matplotlib: histogram and bin labels - rotation

I'm trying to plot a histogram with bar chart, and I'm having difficulties figuring out how to align the x-axis labels with the actual bins. The code below generates the following plot:
as you can see, the end of each x-label is not aligned to the center of its bin. The way i'm thinking about this is: when i apply a 45-degree rotation, the label pivots around its geometrical center. I was wondering if it's possible to move the pivot up to the top of the label. (Or simply translate all the labels slightly left.)
import matplotlib.pyplot as plt
import numpy as np
#data
np.random.seed(42)
data = np.random.rand(5)
names = ['A:GBC_1233','C:WERT_423','A:LYD_342','B:SFS_23','D:KDE_2342']
ax = plt.subplot(111)
width=0.3
bins = map(lambda x: x-width/2,range(1,len(data)+1))
ax.bar(bins,data,width=width)
ax.set_xticks(map(lambda x: x, range(1,len(data)+1)))
ax.set_xticklabels(names,rotation=45)
plt.show()

Use:
ax.set_xticklabels(names,rotation=45, rotation_mode="anchor", ha="right")
The output is:

Related

Adding image in matplotlib plot creates blank output showing only axis

I have been trying to add an image to my matplotlib plot. The image is a legend of my plot. My original graph has too many plots within so, I tried to generalise the legend to make it easy for the eye.
Though I could export the image to matplotlib, I notice that the attached script plots data along with the legend(image) in one window and also opens another blank plot showing only the axis.
What am I doing wrong?
Feel free to add any image of your choice for testing.
`
import matplotlib.pyplot as plt
import numpy as np
import csv
import matplotlib.image as image
axes = plt.gca()
im = image.imread('plot/minPlot/legend.png')
fig, ax = plt.subplots()
ax.imshow(im,aspect='auto', extent=(3,5,2,3), zorder=-1)
plt.xlabel('X Axis')
plt.ylabel('Y Axis')
plt.title('')
x1, y1 = [-1,12],[1,4]
x2, y2 = [1,10],[3,2]
plt.plot(x1,y1,x2,y2,marker='o')
plt.show()
`
As #DavidG posted, the
'axes = plt.gca()' was causing an additional empty plot. I used the plt.gca() for setting the limits of the x,y axis. After going through https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.ylim.html, I can directly call the xlim and ylim functions from the plt class. So, I can get rid of plt.gca() call.

How to break y-axis using seaborn? [duplicate]

