How to pass blocks between methods? - ruby

I have two methods which both except a block, however one of the methods needs to pass its block to the other.
def one(&block)
two(block)
end
def two(&block)
block.call
end
In the real code other parameters are passed and one is syntax sugar over two.
I want to be able to call both one and two with a block.
one { } # => okay
two { } # => ArgumentError: wrong number of arguments (1 for 0)
I can see why I get the ArgumentError, two takes no argument as such. I'm not quite sure how to phrase this but &block designates the block appears after the passed in arguments, hence the error.
Ruby 1.9

You could just pass the &block to your second method like so:
def one(&block)
two(&block)
end
def two(&block)
block.call
end
one { puts "Hello World" }
Hello World
#=> nil
Update
You could also do something like this
def one
two(&Proc.new)
end
def two(&block)
block.call
end
It will have the same output as above. Do note that if no block is given to one, it will raise an ArgumentError: tried to create Proc object without a block so you'd have to check if the block is given by calling if block_given?

You could do the same with yield:
def one
two { yield }
end
def two
yield
end

Related

Ruby - Is &prc different than &block?

I'm writing a simple method that adds num to the return value of the block that is passed to it and I noticed that &block and &prc both work. I know that a proc is an object and can be assigned to a variable which could be handy. Is that the only difference though? Is there any difference between these two when it comes to performance, convention, or versatility? Is it ever better to use &block instead of &prc?
def adder(num = 1, &block)
yield + num
end
vs.
def adder(num = 1, &prc)
yield + num
end
Is there any difference between these two when it comes to
performance, convention, or versatility?
There is no difference between these, you able to name it as you want, it's just a name. Some devs call it &blk some &block or &b or &foo ...
>> def foo &foo
>> yield
>> end
=> :foo
>> foo do
?> puts '1'
>> end
1
Strictly saying & is an operator which you can apply to any object, and it will take care of converting that object to a Proc by calling to_proc().
>> def bar(&some_proc)
>> some_proc
>> end
=> :bar
>> p = bar { puts 'Call proc' }
=> #<Proc:0x005601e6d69c80#(irb):4>
>> p.call
=> Call proc
>> p.class
=> Proc
Only the one thing is important, the name should be informative.
Line any argument to your method the name is largely subjective. Typically you'll see &block used if only by convention, but the name itself can be anything you want so long as it's a valid variable name.
In your example you're declaring a block name but not actually using the name. Keep in mind that any Ruby method can be given a block, there's no way to restrict this, but it's up to the method itself to use the block if it wants. That block can be called zero or more times either immediately or at some point in the future. Giving the block to the method surrenders control, so be sure to read the documentation on any given method carefully. There can be surprises.
If you need to chain through a block, declare it with a name:
def passes_through(&block)
[ 1, 2, 3, 4 ].each(&block)
end
If you are going to yield on the block there's no need here:
def direct_call
[ 1, 2, 3, 4 ].each do |n|
yield n
end
end
If you're going to preserve the call and use it later, that's also a case for naming it:
def preserved_call(&block)
#callback = block
end
def make_callback
#callback and #callback.call
end
Any method can check if a block was supplied:
def tests_for_block
if (block_given?)
yield 'value'
else
'value'
end
end
There's a small but measurable cost to capturing a block by declaring it in the method signature, a lot of computation has to be done to properly capture all the variables that might be used in a closure situation. In performance sensitive code you'll want to avoid this.
You can dynamically create a block:
def captures_conditionally
if (block_given?)
#callback = Proc.new
end
end
The Proc.new method will assume control over whatever block has been supplied to the method if one has been.
in your example, there is not a difference between &block and &prc, because in each case you are just passing a block to be call into the method.
Block and proc are similar in that they are both blocks of code.
[1,2,3].each {|x| puts x }
everything within the {} is the block.
A proc is just a block of code that you can name and can be called at a later time.
put_element = Proc.new {|x| puts x}
then you use put_element as an argument in your function.

