Related
I was asked in an interview today below question. I gave O(nlgn) solution but I was asked to give O(n) solution. I could not come up with O(n) solution. Can you help?
An input array is given like [1,2,4] then every element of it is doubled and
appended into the array. So the array now looks like [1,2,4,2,4,8]. How
this array is randomly shuffled. One possible random arrangement is
[4,8,2,1,2,4]. Now we are given this random shuffled array and we want to
get original array [1,2,4] in O(n) time.
The original array can be returned in any order. How can I do it?
Here's an O(N) Java solution that could be improved by first making sure that the array is of the proper form. For example it shouldn't accept [0] as an input:
import java.util.*;
class Solution {
public static int[] findOriginalArray(int[] changed) {
if (changed.length % 2 != 0)
return new int[] {};
// set Map size to optimal value to avoid rehashes
Map<Integer,Integer> count = new HashMap<>(changed.length*100/75);
int[] original = new int[changed.length/2];
int pos = 0;
// count frequency for each number
for (int n : changed) {
count.put(n, count.getOrDefault(n,0)+1);
}
// now decide which go into the answer
for (int n : changed) {
int smallest = n;
for (int m=n; m > 0 && count.getOrDefault(m,0) > 0; m = m/2) {
//System.out.println(m);
smallest = m;
if (m % 2 != 0) break;
}
// trickle up from smallest to largest while count > 0
for (int m=smallest, mm = 2*m; count.getOrDefault(mm,0) > 0; m = mm, mm=2*mm){
int ct = count.getOrDefault(mm,0);
while (count.get(m) > 0 && ct > 0) {
//System.out.println("adding "+m);
original[pos++] = m;
count.put(mm, ct -1);
count.put(m, count.get(m) - 1);
ct = count.getOrDefault(mm,0);
}
}
}
// check for incorrect format
if (count.values().stream().anyMatch(x -> x > 0)) {
return new int[] {};
}
return original;
}
public static void main(String[] args) {
int[] changed = {1,2,4,2,4,8};
System.out.println(Arrays.toString(changed));
System.out.println(Arrays.toString(findOriginalArray(changed)));
}
}
But I've tried to keep it simple.
The output is NOT guaranteed to be sorted. If you want it sorted it's going to cost O(NlogN) inevitably unless you use a Radix sort or something similar (which would make it O(NlogE) where E is the max value of the numbers you're sorting and logE the number of bits needed).
Runtime
This may not look that it is O(N) but you can see that it is because for every loop it will only find the lowest number in the chain ONCE, then trickle up the chain ONCE. Or said another way, in every iteration it will do O(X) iterations to process X elements. What will remain is O(N-X) elements. Therefore, even though there are for's inside for's it is still O(N).
An example execution can be seen with [64,32,16,8,4,2].
If this where not O(N) if you print out each value that it traverses to find the smallest you'd expect to see the values appear over and over again (for example N*(N+1)/2 times).
But instead you see them only once:
finding smallest 64
finding smallest 32
finding smallest 16
finding smallest 8
finding smallest 4
finding smallest 2
adding 2
adding 8
adding 32
If you're familiar with the Heapify algorithm you'll recognize the approach here.
def findOriginalArray(self, changed: List[int]) -> List[int]:
size = len(changed)
ans = []
left_elements = size//2
#IF SIZE IS ODD THEN RETURN [] NO SOLN. IS POSSIBLE
if(size%2 !=0):
return ans
#FREQUENCY DICTIONARY given array [0,0,2,1] my map will be: {0:2,2:1,1:1}
d = {}
for i in changed:
if(i in d):
d[i]+=1
else:
d[i] = 1
# CHECK THE EDGE CASE OF 0
if(0 in d):
count = d[0]
half = count//2
if((count % 2 != 0) or (half > left_elements)):
return ans
left_elements -= half
ans = [0 for i in range(half)]
#CHECK REST OF THE CASES : considering the values will be 10^5
for i in range(1,50001):
if(i in d):
if(d[i] > 0):
count = d[i]
if(count > left_elements):
ans = []
break
left_elements -= d[i]
for j in range(count):
ans.append(i)
if(2*i in d):
if(d[2*i] < count):
ans = []
break
else:
d[2*i] -= count
else:
ans = []
break
return ans
I have a simple idea which might not be the best, but I could not think of a case where it would not work. Having the array A with the doubled elements and randomly shuffled, keep a helper map. Process each element of the array and, each time you find a new element, add it to the map with the value 0. When an element is processed, increment map[i] and decrement map[2*i]. Next you iterate over the map and print the elements that have a value greater than zero.
A simple example, say that the vector is:
[1, 2, 3]
And the doubled/shuffled version is:
A = [3, 2, 1, 4, 2, 6]
When processing 3, first add the keys 3 and 6 to the map with value zero. Increment map[3] and decrement map[6]. This way, map[3] = 1 and map[6] = -1. Then for the next element map[2] = 1 and map[4] = -1 and so forth. The final state of the map in this example would be map[1] = 1, map[2] = 1, map[3] = 1, map[4] = -1, map[6] = 0, map[8] = -1, map[12] = -1.