I'm trying to create a plot using pyplot that has a discontinuous x-axis. The usual way this is drawn is that the axis will have something like this:
(values)----//----(later values)
where the // indicates that you're skipping everything between (values) and (later values).
I haven't been able to find any examples of this, so I'm wondering if it's even possible. I know you can join data over a discontinuity for, eg, financial data, but I'd like to make the jump in the axis more explicit. At the moment I'm just using subplots but I'd really like to have everything end up on the same graph in the end.
Paul's answer is a perfectly fine method of doing this.
However, if you don't want to make a custom transform, you can just use two subplots to create the same effect.
Rather than put together an example from scratch, there's an excellent example of this written by Paul Ivanov in the matplotlib examples (It's only in the current git tip, as it was only committed a few months ago. It's not on the webpage yet.).
This is just a simple modification of this example to have a discontinuous x-axis instead of the y-axis. (Which is why I'm making this post a CW)
Basically, you just do something like this:
import matplotlib.pylab as plt
import numpy as np
# If you're not familiar with np.r_, don't worry too much about this. It's just
# a series with points from 0 to 1 spaced at 0.1, and 9 to 10 with the same spacing.
x = np.r_[0:1:0.1, 9:10:0.1]
y = np.sin(x)
fig,(ax,ax2) = plt.subplots(1, 2, sharey=True)
# plot the same data on both axes
ax.plot(x, y, 'bo')
ax2.plot(x, y, 'bo')
# zoom-in / limit the view to different portions of the data
ax.set_xlim(0,1) # most of the data
ax2.set_xlim(9,10) # outliers only
# hide the spines between ax and ax2
ax.spines['right'].set_visible(False)
ax2.spines['left'].set_visible(False)
ax.yaxis.tick_left()
ax.tick_params(labeltop='off') # don't put tick labels at the top
ax2.yaxis.tick_right()
# Make the spacing between the two axes a bit smaller
plt.subplots_adjust(wspace=0.15)
plt.show()
To add the broken axis lines // effect, we can do this (again, modified from Paul Ivanov's example):
import matplotlib.pylab as plt
import numpy as np
# If you're not familiar with np.r_, don't worry too much about this. It's just
# a series with points from 0 to 1 spaced at 0.1, and 9 to 10 with the same spacing.
x = np.r_[0:1:0.1, 9:10:0.1]
y = np.sin(x)
fig,(ax,ax2) = plt.subplots(1, 2, sharey=True)
# plot the same data on both axes
ax.plot(x, y, 'bo')
ax2.plot(x, y, 'bo')
# zoom-in / limit the view to different portions of the data
ax.set_xlim(0,1) # most of the data
ax2.set_xlim(9,10) # outliers only
# hide the spines between ax and ax2
ax.spines['right'].set_visible(False)
ax2.spines['left'].set_visible(False)
ax.yaxis.tick_left()
ax.tick_params(labeltop='off') # don't put tick labels at the top
ax2.yaxis.tick_right()
# Make the spacing between the two axes a bit smaller
plt.subplots_adjust(wspace=0.15)
# This looks pretty good, and was fairly painless, but you can get that
# cut-out diagonal lines look with just a bit more work. The important
# thing to know here is that in axes coordinates, which are always
# between 0-1, spine endpoints are at these locations (0,0), (0,1),
# (1,0), and (1,1). Thus, we just need to put the diagonals in the
# appropriate corners of each of our axes, and so long as we use the
# right transform and disable clipping.
d = .015 # how big to make the diagonal lines in axes coordinates
# arguments to pass plot, just so we don't keep repeating them
kwargs = dict(transform=ax.transAxes, color='k', clip_on=False)
ax.plot((1-d,1+d),(-d,+d), **kwargs) # top-left diagonal
ax.plot((1-d,1+d),(1-d,1+d), **kwargs) # bottom-left diagonal
kwargs.update(transform=ax2.transAxes) # switch to the bottom axes
ax2.plot((-d,d),(-d,+d), **kwargs) # top-right diagonal
ax2.plot((-d,d),(1-d,1+d), **kwargs) # bottom-right diagonal
# What's cool about this is that now if we vary the distance between
# ax and ax2 via f.subplots_adjust(hspace=...) or plt.subplot_tool(),
# the diagonal lines will move accordingly, and stay right at the tips
# of the spines they are 'breaking'
plt.show()
I see many suggestions for this feature but no indication that it's been implemented. Here is a workable solution for the time-being. It applies a step-function transform to the x-axis. It's a lot of code, but it's fairly simple since most of it is boilerplate custom scale stuff. I have not added any graphics to indicate the location of the break, since that is a matter of style. Good luck finishing the job.
from matplotlib import pyplot as plt
from matplotlib import scale as mscale
from matplotlib import transforms as mtransforms
import numpy as np
def CustomScaleFactory(l, u):
class CustomScale(mscale.ScaleBase):
name = 'custom'
def __init__(self, axis, **kwargs):
mscale.ScaleBase.__init__(self)
self.thresh = None #thresh
def get_transform(self):
return self.CustomTransform(self.thresh)
def set_default_locators_and_formatters(self, axis):
pass
class CustomTransform(mtransforms.Transform):
input_dims = 1
output_dims = 1
is_separable = True
lower = l
upper = u
def __init__(self, thresh):
mtransforms.Transform.__init__(self)
self.thresh = thresh
def transform(self, a):
aa = a.copy()
aa[a>self.lower] = a[a>self.lower]-(self.upper-self.lower)
aa[(a>self.lower)&(a<self.upper)] = self.lower