What does this '&' mean in ruby? [duplicate]

This question already has answers here:
What does map(&:name) mean in Ruby?
(17 answers)
Closed 6 years ago.
https://github.com/activeadmin/activeadmin/blob/1c85c5654a2ce1d43d4c64d98b928ff133d46406/lib/active_admin.rb#L95
What does the & (prefixed to ActiveAdmin) in this code mean?
def before_load(&block)
ActiveSupport::Notifications.subscribe(
ActiveAdmin::Application::BeforeLoadEvent,
&ActiveAdmin::Event.wrap_block_for_active_support_notifications(block)
)
end
In functions & 'splats' blocks (also calls to_proc on it), similar to * for regular parameters.
That is somewhat equivalent to
def before_load(&block) # this binds provided block into block variable
ActiveSupport::Notifications.subscribe(ActiveAdmin::Application::BeforeLoadEvent){|some_params_maybe|
ActiveAdmin::Event.wrap_block_for_active_support_notifications(block).call(some_params_maybe)
}
end
usually & calls to_proc method of the object, such as gets.split.map(&:to_i) is used to read line of integers, which is the same as map { |e| e.to_i }
In method arguments, it appears in the last arguments, meaning the code block you passed to, check the following code for details.
def g
puts yield "g"
end
def h(block)
puts block.call "h"
end
def f(&block)
puts block.class # => Proc
puts block.call "f" # => hello f
g &block # => hello g passed as code block
h block # => hello h passed as proc
end
f { |x| "hello " + x }
Following article provides a good explanation on the use of '&' in Ruby:
The Implicit Block
Methods in Ruby can take arguments in all sorts of interesting ways. One case that’s especially interesting is when a Ruby method takes a block.
In fact, all Ruby methods can implicitly take a block, without needing to specify this in the parameter list or having to use the block within the method body e.g.:
def hello
end
hello do
puts "hello"
end
This will execute without any trouble but nothing will be printed out as we’re not executing the block that we’re passing in. We can – of course – easily execute the block by yielding to it:
def hello
yield if block_given?
end
hello do
puts "hello"
end
This time we get some output:
hello
We yielded to the block inside the method, but the fact that the method takes a block is still implicit.
It gets even more interesting since Ruby allows to pass any object to a method and have the method attempt to use this object as its block. If we put an ampersand in front of the last parameter to a method, Ruby will try to treat this parameter as the method’s block. If the parameter is already a Proc object, Ruby will simply associate it with the method as its block.
def hello
yield if block_given?
end
blah = -> {puts "lambda"}
hello(&blah)
lambda
If the parameter is not a Proc, Ruby will try to convert it into one (by calling to_proc on it) before associating it with the method as its block.
def hello
yield if block_given?
end
class FooBar
def to_proc
-> {puts 'converted lambda'}
end
end
hello(&FooBar.new)
converted lambda
All of this seems pretty clear, but what if I want to take a block that was associated with a method and pass it to another method? We need a way to refer to our block.
The Explicit Block
When we write our method definition, we can explicitly state that we expect this method to possibly take a block. Confusingly, Ruby uses the ampersand for this as well:
def hello(&block)
yield if block_given?
end
hello do
puts "hello"
end
Defining our method this way, gives us a name by which we can refer to our block within the method body. And since our block is a Proc object, instead of yielding to it, we can call it:
def hello(&block)
block.call if block_given?
end
hello do
puts "hello"
end
I prefer block.call instead of yield, it makes things clearer. Of course, when we define our method we don’t have to use the name ‘block’, we can do:
def hello(&foo)
foo.call if block_given?
end
hello do
puts "hello"
end
Having said that; ‘block’ is a good convention.

Can I pass a block to a Proc?