Then you just process the keys of the map and, for each key with a value greater than zero, add it to the output. There are certainly more efficient solutions, but this one is O(n).
In C++, you can try this.
With time is O(N + KlogK) where N is the length of input, and K is the number of unique elements in input.
class Solution {
public:
vector<int> findOriginalArray(vector<int>& input) {
if (input.size() % 2) return {};
unordered_map<int, int> m;
for (int n : input) m[n]++;
vector<int> nums;
for (auto [n, cnt] : m) nums.push_back(n);
sort(begin(nums), end(nums));
vector<int> out;
for (int n : nums) {
if (m[2 * n] < m[n]) return {};
for (int i = 0; i < m[n]; ++i, --m[2 * n]) out.push_back(n);
}
return out;
}
};
Not so clear about the space complexity required in the question, so this is my top-of-the-mind attempt to this question if this requires O(n) time complexity.
If the length of the input array is not even, then its wrong !!
Create a map, add the elements of the input array to it.
Divide each element in the input array by 2 and check if that value exists in the map. If it exists, add it to the array (slice) orig.
There is a chance we have added duplicate values to this original array, clean it!!
Here is a sample go code:
https://go.dev/play/p/w4mm-rloHyi
I am sure we can optimize this code in a lot of ways for space complexities. But its O(n) time complexity.
I'm stuck on this problem.
Given an array of numbers. At each step we can pick a number like N in this array and sum N with another number that exist in this array. We continue this process until all numbers in this array equals to zero. What is the minimum number of steps required? (We can guarantee initially the sum of numbers in this array is zero).
Example: -20,-15,1,3,7,9,15
Step 1: pick -15 and sum with 15 -> -20,0,1,3,7,9,0
Step 2: pick 9 and sum with -20 -> -11,0,1,3,7,0,0
Step 3: pick 7 and sum with -11 -> -4,0,1,3,0,0,0
Step 4: pick 3 and sum with -4 -> -1,0,1,0,0,0,0
Step 5: pick 1 and sum with -1 -> 0,0,0,0,0,0,0
So the answer of this example is 5.
I've tried using greedy algorithm. It works like this:
At each step we pick maximum and minimum number that already available in this array and sum these two numbers until all numbers in this array equals to zero.
but it doesn't work and get me wrong answer. Can anyone help me to solve this problem?
#include <bits/stdc++.h>
using namespace std;
int a[] = {-20,-15,1,3,7,9,15};
int bruteforce(){
bool isEqualToZero = 1;
for (int i=0;i<(sizeof(a)/sizeof(int));i++)
if (a[i] != 0){
isEqualToZero = 0;
break;
}
if (isEqualToZero)
return 0;
int tmp=0,m=1e9;
for (int i=0;i<(sizeof(a)/sizeof(int));i++){
for (int j=i+1;j<(sizeof(a)/sizeof(int));j++){
if (a[i]*a[j] >= 0) continue;
tmp = a[j];
a[i] += a[j];
a[j] = 0;
m = min(m,bruteforce());
a[j] = tmp;
a[i] -= tmp;
}
}
return m+1;
}
int main()
{
cout << bruteforce();
}
This is the brute force approach that I've written for this problem. Is there any algorithm to solve this problem faster?
This has an np-complete feel, but the following search does an A* search through all possible normalized partial sums on the way to a single non-zero term. Which solves your problem, and means that you don't get into an infinite loop if the sum is not zero.
If greedy works, this will explore the greedy path first, verify that you can't do better, and return fairly quickly. If greedy doesn't work, this may...take a lot longer.
Implementation in Python because that is easy for me. Translation into another language is an exercise for the reader.
import heapq
def find_minimal_steps (numbers):
normalized = tuple(sorted(numbers))
seen = set([normalized])
todo = [(min_steps_remaining(normalized), 0, normalized, None)]
while todo[0][0] < 7:
step_limit, steps_taken, prev, path = heapq.heappop(todo)
steps_taken = -1 * steps_taken # We store negative for sort order
if min_steps_remaining(prev) == 0:
decoded_path = []
while path is not None:
decoded_path.append((path[0], path[1]))
path = path[2]
return steps_taken, list(reversed(decoded_path))
prev_numbers = list(prev)
for i in range(len(prev_numbers)):
for j in range(len(prev_numbers)):
if i != j:
# Track what they were
num_i = prev_numbers[i]
num_j = prev_numbers[j]
# Sum them
prev_numbers[i] += num_j
prev_numbers[j] = 0
normalized = tuple(sorted(prev_numbers))
if (normalized not in seen):
seen.add(normalized)
heapq.heappush(todo, (
min_steps_remaining(normalized) + steps_taken + 1,
-steps_taken - 1, # More steps is smaller is looked at first
normalized,
(num_i, num_j, path)))
# set them back.
prev_numbers[i] = num_i
prev_numbers[j] = num_j
print(find_minimal_steps([-20,-15,1,3,7,9,15]))
For fun I also added a linked list implementation that doesn't just tell you how many minimal steps, but which ones it found. In this case its steps were (-15, 15), (7, 9), (3, 16), (1, 19), (-20, 20) meaning add 15 to -15, 9 to 7, 16 to 3, 19 to 1, and 20 to -20.
