Ruby - Is &prc different than &block? - ruby

I'm writing a simple method that adds num to the return value of the block that is passed to it and I noticed that &block and &prc both work. I know that a proc is an object and can be assigned to a variable which could be handy. Is that the only difference though? Is there any difference between these two when it comes to performance, convention, or versatility? Is it ever better to use &block instead of &prc?
def adder(num = 1, &block)
yield + num
end
vs.
def adder(num = 1, &prc)
yield + num
end

Is there any difference between these two when it comes to
performance, convention, or versatility?
There is no difference between these, you able to name it as you want, it's just a name. Some devs call it &blk some &block or &b or &foo ...
>> def foo &foo
>> yield
>> end
=> :foo
>> foo do
?> puts '1'
>> end
1
Strictly saying & is an operator which you can apply to any object, and it will take care of converting that object to a Proc by calling to_proc().
>> def bar(&some_proc)
>> some_proc
>> end
=> :bar
>> p = bar { puts 'Call proc' }
=> #<Proc:0x005601e6d69c80#(irb):4>
>> p.call
=> Call proc
>> p.class
=> Proc
Only the one thing is important, the name should be informative.

Line any argument to your method the name is largely subjective. Typically you'll see &block used if only by convention, but the name itself can be anything you want so long as it's a valid variable name.
In your example you're declaring a block name but not actually using the name. Keep in mind that any Ruby method can be given a block, there's no way to restrict this, but it's up to the method itself to use the block if it wants. That block can be called zero or more times either immediately or at some point in the future. Giving the block to the method surrenders control, so be sure to read the documentation on any given method carefully. There can be surprises.
If you need to chain through a block, declare it with a name:
def passes_through(&block)
[ 1, 2, 3, 4 ].each(&block)
end
If you are going to yield on the block there's no need here:
def direct_call
[ 1, 2, 3, 4 ].each do |n|
yield n
end
end
If you're going to preserve the call and use it later, that's also a case for naming it:
def preserved_call(&block)
#callback = block
end
def make_callback
#callback and #callback.call
end
Any method can check if a block was supplied:
def tests_for_block
if (block_given?)
yield 'value'
else
'value'
end
end
There's a small but measurable cost to capturing a block by declaring it in the method signature, a lot of computation has to be done to properly capture all the variables that might be used in a closure situation. In performance sensitive code you'll want to avoid this.
You can dynamically create a block:
def captures_conditionally
if (block_given?)
#callback = Proc.new
end
end
The Proc.new method will assume control over whatever block has been supplied to the method if one has been.

in your example, there is not a difference between &block and &prc, because in each case you are just passing a block to be call into the method.
Block and proc are similar in that they are both blocks of code.
[1,2,3].each {|x| puts x }
everything within the {} is the block.
A proc is just a block of code that you can name and can be called at a later time.
put_element = Proc.new {|x| puts x}
then you use put_element as an argument in your function.

Related

Ruby Bracket Method with Block

I would like to define the [] method on a class of my own creation to take a block. I have done so as follows.
class A
def self.[](*args, &block)
puts "I am calling #{block} on #{args}."
block.(*args)
end
end
I can invoke this as follows.
# Explicit method invocation
A.[](1) { |x| puts x }
# With a procedure argument
arg = proc { |x| puts x }
A[2, &arg]
However, what I would like to be able to do is this.
A[3] { |x| puts x }
Which unfortunately seems to produce a syntax error. Is there a block syntax for the bracket method, or am I stuck with the first two ways of invoking it? In fact, more generally, which Ruby method names will allow blocks in their invocation, as it seems that there might be a limitation on when this is allowed?
There's not much you can do against a syntax error, so you'll have to change the syntax.
If you accept :
to define (i.e. pollute) an uppercase method inside Kernel (similar to Kernel#Array)
to use parens instead of brackets
You could write :
class A
def self.call_block_with_args(*args, &block)
puts "I am calling #{block} on #{args}."
block.call(*args)
end
end
module Kernel
def A(*args, &block)
A.call_block_with_args(*args, &block)
end
end
It works this way :
A(3) { |x| puts x }
#=>
# I am calling #<Proc:0x000000012b9c50#block_brackets.rb:14> on [3].
# 3
It's not clean, but it's probably the closest you can be to A[3] { |x| puts x }.
Blocks work with normal method calls only.
Ruby has plenty of operators, listing all of them here would be exhaustive, there are more than two dozens. Even `a` and !a and -a are method calls in Ruby. And obviously there are limitations to all these operators, eg + must take one parameter but not more, et cetera.
Fun fact, loop is a method call too.