I'm wondering if it's possible to pass a block to a Proc. Simply passing a block to Proc.call doesn't work:
foo = Proc.new {
yield
}
foo.call {
puts "test"
}
Results in:
LocalJumpError: no block given (yield)
The same happens with lambdas. However this does work with method objects:
class Foo
def bar
yield
end
end
bar = Foo.new.method :bar
bar.call { puts "Success!" }
Results in:
Success!
The odd thing is that it still works after converting the method object into a proc:
bar.to_proc.call { puts "Success!" }
Results in:
Success!
So how come the Proc that was made from a block doesn't accept blocks, but the Proc that was originally a method does? Is it possible to create Procs from blocks that accepts blocks?
Procs can't accept blocks as implicit arguments (the format you're trying). A proc can receive other proc objects as arguments, either explicitly, or using & arguments. Example:
a = Proc.new do |&block|
block.call
end
a.call() {puts "hi"}
yield is a bit of laguage level magic that only works in the context of a method.
The above answer is not 100% correct therefore can't be accepted answer. Especially the part;
Procs can't accept blocks as implicit arguments (the format you're trying). A proc can receive other proc objects as arguments, either explicitly, or using & arguments.
This is wrong. Procs and lambdas can call yield in their bodies. The fact to keep in mind is, Proc/lambda bodies have a lexical scope! Which means, if there is a block while defining the Proc/lambda, yield would successfully execute, like so;
def foo
my_proc = Proc.new { yield }
my_proc.call
end
foo { puts "Hello world!" } # would print "Hello world!"
As you can see, yield worked! Because there was block while defining the Proc.
One can say, the Proc is unfolded into method which has block while calling therefore yield worked. This is also wrong and can be disproved easily with the following snippet;
def foo
#my_proc ||= Proc.new { yield }
#my_proc.call
end
foo { puts "Hello again!" } # would print "Hello world!"
foo # would print "Hello world!"
As you can again see, it's about having block while defining the Proc.
If you want to have better understanding of whats being lexically scoped mean, let's have a look at the following example.
class Foo
def self.hello_proc
Proc.new { puts name }
end
def self.name
"Alice"
end
end
class Bar
def self.put_name
Foo.hello_proc.call
end
def self.name
"Bob"
end
end
Bar.put_name # would print "Alice"
You can copy and paste above code to an irb session to see what is the output. The reason it puts "Alice" is, the name was "Alice" while the Proc's being defined.

how can I delegate a call passing through the block that came with it?

I'm traversing an object graph and want to pass it a block that will run on each node of the structure from a method - let's called visit.
At the top, I'm going to call with a block and I want to delegate the initial call to visit on the root object to visit on other objects. I can unpack the block into a proc locally using &last_parameter_name - but how do I turn the proc back into a block on my delegated call?
Here's a simplified example where I call first(...) and want to delegate the block through to my call to second(...)
def second(&block) # ... ? ...
block.call(72)
end
def first(&block)
puts block.class # okay - now I have the Proc version
puts 'pre-doit'
block.call(42)
puts 'post-doit'
second( ... ? ...) # how do I pass the block through here?
end
first {|x| puts x*x}
Note: I need to have the same conventions on first() and second() here - i.e. they need to take the same things.
Having read and tried the answers, I've come up with a fuller, working example:
class X
def visit(&x)
x.call(50)
end
end
class Y < X
def visit(&x)
x.call(100)
X.new.visit(&x)
end
end
Y.new.visit {|x| puts x*x}
If I understand you correctly, then as simply as
second &block
This explicit passing around of blocks is not always necessary if you use yield.
def first( &block )
puts block.class # okay - now I have the Proc version
puts 'pre-doit'
yield 42
puts 'post-doit'
second( &block ) #the only reason the &block argument is needed. yield 42 can do without.
end
def second #no block argument here, works all the same
yield 72
end
first {|x| puts x*x}
Just call second and pass it the block variable (in this case a Proc).
second block