I wrote recursive backtracking algorithm for finding all subsets of a given set.
void backtracke(int* a, int k, int n)
{
if (k == n)
{
for(int i = 1; i <=k; ++i)
{
if (a[i] == true)
{
std::cout << i << " ";
}
}
std::cout << std::endl;
return;
}
bool c[2];
c[0] = false;
c[1] = true;
++k;
for(int i = 0; i < 2; ++i)
{
a[k] = c[i];
backtracke(a, k, n);
a[k] = INT_MAX;
}
}
now we have to write the same algorithm but in an iterative form, how to do it ?
You can use the binary counter approach. Any unique binary string of length n represents a unique subset of a set of n elements. If you start with 0 and end with 2^n-1, you cover all possible subsets. The counter can be easily implemented in an iterative manner.
The code in Java:
public static void printAllSubsets(int[] arr) {
byte[] counter = new byte[arr.length];
while (true) {
// Print combination
for (int i = 0; i < counter.length; i++) {
if (counter[i] != 0)
System.out.print(arr[i] + " ");
}
System.out.println();
// Increment counter
int i = 0;
while (i < counter.length && counter[i] == 1)
counter[i++] = 0;
if (i == counter.length)
break;
counter[i] = 1;
}
}
Note that in Java one can use BitSet, which makes the code really shorter, but I used a byte array to illustrate the process better.
There are a few ways to write an iterative algorithm for this problem. The most commonly suggested would be to:
Count (i.e. a simply for-loop) from 0 to 2numberOfElements - 1
If we look at the variable used above for counting in binary, the digit at each position could be thought of a flag indicating whether or not the element at the corresponding index in the set should be included in this subset. Simply loop over each bit (by taking the remainder by 2, then dividing by 2), including the corresponding elements in our output.
Example:
Input: {1,2,3,4,5}.
We'd start counting at 0, which is 00000 in binary, which means no flags are set, so no elements are included (this would obviously be skipped if you don't want the empty subset) - output {}.
Then 1 = 00001, indicating that only the last element would be included - output {5}.
Then 2 = 00010, indicating that only the second last element would be included - output {4}.
Then 3 = 00011, indicating that the last two elements would be included - output {4,5}.
And so on, all the way up to 31 = 11111, indicating that all the elements would be included - output {1,2,3,4,5}.
* Actually code-wise, it would be simpler to turn this on its head - output {1} for 00001, considering that the first remainder by 2 will then correspond to the flag of the 0th element, the second remainder, the 1st element, etc., but the above is simpler for illustrative purposes.
More generally, any recursive algorithm could be changed to an iterative one as follows:
Create a loop consisting of parts (think switch-statement), with each part consisting of the code between any two recursive calls in your function
Create a stack where each element contains each necessary local variable in the function, and an indication of which part we're busy with
The loop would pop elements from the stack, executing the appropriate section of code
Each recursive call would be replaced by first adding it's own state to the stack, and then the called state
Replace return with appropriate break statements
A little Python implementation of George's algorithm. Perhaps it will help someone.
def subsets(S):
l = len(S)
for x in range(2**l):
yield {s for i,s in enumerate(S) if ((x / 2**i) % 2) // 1 == 1}
Basically what you want is P(S) = S_0 U S_1 U ... U S_n where S_i is a set of all sets contained by taking i elements from S. In other words if S= {a, b, c} then S_0 = {{}}, S_1 = {{a},{b},{c}}, S_2 = {{a, b}, {a, c}, {b, c}} and S_3 = {a, b, c}.
The algorithm we have so far is
set P(set S) {
PS = {}
for i in [0..|S|]
PS = PS U Combination(S, i)
return PS
}
We know that |S_i| = nCi where |S| = n. So basically we know that we will be looping nCi times. You may use this information to optimize the algorithm later on. To generate combinations of size i the algorithm that I present is as follows:
Suppose S = {a, b, c} then you can map 0 to a, 1 to b and 2 to c. And perumtations to these are (if i=2) 0-0, 0-1, 0-2, 1-0, 1-1, 1-2, 2-0, 2-1, 2-2. To check if a sequence is a combination you check if the numbers are all unique and that if you permute the digits the sequence doesn't appear elsewhere, this will filter the above sequence to just 0-1, 0-2 and 1-2 which are later mapped back to {a,b},{a,c},{b,c}. How to generate the long sequence above you can follow this algorithm
set Combination(set S, integer l) {
CS = {}
for x in [0..2^l] {
n = {}
for i in [0..l] {
n = n U {floor(x / |S|^i) mod |S|} // get the i-th digit in x base |S|
}
CS = CS U {S[n]}
}
return filter(CS) // filtering described above
}
So I have 10 numbers. Lets say each number represents the skill of an individual. If I were to create 2 teams of 5 , how would i make 2 teams such that the difference of their teams sum is minimal.