return aa
def inverted(self):
return CustomScale.InvertedCustomTransform(self.thresh)
class InvertedCustomTransform(mtransforms.Transform):
input_dims = 1
output_dims = 1
is_separable = True
lower = l
upper = u
def __init__(self, thresh):
mtransforms.Transform.__init__(self)
self.thresh = thresh
def transform(self, a):
aa = a.copy()
aa[a>self.lower] = a[a>self.lower]+(self.upper-self.lower)
return aa
def inverted(self):
return CustomScale.CustomTransform(self.thresh)
return CustomScale
mscale.register_scale(CustomScaleFactory(1.12, 8.88))
x = np.concatenate((np.linspace(0,1,10), np.linspace(9,10,10)))
xticks = np.concatenate((np.linspace(0,1,6), np.linspace(9,10,6)))
y = np.sin(x)
plt.plot(x, y, '.')
ax = plt.gca()
ax.set_xscale('custom')
ax.set_xticks(xticks)
plt.show()
Check the brokenaxes package:
import matplotlib.pyplot as plt
from brokenaxes import brokenaxes
import numpy as np
fig = plt.figure(figsize=(5,2))
bax = brokenaxes(
xlims=((0, .1), (.4, .7)),
ylims=((-1, .7), (.79, 1)),
hspace=.05
)
x = np.linspace(0, 1, 100)
bax.plot(x, np.sin(10 * x), label='sin')
bax.plot(x, np.cos(10 * x), label='cos')
bax.legend(loc=3)
bax.set_xlabel('time')
bax.set_ylabel('value')
A very simple hack is to
scatter plot rectangles over the axes' spines and
draw the "//" as text at that position.
Worked like a charm for me:
# FAKE BROKEN AXES
# plot a white rectangle on the x-axis-spine to "break" it
xpos = 10 # x position of the "break"
ypos = plt.gca().get_ylim()[0] # y position of the "break"
plt.scatter(xpos, ypos, color='white', marker='s', s=80, clip_on=False, zorder=100)
# draw "//" on the same place as text
plt.text(xpos, ymin-0.125, r'//', fontsize=label_size, zorder=101, horizontalalignment='center', verticalalignment='center')
Example Plot:
For those interested, I've expanded upon #Paul's answer and added it to the matplotlib wrapper proplot. It can do axis "jumps", "speedups", and "slowdowns".
There is no way currently to add "crosses" that indicate the discrete jump like in Joe's answer, but I plan to add this in the future. I also plan to add a default "tick locator" that sets sensible default tick locations depending on the CutoffScale arguments.
Adressing Frederick Nord's question how to enable parallel orientation of the diagonal "breaking" lines when using a gridspec with ratios unequal 1:1, the following changes based on the proposals of Paul Ivanov and Joe Kingtons may be helpful. Width ratio can be varied using variables n and m.
import matplotlib.pylab as plt
import numpy as np
import matplotlib.gridspec as gridspec
x = np.r_[0:1:0.1, 9:10:0.1]
y = np.sin(x)
n = 5; m = 1;
gs = gridspec.GridSpec(1,2, width_ratios = [n,m])
plt.figure(figsize=(10,8))
ax = plt.subplot(gs[0,0])
ax2 = plt.subplot(gs[0,1], sharey = ax)
plt.setp(ax2.get_yticklabels(), visible=False)
plt.subplots_adjust(wspace = 0.1)
ax.plot(x, y, 'bo')
ax2.plot(x, y, 'bo')
ax.set_xlim(0,1)
ax2.set_xlim(10,8)
# hide the spines between ax and ax2
ax.spines['right'].set_visible(False)
ax2.spines['left'].set_visible(False)
ax.yaxis.tick_left()
ax.tick_params(labeltop='off') # don't put tick labels at the top
ax2.yaxis.tick_right()
d = .015 # how big to make the diagonal lines in axes coordinates
# arguments to pass plot, just so we don't keep repeating them
kwargs = dict(transform=ax.transAxes, color='k', clip_on=False)
on = (n+m)/n; om = (n+m)/m;
ax.plot((1-d*on,1+d*on),(-d,d), **kwargs) # bottom-left diagonal
ax.plot((1-d*on,1+d*on),(1-d,1+d), **kwargs) # top-left diagonal
kwargs.update(transform=ax2.transAxes) # switch to the bottom axes
ax2.plot((-d*om,d*om),(-d,d), **kwargs) # bottom-right diagonal
ax2.plot((-d*om,d*om),(1-d,1+d), **kwargs) # top-right diagonal
plt.show()
This is a hacky but pretty solution for x-axis breaks.
The solution is based on https://matplotlib.org/stable/gallery/subplots_axes_and_figures/broken_axis.html, which gets rid of the problem with positioning the break above the spine, solved by How can I plot points so they appear over top of the spines with matplotlib?
from matplotlib.patches import Rectangle
import matplotlib.pyplot as plt
def axis_break(axis, xpos=[0.1, 0.125], slant=1.5):
d = slant # proportion of vertical to horizontal extent of the slanted line
anchor = (xpos[0], -1)
w = xpos[1] - xpos[0]
h = 1
kwargs = dict(marker=[(-1, -d), (1, d)], markersize=12, zorder=3,
linestyle="none", color='k', mec='k', mew=1, clip_on=False)
axis.add_patch(Rectangle(
anchor, w, h, fill=True, color="white",
transform=axis.transAxes, clip_on=False, zorder=3)
)
axis.plot(xpos, [0, 0], transform=axis.transAxes, **kwargs)
fig, ax = plt.subplots(1,1)
plt.plot(np.arange(10))
axis_break(ax, xpos=[0.1, 0.12], slant=1.5)
axis_break(ax, xpos=[0.3, 0.31], slant=-10)
if you want to replace an axis label, this would do the trick:
from matplotlib import ticker
def replace_pos_with_label(fig, pos, label, axis):
fig.canvas.draw() # this is needed to set up the x-ticks
labs = axis.get_xticklabels()
labels = []
locs = []
for text in labs:
x = text._x
lab = text._text
if x == pos:
lab = label
labels.append(lab)
locs.append(x)
axis.xaxis.set_major_locator(ticker.FixedLocator(locs))
axis.set_xticklabels(labels)
fig, ax = plt.subplots(1,1)
plt.plot(np.arange(10))
replace_pos_with_label(fig, 0, "-10", axis=ax)
replace_pos_with_label(fig, 6, "$10^{4}$", axis=ax)
axis_break(ax, xpos=[0.1, 0.12], slant=2)