Blocks and yields in Ruby

I am trying to understand blocks and yield and how they work in Ruby.
How is yield used? Many of the Rails applications I've looked at use yield in a weird way.
Can someone explain to me or show me where to go to understand them?
Yes, it is a bit puzzling at first.
In Ruby, methods can receive a code block in order to perform arbitrary segments of code.
When a method expects a block, you can invoke it by calling the yield function.
Example:
Take Person, a class with a name attribute and a do_with_name method. When the method is invoked it will pass the name attribute to the block.
class Person
def initialize( name )
#name = name
end
def do_with_name # expects a block
yield( #name ) # invoke the block and pass the `#name` attribute
end
end
Now you can invoke this method and pass an arbitrary code block.
person = Person.new("Oscar")
# Invoking the method passing a block to print the value
person.do_with_name do |value|
puts "Got: #{value}"
end
Would print:
Got: Oscar
Notice the block receives as a parameter a variable called value. When the code invokes yield it passes as argument the value of #name.
yield( #name )
The same method can be invoked with a different block.
For instance to reverse the name:
reversed_name = ""
# Invoke the method passing a different block
person.do_with_name do |value|
reversed_name = value.reverse
end
puts reversed_name
=> "racsO"
Other more interesting real life examples:
Filter elements in an array:
days = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday"]
# Select those which start with 'T'
days.select do | item |
item.match /^T/
end
=> ["Tuesday", "Thursday"]
Or sort by name length:
days.sort do |x,y|
x.size <=> y.size
end
=> ["Monday", "Friday", "Tuesday", "Thursday", "Wednesday"]
If the block is optional you can use:
yield(value) if block_given?
If is not optional, just invoke it.
You can try these examples on your computer with irb (Interactive Ruby Shell)
Here are all the examples in a copy/paste ready form:
class Person
def initialize( name )
#name = name
end
def do_with_name # expects a block
yield( #name ) # invoke the block and pass the `#name` attribute
end
end
person = Person.new("Oscar")
# Invoking the method passing a block to print the value
person.do_with_name do |value|
puts "Got: #{value}"
end
reversed_name = ""
# Invoke the method passing a different block
person.do_with_name do |value|
reversed_name = value.reverse
end
puts reversed_name
# Filter elements in an array:
days = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday"]
# Select those which start with 'T'
days.select do | item |
item.match /^T/
end
# Sort by name length:
days.sort do |x,y|
x.size <=> y.size
end
In Ruby, methods can check to see if they were called in such a way that a block was provided in addition to the normal arguments. Typically this is done using the block_given? method but you can also refer to the block as an explicit Proc by prefixing an ampersand (&) before the final argument name.
If a method is invoked with a block then the method can yield control to the block (call the block) with some arguments, if needed. Consider this example method that demonstrates:
def foo(x)
puts "OK: called as foo(#{x.inspect})"
yield("A gift from foo!") if block_given?
end
foo(10)
# OK: called as foo(10)
foo(123) {|y| puts "BLOCK: #{y} How nice =)"}
# OK: called as foo(123)
# BLOCK: A gift from foo! How nice =)
Or, using the special block argument syntax:
def bar(x, &block)
puts "OK: called as bar(#{x.inspect})"
block.call("A gift from bar!") if block
end
bar(10)
# OK: called as bar(10)
bar(123) {|y| puts "BLOCK: #{y} How nice =)"}
# OK: called as bar(123)
# BLOCK: A gift from bar! How nice =)
It's quite possible that someone will provide a truly detailed answer here, but I've always found this post from Robert Sosinski to be a great explanation of the subtleties between blocks, procs & lambdas.
I should add that I believe the post I'm linking to is specific to ruby 1.8. Some things have changed in ruby 1.9, such as block variables being local to the block. In 1.8, you'd get something like the following:
>> a = "Hello"
=> "Hello"
>> 1.times { |a| a = "Goodbye" }
=> 1
>> a
=> "Goodbye"
Whereas 1.9 would give you:
>> a = "Hello"
=> "Hello"
>> 1.times { |a| a = "Goodbye" }
=> 1
>> a
=> "Hello"
I don't have 1.9 on this machine so the above might have an error in it.
I found this article to be very useful. In particular, the following example:
#!/usr/bin/ruby
def test
yield 5
puts "You are in the method test"
yield 100
end
test {|i| puts "You are in the block #{i}"}
test do |i|
puts "You are in the block #{i}"
end
which should give the following output:
You are in the block 5
You are in the method test
You are in the block 100
You are in the block 5
You are in the method test
You are in the block 100
So essentially each time a call is made to yield ruby will run the code in the do block or inside {}. If a parameter is provided to yield then this will be provided as a parameter to the do block.
For me, this was the first time that I understood really what the do blocks were doing. It is basically a way for the function to give access to internal data structures, be that for iteration or for configuration of the function.
So when in rails you write the following:
respond_to do |format|
format.html { render template: "my/view", layout: 'my_layout' }
end
This will run the respond_to function which yields the do block with the (internal) format parameter. You then call the .html function on this internal variable which in turn yields the code block to run the render command. Note that .html will only yield if it is the file format requested. (technicality: these functions actually use block.call not yield as you can see from the source but the functionality is essentially the same, see this question for a discussion.) This provides a way for the function to perform some initialisation then take input from the calling code and then carry on processing if required.
Or put another way, it's similar to a function taking an anonymous function as an argument and then calling it in javascript.
I wanted to sort of add why you would do things that way to the already great answers.
No idea what language you are coming from, but assuming it is a static language, this sort of thing will look familiar. This is how you read a file in java
public class FileInput {
public static void main(String[] args) {
File file = new File("C:\\MyFile.txt");
FileInputStream fis = null;
BufferedInputStream bis = null;
DataInputStream dis = null;
try {
fis = new FileInputStream(file);
// Here BufferedInputStream is added for fast reading.
bis = new BufferedInputStream(fis);
dis = new DataInputStream(bis);
// dis.available() returns 0 if the file does not have more lines.
while (dis.available() != 0) {
// this statement reads the line from the file and print it to
// the console.
System.out.println(dis.readLine());
}
// dispose all the resources after using them.
fis.close();
bis.close();
dis.close();
} catch (FileNotFoundException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
}
}
}
Ignoring the whole stream chaining thing, The idea is this
Initialize resource that needs to be cleaned up
use resource
make sure to clean it up
This is how you do it in ruby
File.open("readfile.rb", "r") do |infile|
while (line = infile.gets)
puts "#{counter}: #{line}"
counter = counter + 1
end
end
Wildly different. Breaking this one down
tell the File class how to initialize the resource
tell the file class what to do with it
laugh at the java guys who are still typing ;-)
Here, instead of handling step one and two, you basically delegate that off into another class. As you can see, that dramatically brings down the amount of code you have to write, which makes things easier to read, and reduces the chances of things like memory leaks, or file locks not getting cleared.
Now, its not like you can't do something similar in java, in fact, people have been doing it for decades now. It's called the Strategy pattern. The difference is that without blocks, for something simple like the file example, strategy becomes overkill due to the amount of classes and methods you need to write. With blocks, it is such a simple and elegant way of doing it, that it doesn't make any sense NOT to structure your code that way.
This isn't the only way blocks are used, but the others (like the Builder pattern, which you can see in the form_for api in rails) are similar enough that it should be obvious whats going on once you wrap your head around this. When you see blocks, its usually safe to assume that the method call is what you want to do, and the block is describing how you want to do it.
In Ruby, a block is basically a chunk of code that can be passed to and executed by any method. Blocks are always used with methods, which usually feed data to them (as arguments).
Blocks are widely used in Ruby gems (including Rails) and in well-written Ruby code. They are not objects, hence cannot be assigned to variables.
Basic Syntax
A block is a piece of code enclosed by { } or do..end. By convention, the curly brace syntax should be used for single-line blocks and the do..end syntax should be used for multi-line blocks.
{ # This is a single line block }
do
# This is a multi-line block
end