With 10 numbers, the easiest way would be to go over all combinations and calculate the difference.
This is similar to the Knapsack problem: You try to put individuals in one of the teams so that this team's sum is the biggest value not larger than half of the total sum. It would be the same if team size was not restricted.
Here's a crazy idea I came up with.
Time Complexity : O(N log N)
Sort the numbers.
Find the target sum for the set(T) that we would like to hit(Sum of all values/2)
Let Q=set of first 5 numbers in sorted list.Q will be our final set , which we will iteratively improve.
for(each element q from last element to first element of Q)
{
Find a number p that is not currently used
which if swapped with the current element q
makes the sum closer to T but not more than T.
Remove q from Q
Add p to Q
}
return Q as best set.
Though the for loop looks as though it's O(N2), one can do binary search to find the number p.So it's O(N*log N)
Disclaimer:I have only described the algorithm.I don't know how to formally prove it.
Generate all combination of 5 elements. You will have those 5 in a a team and the remaining in the other team. Compare all results and choose the one with the smallest difference. You can create all those combination with 5 for loops.
I just tried it out - unfortunately I had to program that permutation thing (function next) and call result.fit for every element.
Can be done nicer, but for demonstration it should be good enough.
var all = [ 3, 4, 5, 8 , 2, 1, 1, 4, 9, 10 ];
function sumArray(a) {
var asum = 0;
a.forEach(function(v){ asum += v });
return asum;
}
var next = function(start, rest, nbr, result) {
if (nbr < 0) {
result.fit(start);
return;
}
for (var i = 0; i < rest.length - nbr; ++i) {
var clone = start.slice(0);
clone.push(rest[i]);
next(clone, rest.slice(i + 1), nbr - 1, result);
}
};
var result = {
target: sumArray(all) / 2,
best: [],
bestfit: Math.pow(2,63), // really big
fit: function(a) {
var asum = sumArray(a);
var fit = Math.abs(asum - this.target);
if (fit < this.bestfit) {
this.bestfit = fit;
this.best = a;
}
}
}
next([], all, all.length / 2, result);
console.log(JSON.stringify(result.best));
Same algorithm as most -- compare 126 combinations. Code in Haskell:
inv = [1,2,3,4,5,6,7,8,9,10]
best (x:xs) (a,b)
| length a == 5 = [(abs (sum a - sum (x:xs ++ b)),(a,x:xs ++ b))]
| length b == 5 = [(abs (sum (x:xs ++ a) - sum b),(x:xs ++ a,b))]
| otherwise = let s = best xs (x:a,b)
s' = best xs (a,x:b)
in if fst (head s) < fst (head s') then s
else if fst (head s') < fst (head s) then s'
else s ++ s'
main = print $ best (tail inv) ([head inv],[])
Output:
*Main> main
[(1,([9,10,5,2,1],[8,7,6,4,3])),(1,([10,8,6,2,1],[9,7,5,4,3]))
,(1,([9,10,6,2,1],[8,7,5,4,3])),(1,([9,8,7,2,1],[10,6,5,4,3]))
,(1,([10,8,7,2,1],[9,6,5,4,3])),(1,([9,10,4,3,1],[8,7,6,5,2]))
,(1,([10,8,5,3,1],[9,7,6,4,2])),(1,([9,10,5,3,1],[8,7,6,4,2]))
,(1,([10,7,6,3,1],[9,8,5,4,2])),(1,([9,8,6,3,1],[10,7,5,4,2]))
,(1,([10,8,6,3,1],[9,7,5,4,2])),(1,([9,8,7,3,1],[10,6,5,4,2]))
,(1,([10,7,5,4,1],[9,8,6,3,2])),(1,([9,8,5,4,1],[10,7,6,3,2]))
,(1,([10,8,5,4,1],[9,7,6,3,2])),(1,([9,7,6,4,1],[10,8,5,3,2]))
,(1,([10,7,6,4,1],[9,8,5,3,2])),(1,([9,8,6,4,1],[10,7,5,3,2]))
,(1,([8,7,6,5,1],[9,10,4,3,2])),(1,([9,7,6,5,1],[10,8,4,3,2]))]
This is an instance of the Partition problem, but for your tiny instance testing all combinations should be fast enough.
There is an array of size n (numbers are between 0 and n - 3) and only 2 numbers are repeated. Elements are placed randomly in the array.