Greyscale in python - incorect colors changing from dark grey to light grey to dark grey

I am plotting a greyscale version of this image:
SOURCE: http://matplotlib.org/examples/pylab_examples/griddata_demo.html
I have used the following code:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from PIL import Image
file_name = 'griddata_demo.png'
def func_grey(fname):
image = Image.open(fname).convert("L")
arr = np.asarray(image)
plt.imshow(arr, cmap = cm.Greys_r)
plt.show()
func_grey(file_name)
Display image as grayscale using matplotlib
The setup I am working is has python 2.7 and Pandas and I have installed Pillow with easy install.
Background information about the image and the requirements:
The image come from data found here. Ideally, the greyscale
version of this image should be generated directly from this raw
data.i.e. do not save it as a colored image and then try to convert
to greyscale - rather just produce a greyscale version of the plot.
I do not know the colors that correspond to the z-values - these
colors can be set arbitrarily.
The color map of the image can also be chosen arbitrarily - there is no preference. It
is the greyscale version that is of concern.
My question is related to the color scheme shown in the colorbar. I need to display a color scheme where the color bar has colors from light grey (lowest intensity) to dark grey (highest intensity).
After running the above code, a greyscale image is produced. In the color bar of the greyscale image, the intensity level -0.36 is dark grey. At 0.00, it is light grey. But then 0.48 is also dark grey.
Question:
Is is possible to change the colormap such that -0.36 is light grey and 0.48 is dark grey? I mean, is it possible to display to colorbar from light to dark?
I think this question may be about how to use a grayscale colormap in matplotlib. If so, then it's straightforward. Here's an example using different colormaps (based on the code for the op image):
from numpy.random import uniform, seed
from matplotlib.mlab import griddata
import matplotlib.pyplot as plt
import numpy as np
# make up data.
#npts = int(raw_input('enter # of random points to plot:'))
def f(spi, the_colormap):
plt.subplot(spi)
seed(0)
npts = 200
x = uniform(-2, 2, npts)
y = uniform(-2, 2, npts)
z = x*np.exp(-x**2 - y**2)
xi = np.linspace(-2.1, 2.1, 100)
yi = np.linspace(-2.1, 2.1, 200)
zi = griddata(x, y, z, xi, yi, interp='linear')
CS = plt.contour(xi, yi, zi, 15, linewidths=0.5, colors='k')
CS = plt.contourf(xi, yi, zi, 15, cmap=the_colormap,
vmax=abs(zi).max(), vmin=-abs(zi).max())
plt.colorbar() # draw colorbar
# plot data points.
plt.scatter(x, y, marker='o', c='b', s=5, zorder=10)
plt.xlim(-2, 2)
plt.ylim(-2, 2)
plt.title('griddata test (%d points)' % npts)
f(131, plt.cm.rainbow)
f(132, plt.cm.gray)
f(133, plt.cm.hot)
plt.show()
If one actually wants to convert to grayscale using PIL (a far less favorable, but sometimes necessary task), it's best to start with a colormap that has monotonic brightness, like hot above, but not rainbow. Also, in the comments I suggested using cubehelix but that's not standard with matplotlib, instead see here. See here for an image of the available matplotlib colormaps.
this solution works for me, and is a lot simpler
from PIL import Image
im = Image.open("image.png")
im.convert('L').show()
im.convert('L').save("image.png")
note that if you want to mix up the file types, you can (.png to .jpg for example)

Matplotlib imshow adjacent images with anomalous whitespace - is there a way to correct it?