Any method can receive a block as an implicit argument. A block is executed by the yield statement within a method. The basic syntax is:
def meditate
print "Today we will practice zazen"
yield # This indicates the method is expecting a block
end
# We are passing a block as an argument to the meditate method
meditate { print " for 40 minutes." }
Output:
Today we will practice zazen for 40 minutes.
When the yield statement is reached, the meditate method yields control to the block, the code within the block is executed and control is returned to the method, which resumes execution immediately following the yield statement.
When a method contains a yield statement, it is expecting to receive a block at calling time. If a block is not provided, an exception will be thrown once the yield statement is reached. We can make the block optional and avoid an exception from being raised:
def meditate
puts "Today we will practice zazen."
yield if block_given?
end meditate
Output:
Today we will practice zazen.
It is not possible to pass multiple blocks to a method. Each method can receive only one block.
See more at: http://www.zenruby.info/2016/04/introduction-to-blocks-in-ruby.html
I sometimes use "yield" like this:
def add_to_http
"http://#{yield}"
end
puts add_to_http { "www.example.com" }
puts add_to_http { "www.victim.com"}
Yields, to put it simply, allow the method you create to take and call blocks. The yield keyword specifically is the spot where the 'stuff' in the block will be performed.
There are two points I want to make about yield here. First, while a lot of answers here talk about different ways to pass a block to a method which uses yield, let's also talk about the control flow. This is especially relevant since you can yield MULTIPLE times to a block. Let's take a look at an example:
class Fruit
attr_accessor :kinds
def initialize
#kinds = %w(orange apple pear banana)
end
def each
puts 'inside each'
3.times { yield (#kinds.tap {|kinds| puts "selecting from #{kinds}"} ).sample }
end
end
f = Fruit.new
f.each do |kind|
puts 'inside block'
end
=> inside each
=> selecting from ["orange", "apple", "pear", "banana"]
=> inside block
=> selecting from ["orange", "apple", "pear", "banana"]
=> inside block
=> selecting from ["orange", "apple", "pear", "banana"]
=> inside block
When the each method is invoked, it executes line by line. Now when we get to the 3.times block, this block will be invoked 3 times. Each time it invokes yield. That yield is linked to the block associated with the method that called the each method. It is important to notice that each time yield is invoked, it returns control back to the block of the each method in client code. Once the block is finished executing, it returns back to the 3.times block. And this happens 3 times. So that block in client code is invoked on 3 separate occasions since yield is explicitly called 3 separate times.
My second point is about enum_for and yield. enum_for instantiates the Enumerator class and this Enumerator object also responds to yield.
class Fruit
def initialize
#kinds = %w(orange apple)
end
def kinds
yield #kinds.shift
yield #kinds.shift
end
end
f = Fruit.new
enum = f.to_enum(:kinds)
enum.next
=> "orange"
enum.next
=> "apple"
So notice every time we invoke kinds with the external iterator, it will invoke yield only once. The next time we call it, it will invoke the next yield and so on.
There's an interesting tidbit with regards to enum_for. The documentation online states the following:
enum_for(method = :each, *args) → enum
Creates a new Enumerator which will enumerate by calling method on obj, passing args if any.
str = "xyz"
enum = str.enum_for(:each_byte)
enum.each { |b| puts b }
# => 120
# => 121
# => 122
If you do not specify a symbol as an argument to enum_for, ruby will hook the enumerator to the receiver's each method. Some classes do not have an each method, like the String class.
str = "I like fruit"
enum = str.to_enum
enum.next
=> NoMethodError: undefined method `each' for "I like fruit":String
Thus, in the case of some objects invoked with enum_for, you must be explicit as to what your enumerating method will be.
Yield can be used as nameless block to return a value in the method. Consider the following code:
Def Up(anarg)
yield(anarg)
end
You can create a method "Up" which is assigned one argument. You can now assign this argument to yield which will call and execute an associated block. You can assign the block after the parameter list.
Up("Here is a string"){|x| x.reverse!; puts(x)}
When the Up method calls yield, with an argument, it is passed to the block variable to process the request.

Resources