E.g. in {2, 3, 6, 1, 5, 4, 0, 3, 5} n=9, and repeated numbers are 3 and 5.
What is the best way to find the repeated numbers?
P.S. [You should not use sorting]
There is a O(n) solution if you know what the possible domain of input is. For example if your input array contains numbers between 0 to 100, consider the following code.
bool flags[100];
for(int i = 0; i < 100; i++)
flags[i] = false;
for(int i = 0; i < input_size; i++)
if(flags[input_array[i]])
return input_array[i];
else
flags[input_array[i]] = true;
Of course there is the additional memory but this is the fastest.
OK, seems I just can't give it a rest :)
Simplest solution
int A[N] = {...};
int signed_1(n) { return n%2<1 ? +n : -n; } // 0,-1,+2,-3,+4,-5,+6,-7,...
int signed_2(n) { return n%4<2 ? +n : -n; } // 0,+1,-2,-3,+4,+5,-6,-7,...
long S1 = 0; // or int64, or long long, or some user-defined class
long S2 = 0; // so that it has enough bits to contain sum without overflow
for (int i=0; i<N-2; ++i)
{
S1 += signed_1(A[i]) - signed_1(i);
S2 += signed_2(A[i]) - signed_2(i);
}
for (int i=N-2; i<N; ++i)
{
S1 += signed_1(A[i]);
S2 += signed_2(A[i]);
}
S1 = abs(S1);
S2 = abs(S2);
assert(S1 != S2); // this algorithm fails in this case
p = (S1+S2)/2;
q = abs(S1-S2)/2;
One sum (S1 or S2) contains p and q with the same sign, the other sum - with opposite signs, all other members are eliminated.
S1 and S2 must have enough bits to accommodate sums, the algorithm does not stand for overflow because of abs().
if abs(S1)==abs(S2) then the algorithm fails, though this value will still be the difference between p and q (i.e. abs(p - q) == abs(S1)).
Previous solution
I doubt somebody will ever encounter such a problem in the field ;)
and I guess, I know the teacher's expectation:
Lets take array {0,1,2,...,n-2,n-1},
The given one can be produced by replacing last two elements n-2 and n-1 with unknown p and q (less order)
so, the sum of elements will be (n-1)n/2 + p + q - (n-2) - (n-1)
the sum of squares (n-1)n(2n-1)/6 + p^2 + q^2 - (n-2)^2 - (n-1)^2
Simple math remains:
(1) p+q = S1
(2) p^2+q^2 = S2
Surely you won't solve it as math classes teach to solve square equations.
First, calculate everything modulo 2^32, that is, allow for overflow.
Then check pairs {p,q}: {0, S1}, {1, S1-1} ... against expression (2) to find candidates (there might be more than 2 due to modulo and squaring)
And finally check found candidates if they really are present in array twice.
You know that your Array contains every number from 0 to n-3 and the two repeating ones (p & q). For simplicity, lets ignore the 0-case for now.
You can calculate the sum and the product over the array, resulting in:
1 + 2 + ... + n-3 + p + q = p + q + (n-3)(n-2)/2
So if you substract (n-3)(n-2)/2 from the sum of the whole array, you get
sum(Array) - (n-3)(n-2)/2 = x = p + q
Now do the same for the product:
1 * 2 * ... * n - 3 * p * q = (n - 3)! * p * q
prod(Array) / (n - 3)! = y = p * q
Your now got these terms:
x = p + q
y = p * q
=> y(p + q) = x(p * q)
If you transform this term, you should be able to calculate p and q
Insert each element into a set/hashtable, first checking if its are already in it.
You might be able to take advantage of the fact that sum(array) = (n-2)*(n-3)/2 + two missing numbers.
Edit: As others have noted, combined with the sum-of-squares, you can use this, I was just a little slow in figuring it out.
Check this old but good paper on the topic:
Finding Repeated Elements (PDF)
Some answers to the question: Algorithm to determine if array contains n…n+m? contain as a subproblem solutions which you can adopt for your purpose.
For example, here's a relevant part from my answer:
bool has_duplicates(int* a, int m, int n)
{
/** O(m) in time, O(1) in space (for 'typeof(m) == typeof(*a) == int')
Whether a[] array has duplicates.
precondition: all values are in [n, n+m) range.
feature: It marks visited items using a sign bit.
*/
assert((INT_MIN - (INT_MIN - 1)) == 1); // check n == INT_MIN
for (int *p = a; p != &a[m]; ++p) {
*p -= (n - 1); // [n, n+m) -> [1, m+1)
assert(*p > 0);
}
// determine: are there duplicates
bool has_dups = false;
for (int i = 0; i < m; ++i) {
const int j = abs(a[i]) - 1;
assert(j >= 0);
assert(j < m);
if (a[j] > 0)
a[j] *= -1; // mark
else { // already seen
has_dups = true;
break;
}
}
// restore the array
for (int *p = a; p != &a[m]; ++p) {
if (*p < 0)
*p *= -1; // unmark
// [1, m+1) -> [n, n+m)
*p += (n - 1);
}
return has_dups;
}
The program leaves the array unchanged (the array should be writeable but its values are restored on exit).