How to get the return value of the block passed to eval method?

I want to implement something like a sandbox which can
eval given string
execute given block in the same context with eval
return the result of block
The aim of the sandbox is to inspect the contents - functions, variables, e.t.c. - of vulnerable codes.
Here is my spec
it 'returns return value of given block' do
value = Sandbox.secure_eval('hoge = ["hoge", "fuga"]') do
hoge[0]
end
expect(value).to eq('hoge')
end
and, this is my implementation of sandbox
require 'timeout'
module Sandbox
def self.secure_eval(code, timeout: 5, safe_level: 2)
raise ArgumentError, 'please set call back by block' unless block_given?
proc = Proc.new do
Timeout::timeout timeout do
$SAFE = safe_level
eval code do
yield
end
end
end
proc.call
end
end
But #secure_eval returns the result of eval, in this case ["hoge", "fuga"], and cannot capture the return value of the block.
How can I make it?
You can return the result of eval to the block using yield. You just had to yield the value; thus I changed your yield to yield eval code. In the block you give to Sandbox.secure_eval you have to then bind this result to a block variable. The result of secure_eval will be the result of the block, like you wanted.
proc = Proc.new do
Timeout::timeout timeout do
$SAFE = safe_level
yield eval code # <= This line changed
end
end
Sandbox.secure_eval('hoge = ["hoge", "fuga"]') { |hoge| hoge[0] }
# => "hoge"
Sandbox.secure_eval('2 ** 4') { |result| result - 5 }
# => 11
In response to your comment; it turns out that with the aid of Kernel#Binding, we can get it to work more or less like you wanted. It feels rather like a hack so use it with caution.
I use the Binding to evaluate the code, which will have access to all defined variables. In addition, I define a method_missing for the Binding class so we can access the variables more easily. Without it, you would need to do eval('varname') rather than just varname. Per the comment of #hakcho who mentioned the monkey-patch solution that was in place is not ideal, I now use refinements which only locally changes the behavior of Binding (i.e., the method_missing implementation).
I have added an explicit block parameter to your method, which I use with instance_eval instead of yield. We can then access the variables directly in the block.
require 'timeout'
module Sandbox
refine Binding do
def method_missing(meth, *args, &block)
self.eval(meth.to_s)
end
end
def self.secure_eval(code, timeout: 5, safe_level: 2, &block)
raise ArgumentError, 'please set call back by block' unless block_given?
proc = Proc.new do
Timeout::timeout timeout do
$SAFE = safe_level
binding = binding()
binding.eval(code)
binding.instance_eval(&block)
end
end
proc.call
end
end
using Sandbox # Activate the refinement so we can use x, y, z directly
Sandbox.secure_eval('x = [1,2,3]; y = 0; z = { key: "Hello!" }') do
x[1] # => 2
y # => 0
z[:key] # => "Hello!"
end

How do I create a block with a given binding in ruby?

I'm trying to write a version of assert_difference that will accept a hash as an argument, so that instead of writing
assert_difference 'thing1', 1 do
assert_difference ['thing2a', 'thing2b'], 2 do
assert_difference 'thing3', -3 do
# some triple-indented code
end
end
end
I can write
assert_difference 'thing1' => 1, ['thing2a', 'thing2b'] => 2, 'thing3' => 3 do
# some single-indented code
end
I've got as far as
def assert_difference_with_hash_support(expression, difference = 1, message = nil, &block)
if expression.is_a? Hash
expression.each do |expr, diff|
block = lambda do
assert_difference_without_hash_support expr, diff, &block
end
end
block.call
else
assert_difference_without_hash_support(expression, difference, message, &block)
end
end
alias_method_chain :assert_difference, :hash_support
but this doesn't work because assert_difference uses the binding of the block when it evaluates the expression. What I'd like to do is to create a new block with the original binding - something like so:
b = block.send :binding
expression.each do |expr, diff|
block = lambda(b) do
assert_difference_without_hash_support expr, diff, &block
end
end
block.call
but I haven't seen a way of creating a new block with anything other than the current binding. How do I create a block with a given binding?
Maybe I am missing something, but I think you are trying to use very complicated features of ruby, while they are unnecessary for solving your problem.
My solution would be:
def assert_hash(hash, &block)
if hash.length > 1
assert_difference(*hash.shift) do
assert_hash(hash, &block)
end
else
assert_difference(*hash.first, &block)
end
end
Of course it is missing aliasing, but that's not the point.
EDIT:
As of creating blocks with custom bindings the answer is: no. But you can call chunks of code with different binding, either caught with binding method, or just by providing object that has binding related with it.
You can either use eval for this purpose (it accepts Binding object as a second argument) or better instance_eval, class_eval, instance_exec and class_exec. You can start your digging at Jay Fields' Thoughts blog entry.