I am plotting tiled images in a similar way to the working code shown below:
import Image
import matplotlib.pyplot as plt
import random
import numpy
def r():
return random.randrange(50,200)
imsize = 100
rngsize = 5
rng = range(rngsize)
for i in rng:
for j in rng:
im = Image.new('RGB', (imsize, imsize), (r(),r(),r()))
plt.imshow(im, aspect='equal', extent=numpy.array([i, i+1, j, j+1])*imsize)
plt.xlim(-5,imsize * rngsize + 5)
plt.ylim(-5,imsize * rngsize + 5)
plt.show()
The problem is: as you pan and zoom, zoomscale-independent white stripes appear between the image edges, which is very undesireable. I guess this has to do with resampling and antialiasing, but have no idea how to solve it "the right way", specialy for not knowing exact implementation details of matplotlib's rendering engine.
With Cairo and HTML Canvas, you can draw "to the pixel corner" or "to the pixel center" (translating by 0.5 pixel) thus avoiding anti-aliasing effects. Would there be a way to do that with Matplotlib?
Thanks for any help!
You can simply fill in the values to a larger numpy array and plot the entire composite image in one shot. I've adapted your code above for a minimal example but with different sized images you'll need to take a different step size.
F = numpy.zeros((imsize*rngsize,imsize*rngsize,3))
for i in rng:
for j in rng:
F[i*imsize:(i+1)*imsize,
j*imsize:(j+1)*imsize, :] = (r(), r(), r())
plt.imshow(F, interpolation = 'nearest')
plt.show()

Non-linear axes for imshow in matplotlib

I am generating 2D arrays on log-spaced axes (for instance, the x pixel coordinates are generated using logspace(log10(0.95), log10(2.08), n).
I want to display the image using a plain old imshow, in its native resolution and scaling (I don't need to stretch it; the data itself is already log scaled), but I want to add ticks, labels, lines that are in the correct place on the log axes. How do I do this?
Ideally I could just use commands line axvline(1.5) and the line would be in the correct place (58% from the left), but if the only way is to manually translate between logscale coordinates and image coordinates, that's ok, too.
For linear axes, using extents= in the call to imshow does what I want, but I don't see a way to do the same thing with a log axis.
Example:
from matplotlib.colors import LogNorm
x = logspace(log10(10), log10(1000), 5)
imshow(vstack((x,x)), extent=[10, 1000, 0, 100], cmap='gray', norm=LogNorm(), interpolation='nearest')
axvline(100, color='red')
This example does not work, because extent= only applies to linear scales, so when you do axvline at 100, it does not appear in the center. I'd like the x axis to show 10, 100, 1000, and axvline(100) to put a line in the center at the 100 point, while the pixels remain equally spaced.
In my view, it is better to use pcolor and regular (non-converted) x and y values. pcolor gives you more flexibility and regular x and y axis are less confusing.
import pylab as plt
import numpy as np
from matplotlib.colors import LogNorm
from matplotlib.ticker import LogFormatterMathtext
x=np.logspace(1, 3, 6)
y=np.logspace(0, 2,3)
X,Y=np.meshgrid(x,y)
z = np.logspace(np.log10(10), np.log10(1000), 5)
Z=np.vstack((z,z))
im = plt.pcolor(X,Y,Z, cmap='gray', norm=LogNorm())
plt.axvline(100, color='red')
plt.xscale('log')
plt.yscale('log')
plt.colorbar(im, orientation='horizontal',format=LogFormatterMathtext())
plt.show()
As pcolor is slow, a faster solution is to use pcolormesh instead.
im = plt.pcolormesh(X,Y,Z, cmap='gray', norm=LogNorm())
Actually, it works fine. I'm confused.
Previously I was getting errors about "Images are not supported on non-linear axes" which is why I asked this question. But now when I try it, it works:
import matplotlib.pyplot as plt
import numpy as np
x = np.logspace(1, 3, 5)
y = np.linspace(0, 2, 3)
z = np.linspace(0, 1, 4)
Z = np.vstack((z, z))
plt.imshow(Z, extent=[10, 1000, 0, 1], cmap='gray')
plt.xscale('log')
plt.axvline(100, color='red')
plt.show()
This is better than pcolor() and pcolormesh() because
it's not insanely slow and
is interpolated nicely without misleading artifacts when the image is not shown at native resolution.
To display imshow with abscisse log scale:
ax = fig.add_subplot(nrow, ncol, i+1)
ax.set_xscale('log')

Resources