It works for array sizes upto INT_MAX (on 64-bit systems it is 9223372036854775807).
suppose array is
a[0], a[1], a[2] ..... a[n-1]
sumA = a[0] + a[1] +....+a[n-1]
sumASquare = a[0]*a[0] + a[1]*a[1] + a[2]*a[2] + .... + a[n]*a[n]
sumFirstN = (N*(N+1))/2 where N=n-3 so
sumFirstN = (n-3)(n-2)/2
similarly
sumFirstNSquare = N*(N+1)*(2*N+1)/6 = (n-3)(n-2)(2n-5)/6
Suppose repeated elements are = X and Y
so X + Y = sumA - sumFirstN;
X*X + Y*Y = sumASquare - sumFirstNSquare;
So on solving this quadratic we can get value of X and Y.
Time Complexity = O(n)
space complexity = O(1)
I know the question is very old but I suddenly hit it and I think I have an interesting answer to it.
We know this is a brainteaser and a trivial solution (i.e. HashMap, Sort, etc) no matter how good they are would be boring.
As the numbers are integers, they have constant bit size (i.e. 32). Let us assume we are working with 4 bit integers right now. We look for A and B which are the duplicate numbers.
We need 4 buckets, each for one bit. Each bucket contains numbers which its specific bit is 1. For example bucket 1 gets 2, 3, 4, 7, ...:
Bucket 0 : Sum ( x where: x & 2 power 0 == 0 )
...
Bucket i : Sum ( x where: x & 2 power i == 0 )
We know what would be the sum of each bucket if there was no duplicate. I consider this as prior knowledge.
Once above buckets are generated, a bunch of them would have values more than expected. By constructing the number from buckets we will have (A OR B for your information).
We can calculate (A XOR B) as follows:
A XOR B = Array[i] XOR Array[i-1] XOR ... 0, XOR n-3 XOR n-2 ... XOR 0
Now going back to buckets, we know exactly which buckets have both our numbers and which ones have only one (from the XOR bit).
For the buckets that have only one number we can extract the number num = (sum - expected sum of bucket). However, we should be good only if we can find one of the duplicate numbers so if we have at least one bit in A XOR B, we've got the answer.
But what if A XOR B is zero?
Well this case is only possible if both duplicate numbers are the same number, which then our number is the answer of A OR B.
Sorting the array would seem to be the best solution. A simple sort would then make the search trivial and would take a whole lot less time/space.
Otherwise, if you know the domain of the numbers, create an array with that many buckets in it and increment each as you go through the array. something like this:
int count [10];
for (int i = 0; i < arraylen; i++) {
count[array[i]]++;
}
Then just search your array for any numbers greater than 1. Those are the items with duplicates. Only requires one pass across the original array and one pass across the count array.
Here's implementation in Python of #eugensk00's answer (one of its revisions) that doesn't use modular arithmetic. It is a single-pass algorithm, O(log(n)) in space. If fixed-width (e.g. 32-bit) integers are used then it is requires only two fixed-width numbers (e.g. for 32-bit: one 64-bit number and one 128-bit number). It can handle arbitrary large integer sequences (it reads one integer at a time therefore a whole sequence doesn't require to be in memory).
def two_repeated(iterable):
s1, s2 = 0, 0
for i, j in enumerate(iterable):
s1 += j - i # number_of_digits(s1) ~ 2 * number_of_digits(i)
s2 += j*j - i*i # number_of_digits(s2) ~ 4 * number_of_digits(i)
s1 += (i - 1) + i
s2 += (i - 1)**2 + i**2
p = (s1 - int((2*s2 - s1**2)**.5)) // 2
# `Decimal().sqrt()` could replace `int()**.5` for really large integers
# or any function to compute integer square root
return p, s1 - p
Example:
>>> two_repeated([2, 3, 6, 1, 5, 4, 0, 3, 5])
(3, 5)
A more verbose version of the above code follows with explanation:
def two_repeated_seq(arr):
"""Return the only two duplicates from `arr`.