how to pass a Ruby iterator as a parameter?

I'd like to write a method that yields values in one place and pass it as a parameter to another method that will invoke it with a block. I'm convinced it can be done but somehow I'm not able to find the right syntax.
Here's some sample (non-working) code to illustrate what I'm trying to achieve:
def yielder
yield 1
yield 2
yield 3
end
def user(block)
block.call { |x| puts x }
end
# later...
user(&yielder)
$ ruby x.rb
x.rb:2:in `yielder': no block given (yield) (LocalJumpError)
from x.rb:12:in `<main>'
FWIW, in my real code, yielder and user are in different classes.
Update
Thanks for your answers. As Andrew Grimm mentioned, I want the iterator method to take parameters. My original example left this detail out. This snippet provides an iterator that counts up to a given number. To make it work, I made the inner block explicit. It does what I want, but it's a bit ugly. If anyone can improve on this I'd be very interested in seeing how.
def make_iter(upto)
def iter(upto, block)
(1 .. upto).each do |v|
block.call(v)
end
end
lambda { |block| iter(upto, block) }
end
def user(obj)
obj.call Proc.new { |x| puts x }
end
# later...
user(make_iter(3))
This doesn't use a lambda or unbound method, but it is the simplest way to go...
def f
yield 1
yield 2
end
def g x
send x do |n|
p n
end
end
g :f
When you write &yielder, you're calling yielder and then trying to apply the & (convert-to-Proc) operator on the result. Of course, calling yielder without a block is a no-go. What you want is to get a reference to the method itself. Just change that line to user(method :yielder) and it will work.
I think this might be along the lines of what you want to do:
def yielder
yield 1
yield 2
yield 3
end
def user(meth)
meth.call { |x| puts x }
end
# later...
user( Object.method(:yielder) )
Some related info here: http://blog.sidu.in/2007/11/ruby-blocks-gotchas.html
As it has been pointed out the baseline problem is that when you try to pass a function as a parameter Ruby executes it – as a side effect of parenthesis being optional.
I liked the simplicity of the symbol method that was mentioned before, but I would be afraid of my future self forgetting that one needs to pass the iterator as a symbol to make that work. Being readability a desired feature, you may then wrap your iterator into an object, which you can pass around without fear of having code unexpectedly executed.
Anonymous object as iterator
That is: using an anonymous object with just one fuction as iterator. Pretty immediate to read and understand. But due to the restrictions in the way Ruby handles scope the iterator cannot easily receive parameters: any parameters received in the function iterator are not automatically available within each.
def iterator
def each
yield("Value 1")
yield("Value 2")
yield("Value 3")
end
end
def iterate(my_iterator)
my_iterator.each do |value|
puts value
end
end
iterate iterator
Proc object as iterator
Using a Proc object as iterator lets you easily use any variables passed to the iterator constructor. The dark side: this starts looking weird. Reading the Proc.new block is not immediate for the untrained eye. Also: not being able to use yield makes it a bit uglier IMHO.
def iterator(prefix:)
Proc.new { |&block|
block.call("#{prefix} Value 1")
block.call("#{prefix} Value 2")
block.call("#{prefix} Value 3")
}
end
def iterate(my_iterator)
my_iterator.call do |value|
puts value
end
end
iterate iterator(prefix: 'The')
Lambda as iterator
Ideal if you want to obfuscate your code so hard that no one else besides you can read it.
def iterator(prefix:)
-> (&block) {
block.call("#{prefix} Value 1")
block.call("#{prefix} Value 2")
block.call("#{prefix} Value 3")
}
end
def iterate(my_iterator)
my_iterator.call do |value|
puts value
end
end
iterate iterator(prefix: 'The')
Class as iterator
And finally the good ol' OOP approach. A bit verbose to initialize for my taste, but with little or none surprise effect.
class Iterator
def initialize(prefix:)
#prefix = prefix
end
def each
yield("#{#prefix} Value 1")
yield("#{#prefix} Value 2")
yield("#{#prefix} Value 3")
end
end
def iterate(my_iterator)
my_iterator.each do |value|
puts value
end
end
iterate Iterator.new(prefix: 'The')

