ng to connect to the postgresql db and use listen notify functionality
public class ListenNotify {
private BlockingQueue queue = new ArrayBlockingQueue(20);
PGConnection connection;
public ListenNotify() {
PGNotificationListener listener = new PGNotificationListener() {
#Override
public void notification(int processId, String channelName, String payload) {
queue.add(payload);
}
};
try {
PGDataSource dataSource = new PGDataSource();
dataSource.setHost("localhost");
dataSource.setDatabase("db");
dataSource.setPort(5432);
dataSource.setUser("user");
dataSource.setPassword("pass");
connection = (PGConnection) dataSource.getConnection();
connection.addNotificationListener(listener);
Statement statement = connection.createStatement();
statement.execute("LISTEN n_event");
statement.close();
} catch (SQLException e) {
e.printStackTrace();
}
}
public BlockingQueue getQueue() {
return queue;
}
}
And finally this is the code that instantiate the ListenNotify object and listens to postgres for events that might trigger notifications that have to be send using websocket.
#Component
public class InstantaNotificari {
#Autowired
SimpMessagingTemplate template;
#EventListener(ApplicationReadyEvent.class)
public void runn() {
System.out.println("invocare met");
ListenNotify ln = new ListenNotify();
BlockingQueue queue = ln.getQueue();
System.out.println("the que ies "+ queue);
while (true) {
try {
String msg = (String) queue.take();
System.out.println("msg " + msg);
template.convertAndSend("/topic/notificari", msg);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
I didn't use Spring so I can't test your code. Here is my tested version. I think this summarizes the differences -
Change to a try with resources block. This will close the connection on destruction of the class.
Move your while(true) into the try block on the Listener so that the
lines inside the try block doesn't ever get out of execution scope.
The while(true) is blocking, so it needs to be on another thread. ListenNotify extends Thread
I'm sure there are other ways of implementing and welcome corrections to any of my assumptions.
My tested, running code is in this answer JMS Websocket delayed delivery.

JMS ActiveMQ createBrowser always returns empty queue

ActiveMQ 5.10.0
Spring 4.1.2
I'm using Spring to access activeMQ and trying to peek at the queue before adding a new message onto the queue. The message is added successfully, but it does not show anything in the queue. Through the web interface, I see my messages are pending in the queue.
Thanks!
#Service
public class MessageQueueService{
private static final Logger logger = LoggerFactory.getLogger(MessageQueueService.class);
#Inject
JmsTemplate jmsTemplate;
#SuppressWarnings({ "rawtypes", "unchecked" })
public void testAddJob(){
jmsTemplate.send(new MessageCreator() {
public Message createMessage(Session session) throws JMSException {
IndexJob j1=new IndexJob();
j1.setOperation("post");
ObjectMessage om=session.createObjectMessage();
om.setObject(j1);
QueueBrowser qb=session.createBrowser((javax.jms.Queue) jmsTemplate.getDefaultDestination());
Enumeration<Message> messages=qb.getEnumeration();
logger.info("browsing "+qb.getQueue().getQueueName());
int i=0;
while(messages.hasMoreElements()) {
i++;
Message message=messages.nextElement();
logger.info(message+"");
}
logger.info("total record:"+i);
return om;
}
});
}
output:
2014-12-07 00:03:43.874 [main] INFO c.b.b.s.MessageQueueService - browsing indexJob
2014-12-07 00:03:43.878 [main] INFO c.b.b.s.MessageQueueService - total record:0
UPDATE: execute has a not yet well-documented parameter boolean startConnection. When it is set to "true", it seem to work. This is not a solution though -
String result=jms.execute(new SessionCallback<String>() {
#Override
public String doInJms(Session session) throws JMSException {
QueueBrowser queue=session.createBrowser((Queue)session.createQueue("indexJob"));
Enumeration<Message> messages=queue.getEnumeration();
String result="";
logger.info("Browse Queue: "+queue.getQueue().getQueueName());
while(messages.hasMoreElements()) {
Message message=messages.nextElement();
result+=message;
}
logger.info(result);
return result;
}
}, true);
Looking at org.springframework.jms.core.JmsTemplate.class source, most of the send methods are using execute() method with startConnection=false.
If the connection was not started, then how did the messages get added to the queue?
Does anyone know what this #param startConnection whether to start the Connection means?
This can be a somewhat confusing bit of JMS. The Connection start only refers to consumption of messages from the connection, not to producing. You are free to produce messages whenever you like, started or not, but if you want to consume or browse a destination you need to start the connection otherwise you will not get any messages dispatched to your consumers.
This purpose behind this is to allow you to create all your JMS resources prior to receiving any messages which might otherwise catch you in an state where you app isn't quite ready for them.
So in short, if you want to browse that message, you need to ensure the connection gets started.

Resources