>>> two_repeated_seq([2, 3, 6, 1, 5, 4, 0, 3, 5])
(3, 5)
"""
n = len(arr)
assert all(0 <= i < n - 2 for i in arr) # all in range [0, n-2)
assert len(set(arr)) == (n - 2) # number of unique items
s1 = (n-2) + (n-1) # s1 and s2 have ~ 2*(k+1) and 4*(k+1) digits
s2 = (n-2)**2 + (n-1)**2 # where k is a number of digits in `max(arr)`
for i, j in enumerate(arr):
s1 += j - i
s2 += j*j - i*i
"""
s1 = (n-2) + (n-1) + sum(arr) - sum(range(n))
= sum(arr) - sum(range(n-2))
= sum(range(n-2)) + p + q - sum(range(n-2))
= p + q
"""
assert s1 == (sum(arr) - sum(range(n-2)))
"""
s2 = (n-2)**2 + (n-1)**2 + sum(i*i for i in arr) - sum(i*i for i in range(n))
= sum(i*i for i in arr) - sum(i*i for i in range(n-2))
= p*p + q*q
"""
assert s2 == (sum(i*i for i in arr) - sum(i*i for i in range(n-2)))
"""
s1 = p+q
-> s1**2 = (p+q)**2
-> s1**2 = p*p + 2*p*q + q*q
-> s1**2 - (p*p + q*q) = 2*p*q
s2 = p*p + q*q
-> p*q = (s1**2 - s2)/2
Let C = p*q = (s1**2 - s2)/2 and B = p+q = s1 then from Viete theorem follows
that p and q are roots of x**2 - B*x + C = 0
-> p = (B + sqrtD) / 2
-> q = (B - sqrtD) / 2
where sqrtD = sqrt(B**2 - 4*C)
-> p = (s1 + sqrt(2*s2 - s1**2))/2
"""
sqrtD = (2*s2 - s1**2)**.5
assert int(sqrtD)**2 == (2*s2 - s1**2) # perfect square
sqrtD = int(sqrtD)
assert (s1 - sqrtD) % 2 == 0 # even
p = (s1 - sqrtD) // 2
q = s1 - p
assert q == ((s1 + sqrtD) // 2)
assert sqrtD == (q - p)
return p, q
NOTE: calculating integer square root of a number (~ N**4) makes the above algorithm non-linear.
Since a range is specified, you can perform radix sort. This would sort your array in O(n). Searching for duplicates in a sorted array is then O(n)
You can use simple nested for loop
int[] numArray = new int[] { 1, 2, 3, 4, 5, 7, 8, 3, 7 };
for (int i = 0; i < numArray.Length; i++)
{
for (int j = i + 1; j < numArray.Length; j++)
{
if (numArray[i] == numArray[j])
{
//DO SOMETHING
}
}
*OR you can filter the array and use recursive function if you want to get the count of occurrences*
int[] array = { 1, 2, 3, 4, 5, 4, 4, 1, 8, 9, 23, 4, 6, 8, 9, 1,4 };
int[] myNewArray = null;
int a = 1;
void GetDuplicates(int[] array)
for (int i = 0; i < array.Length; i++)
{
for (int j = i + 1; j < array.Length; j++)
{
if (array[i] == array[j])
{
a += 1;
}
}
Console.WriteLine(" {0} occurred {1} time/s", array[i], a);
IEnumerable<int> num = from n in array where n != array[i] select n;
myNewArray = null;
a = 1;
myNewArray = num.ToArray() ;
break;
}
GetDuplicates(myNewArray);
answer to 18..
you are taking an array of 9 and elements are starting from 0..so max ele will be 6 in your array. Take sum of elements from 0 to 6 and take sum of array elements. compute their difference (say d). This is p + q. Now take XOR of elements from 0 to 6 (say x1). Now take XOR of array elements (say x2). x2 is XOR of all elements from 0 to 6 except two repeated elements since they cancel out each other. now for i = 0 to 6, for each ele of array, say p is that ele a[i] so you can compute q by subtracting this ele from the d. do XOR of p and q and XOR them with x2 and check if x1==x2. likewise doing for all elements you will get the elements for which this condition will be true and you are done in O(n). Keep coding!
check this out ...
O(n) time and O(1) space complexity
for(i=0;i< n;i++)
xor=xor^arr[i]
for(i=1;i<=n-3;i++)
xor=xor^i;
So in the given example you will get the xor of 3 and 5
xor=xor & -xor //Isolate the last digit
for(i = 0; i < n; i++)
{
if(arr[i] & xor)
x = x ^ arr[i];
else
y = y ^ arr[i];
}
for(i = 1; i <= n-3; i++)
{
if(i & xor)
x = x ^ i;
else
y = y ^ i;
}
x and y are your answers
For each number: check if it exists in the rest of the array.
Without sorting you're going to have a keep track of numbers you've already visited.
in psuedocode this would basically be (done this way so I'm not just giving you the answer):
for each number in the list
if number not already in unique numbers list
add it to the unique numbers list
else
return that number as it is a duplicate
end if
end for each
How about this:
for (i=0; i<n-1; i++) {
for (j=i+1; j<n; j++) {
if (a[i] == a[j]) {
printf("%d appears more than once\n",a[i]);
break;
}
}
}
Sure it's not the fastest, but it's simple and easy to understand, and requires
no additional memory. If n is a small number like 9, or 100, then it may well be the "best". (i.e. "Best" could mean different things: fastest to execute, smallest memory footprint, most maintainable, least cost to develop etc..)