Blocks and yields in Ruby

I am trying to understand blocks and yield and how they work in Ruby.
How is yield used? Many of the Rails applications I've looked at use yield in a weird way.
Can someone explain to me or show me where to go to understand them?
Yes, it is a bit puzzling at first.
In Ruby, methods can receive a code block in order to perform arbitrary segments of code.
When a method expects a block, you can invoke it by calling the yield function.
Example:
Take Person, a class with a name attribute and a do_with_name method. When the method is invoked it will pass the name attribute to the block.
class Person
def initialize( name )
#name = name
end
def do_with_name # expects a block
yield( #name ) # invoke the block and pass the `#name` attribute
end
end
Now you can invoke this method and pass an arbitrary code block.
person = Person.new("Oscar")
# Invoking the method passing a block to print the value
person.do_with_name do |value|
puts "Got: #{value}"
end
Would print:
Got: Oscar
Notice the block receives as a parameter a variable called value. When the code invokes yield it passes as argument the value of #name.
yield( #name )
The same method can be invoked with a different block.
For instance to reverse the name:
reversed_name = ""
# Invoke the method passing a different block
person.do_with_name do |value|
reversed_name = value.reverse
end
puts reversed_name
=> "racsO"
Other more interesting real life examples:
Filter elements in an array:
days = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday"]
# Select those which start with 'T'
days.select do | item |
item.match /^T/
end
=> ["Tuesday", "Thursday"]
Or sort by name length:
days.sort do |x,y|
x.size <=> y.size
end
=> ["Monday", "Friday", "Tuesday", "Thursday", "Wednesday"]
If the block is optional you can use:
yield(value) if block_given?
If is not optional, just invoke it.
You can try these examples on your computer with irb (Interactive Ruby Shell)
Here are all the examples in a copy/paste ready form:
class Person
def initialize( name )
#name = name
end
def do_with_name # expects a block
yield( #name ) # invoke the block and pass the `#name` attribute
end
end
person = Person.new("Oscar")
# Invoking the method passing a block to print the value
person.do_with_name do |value|
puts "Got: #{value}"
end
reversed_name = ""
# Invoke the method passing a different block
person.do_with_name do |value|
reversed_name = value.reverse
end
puts reversed_name
# Filter elements in an array:
days = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday"]
# Select those which start with 'T'
days.select do | item |
item.match /^T/
end
# Sort by name length:
days.sort do |x,y|
x.size <=> y.size
end
In Ruby, methods can check to see if they were called in such a way that a block was provided in addition to the normal arguments. Typically this is done using the block_given? method but you can also refer to the block as an explicit Proc by prefixing an ampersand (&) before the final argument name.
If a method is invoked with a block then the method can yield control to the block (call the block) with some arguments, if needed. Consider this example method that demonstrates:
def foo(x)
puts "OK: called as foo(#{x.inspect})"
yield("A gift from foo!") if block_given?
end
foo(10)
# OK: called as foo(10)
foo(123) {|y| puts "BLOCK: #{y} How nice =)"}
# OK: called as foo(123)
# BLOCK: A gift from foo! How nice =)
Or, using the special block argument syntax:
def bar(x, &block)
puts "OK: called as bar(#{x.inspect})"
block.call("A gift from bar!") if block
end
bar(10)
# OK: called as bar(10)
bar(123) {|y| puts "BLOCK: #{y} How nice =)"}
# OK: called as bar(123)
# BLOCK: A gift from bar! How nice =)
It's quite possible that someone will provide a truly detailed answer here, but I've always found this post from Robert Sosinski to be a great explanation of the subtleties between blocks, procs & lambdas.
I should add that I believe the post I'm linking to is specific to ruby 1.8. Some things have changed in ruby 1.9, such as block variables being local to the block. In 1.8, you'd get something like the following:
>> a = "Hello"
=> "Hello"
>> 1.times { |a| a = "Goodbye" }
=> 1
>> a
=> "Goodbye"
Whereas 1.9 would give you:
>> a = "Hello"
=> "Hello"
>> 1.times { |a| a = "Goodbye" }
=> 1
>> a
=> "Hello"
I don't have 1.9 on this machine so the above might have an error in it.
I found this article to be very useful. In particular, the following example:
#!/usr/bin/ruby
def test
yield 5
puts "You are in the method test"
yield 100
end
test {|i| puts "You are in the block #{i}"}
test do |i|
puts "You are in the block #{i}"
end
which should give the following output:
You are in the block 5
You are in the method test
You are in the block 100
You are in the block 5
You are in the method test
You are in the block 100
So essentially each time a call is made to yield ruby will run the code in the do block or inside {}. If a parameter is provided to yield then this will be provided as a parameter to the do block.
For me, this was the first time that I understood really what the do blocks were doing. It is basically a way for the function to give access to internal data structures, be that for iteration or for configuration of the function.
So when in rails you write the following:
respond_to do |format|
format.html { render template: "my/view", layout: 'my_layout' }
end
This will run the respond_to function which yields the do block with the (internal) format parameter. You then call the .html function on this internal variable which in turn yields the code block to run the render command. Note that .html will only yield if it is the file format requested. (technicality: these functions actually use block.call not yield as you can see from the source but the functionality is essentially the same, see this question for a discussion.) This provides a way for the function to perform some initialisation then take input from the calling code and then carry on processing if required.
Or put another way, it's similar to a function taking an anonymous function as an argument and then calling it in javascript.
I wanted to sort of add why you would do things that way to the already great answers.
No idea what language you are coming from, but assuming it is a static language, this sort of thing will look familiar. This is how you read a file in java
public class FileInput {
public static void main(String[] args) {
File file = new File("C:\\MyFile.txt");
FileInputStream fis = null;
BufferedInputStream bis = null;
DataInputStream dis = null;
try {
fis = new FileInputStream(file);
// Here BufferedInputStream is added for fast reading.
bis = new BufferedInputStream(fis);
dis = new DataInputStream(bis);
// dis.available() returns 0 if the file does not have more lines.
while (dis.available() != 0) {
// this statement reads the line from the file and print it to
// the console.
System.out.println(dis.readLine());
}
// dispose all the resources after using them.
fis.close();
bis.close();
dis.close();
} catch (FileNotFoundException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
}
}
}
Ignoring the whole stream chaining thing, The idea is this
Initialize resource that needs to be cleaned up
use resource
make sure to clean it up
This is how you do it in ruby
File.open("readfile.rb", "r") do |infile|
while (line = infile.gets)
puts "#{counter}: #{line}"
counter = counter + 1
end
end
Wildly different. Breaking this one down
tell the File class how to initialize the resource
tell the file class what to do with it
laugh at the java guys who are still typing ;-)
Here, instead of handling step one and two, you basically delegate that off into another class. As you can see, that dramatically brings down the amount of code you have to write, which makes things easier to read, and reduces the chances of things like memory leaks, or file locks not getting cleared.
Now, its not like you can't do something similar in java, in fact, people have been doing it for decades now. It's called the Strategy pattern. The difference is that without blocks, for something simple like the file example, strategy becomes overkill due to the amount of classes and methods you need to write. With blocks, it is such a simple and elegant way of doing it, that it doesn't make any sense NOT to structure your code that way.
This isn't the only way blocks are used, but the others (like the Builder pattern, which you can see in the form_for api in rails) are similar enough that it should be obvious whats going on once you wrap your head around this. When you see blocks, its usually safe to assume that the method call is what you want to do, and the block is describing how you want to do it.
In Ruby, a block is basically a chunk of code that can be passed to and executed by any method. Blocks are always used with methods, which usually feed data to them (as arguments).
Blocks are widely used in Ruby gems (including Rails) and in well-written Ruby code. They are not objects, hence cannot be assigned to variables.
Basic Syntax
A block is a piece of code enclosed by { } or do..end. By convention, the curly brace syntax should be used for single-line blocks and the do..end syntax should be used for multi-line blocks.
{ # This is a single line block }
do
# This is a multi-line block
end