In c:
int arr[] = {2, 3, 6, 1, 5, 4, 0, 3, 5};
int num = 0, i;
for (i=0; i < 8; i++)
num = num ^ arr[i] ^i;
Since x^x=0, the numbers that are repeated odd number of times are neutralized. Let's call the unique numbers a and b.We are left with a^b. We know a^b != 0, since a != b. Choose any 1 bit of a^b, and use that as a mask ie.choose x as a power of 2 so that x & (a^b) is nonzero.
Now split the list into two sublists -- one sublist contains all numbers y with y&x == 0, and the rest go in the other sublist. By the way we chose x, we know that the pairs of a and b are in different buckets. So we can now apply the same method used above to each bucket independently, and discover what a and b are.
I have written a small programme which finds out the number of elements not repeated, just go through this let me know your opinion, at the moment I assume even number of elements are even but can easily extended for odd numbers also.
So my idea is to first sort the numbers and then apply my algorithm.quick sort can be use to sort this elements.
Lets take an input array as below
int arr[] = {1,1,2,10,3,3,4,5,5,6,6};
the number 2,10 and 4 are not repeated ,but they are in sorted order, if not sorted use quick sort to first sort it out.
Lets apply my programme on this
using namespace std;
main()
{
//int arr[] = {2, 9, 6, 1, 1, 4, 2, 3, 5};
int arr[] = {1,1,2,10,3,3,4,5,5,6,6};
int i = 0;
vector<int> vec;
int var = arr[0];
for(i = 1 ; i < sizeof(arr)/sizeof(arr[0]); i += 2)
{
var = var ^ arr[i];
if(var != 0 )
{
//put in vector
var = arr[i-1];
vec.push_back(var);
i = i-1;
}
var = arr[i+1];
}
for(int i = 0 ; i < vec.size() ; i++)
printf("value not repeated = %d\n",vec[i]);
}
This gives the output:
value not repeated= 2
value not repeated= 10
value not repeated= 4
Its simple and very straight forward, just use XOR man.
for(i=1;i<=n;i++) {
if(!(arr[i] ^ arr[i+1]))
printf("Found Repeated number %5d",arr[i]);
}
Here is an algorithm that uses order statistics and runs in O(n).
You can solve this by repeatedly calling SELECT with the median as parameter.
You also rely on the fact that After a call to SELECT,
the elements that are less than or equal to the median are moved to the left of the median.
Call SELECT on A with the median as the parameter.
If the median value is floor(n/2) then the repeated values are right to the median. So you continue with the right half of the array.
Else if it is not so then a repeated value is left to the median. So you continue with the left half of the array.
You continue this way recursively.
For example:
When A={2, 3, 6, 1, 5, 4, 0, 3, 5} n=9, then the median should be the value 4.
After the first call to SELECT
A={3, 2, 0, 1, <3>, 4, 5, 6, 5} The median value is smaller than 4 so we continue with the left half.
A={3, 2, 0, 1, 3}
After the second call to SELECT
A={1, 0, <2>, 3, 3} then the median should be 2 and it is so we continue with the right half.
A={3, 3}, found.
This algorithm runs in O(n+n/2+n/4+...)=O(n).
What about using the https://en.wikipedia.org/wiki/HyperLogLog?
Redis does http://redis.io/topics/data-types-intro#hyperloglogs
A HyperLogLog is a probabilistic data structure used in order to count unique things (technically this is referred to estimating the cardinality of a set). Usually counting unique items requires using an amount of memory proportional to the number of items you want to count, because you need to remember the elements you have already seen in the past in order to avoid counting them multiple times. However there is a set of algorithms that trade memory for precision: you end with an estimated measure with a standard error, in the case of the Redis implementation, which is less than 1%. The magic of this algorithm is that you no longer need to use an amount of memory proportional to the number of items counted, and instead can use a constant amount of memory! 12k bytes in the worst case, or a lot less if your HyperLogLog (We'll just call them HLL from now) has seen very few elements.
Well using the nested for loop and assuming the question is to find the number occurred only twice in an array.
def repeated(ar,n):
count=0
for i in range(n):
for j in range(i+1,n):
if ar[i] == ar[j]:
count+=1
if count == 1:
count=0
print("repeated:",ar[i])
arr= [2, 3, 6, 1, 5, 4, 0, 3, 5]
n = len(arr)
repeated(arr,n)
Why should we try out doing maths ( specially solving quadratic equations ) these are costly op . Best way to solve this would be t construct a bitmap of size (n-3) bits , i.e, (n -3 ) +7 / 8 bytes . Better to do a calloc for this memory , so every single bit will be initialized to 0 . Then traverse the list & set the particular bit to 1 when encountered , if the bit is set to 1 already for that no then that is the repeated no .
This can be extended to find out if there is any missing no in the array or not.
This solution is O(n) in time complexity