Any method can receive a block as an implicit argument. A block is executed by the yield statement within a method. The basic syntax is:
def meditate
print "Today we will practice zazen"
yield # This indicates the method is expecting a block
end
# We are passing a block as an argument to the meditate method
meditate { print " for 40 minutes." }
Output:
Today we will practice zazen for 40 minutes.
When the yield statement is reached, the meditate method yields control to the block, the code within the block is executed and control is returned to the method, which resumes execution immediately following the yield statement.
When a method contains a yield statement, it is expecting to receive a block at calling time. If a block is not provided, an exception will be thrown once the yield statement is reached. We can make the block optional and avoid an exception from being raised:
def meditate
puts "Today we will practice zazen."
yield if block_given?
end meditate
Output:
Today we will practice zazen.
It is not possible to pass multiple blocks to a method. Each method can receive only one block.
See more at: http://www.zenruby.info/2016/04/introduction-to-blocks-in-ruby.html
I sometimes use "yield" like this:
def add_to_http
"http://#{yield}"
end
puts add_to_http { "www.example.com" }
puts add_to_http { "www.victim.com"}
Yields, to put it simply, allow the method you create to take and call blocks. The yield keyword specifically is the spot where the 'stuff' in the block will be performed.
There are two points I want to make about yield here. First, while a lot of answers here talk about different ways to pass a block to a method which uses yield, let's also talk about the control flow. This is especially relevant since you can yield MULTIPLE times to a block. Let's take a look at an example:
class Fruit
attr_accessor :kinds
def initialize
#kinds = %w(orange apple pear banana)
end
def each
puts 'inside each'
3.times { yield (#kinds.tap {|kinds| puts "selecting from #{kinds}"} ).sample }
end
end
f = Fruit.new
f.each do |kind|
puts 'inside block'
end
=> inside each
=> selecting from ["orange", "apple", "pear", "banana"]
=> inside block
=> selecting from ["orange", "apple", "pear", "banana"]
=> inside block
=> selecting from ["orange", "apple", "pear", "banana"]
=> inside block
When the each method is invoked, it executes line by line. Now when we get to the 3.times block, this block will be invoked 3 times. Each time it invokes yield. That yield is linked to the block associated with the method that called the each method. It is important to notice that each time yield is invoked, it returns control back to the block of the each method in client code. Once the block is finished executing, it returns back to the 3.times block. And this happens 3 times. So that block in client code is invoked on 3 separate occasions since yield is explicitly called 3 separate times.
My second point is about enum_for and yield. enum_for instantiates the Enumerator class and this Enumerator object also responds to yield.
class Fruit
def initialize
#kinds = %w(orange apple)
end
def kinds
yield #kinds.shift
yield #kinds.shift
end
end
f = Fruit.new
enum = f.to_enum(:kinds)
enum.next
=> "orange"
enum.next
=> "apple"
So notice every time we invoke kinds with the external iterator, it will invoke yield only once. The next time we call it, it will invoke the next yield and so on.
There's an interesting tidbit with regards to enum_for. The documentation online states the following:
enum_for(method = :each, *args) → enum
Creates a new Enumerator which will enumerate by calling method on obj, passing args if any.
str = "xyz"
enum = str.enum_for(:each_byte)
enum.each { |b| puts b }
# => 120
# => 121
# => 122
If you do not specify a symbol as an argument to enum_for, ruby will hook the enumerator to the receiver's each method. Some classes do not have an each method, like the String class.
str = "I like fruit"
enum = str.to_enum
enum.next
=> NoMethodError: undefined method `each' for "I like fruit":String
Thus, in the case of some objects invoked with enum_for, you must be explicit as to what your enumerating method will be.
Yield can be used as nameless block to return a value in the method. Consider the following code:
Def Up(anarg)
yield(anarg)
end
You can create a method "Up" which is assigned one argument. You can now assign this argument to yield which will call and execute an associated block. You can assign the block after the parameter list.
Up("Here is a string"){|x| x.reverse!; puts(x)}
When the Up method calls yield, with an argument, it is passed to the block variable to process the request.

Resources