I'm trying to create a plot using pyplot that has a discontinuous x-axis. The usual way this is drawn is that the axis will have something like this:
(values)----//----(later values)
where the // indicates that you're skipping everything between (values) and (later values).
I haven't been able to find any examples of this, so I'm wondering if it's even possible. I know you can join data over a discontinuity for, eg, financial data, but I'd like to make the jump in the axis more explicit. At the moment I'm just using subplots but I'd really like to have everything end up on the same graph in the end.
Paul's answer is a perfectly fine method of doing this.
However, if you don't want to make a custom transform, you can just use two subplots to create the same effect.
Rather than put together an example from scratch, there's an excellent example of this written by Paul Ivanov in the matplotlib examples (It's only in the current git tip, as it was only committed a few months ago. It's not on the webpage yet.).
This is just a simple modification of this example to have a discontinuous x-axis instead of the y-axis. (Which is why I'm making this post a CW)
Basically, you just do something like this:
import matplotlib.pylab as plt
import numpy as np
# If you're not familiar with np.r_, don't worry too much about this. It's just
# a series with points from 0 to 1 spaced at 0.1, and 9 to 10 with the same spacing.
x = np.r_[0:1:0.1, 9:10:0.1]
y = np.sin(x)
fig,(ax,ax2) = plt.subplots(1, 2, sharey=True)
# plot the same data on both axes
ax.plot(x, y, 'bo')
ax2.plot(x, y, 'bo')
# zoom-in / limit the view to different portions of the data
ax.set_xlim(0,1) # most of the data
ax2.set_xlim(9,10) # outliers only
# hide the spines between ax and ax2
ax.spines['right'].set_visible(False)
ax2.spines['left'].set_visible(False)
ax.yaxis.tick_left()
ax.tick_params(labeltop='off') # don't put tick labels at the top
ax2.yaxis.tick_right()
# Make the spacing between the two axes a bit smaller
plt.subplots_adjust(wspace=0.15)
plt.show()
To add the broken axis lines // effect, we can do this (again, modified from Paul Ivanov's example):
import matplotlib.pylab as plt
import numpy as np
# If you're not familiar with np.r_, don't worry too much about this. It's just
# a series with points from 0 to 1 spaced at 0.1, and 9 to 10 with the same spacing.
x = np.r_[0:1:0.1, 9:10:0.1]
y = np.sin(x)
fig,(ax,ax2) = plt.subplots(1, 2, sharey=True)
# plot the same data on both axes
ax.plot(x, y, 'bo')
ax2.plot(x, y, 'bo')
# zoom-in / limit the view to different portions of the data
ax.set_xlim(0,1) # most of the data
ax2.set_xlim(9,10) # outliers only
# hide the spines between ax and ax2
ax.spines['right'].set_visible(False)
ax2.spines['left'].set_visible(False)
ax.yaxis.tick_left()
ax.tick_params(labeltop='off') # don't put tick labels at the top
ax2.yaxis.tick_right()
# Make the spacing between the two axes a bit smaller
plt.subplots_adjust(wspace=0.15)
# This looks pretty good, and was fairly painless, but you can get that
# cut-out diagonal lines look with just a bit more work. The important
# thing to know here is that in axes coordinates, which are always
# between 0-1, spine endpoints are at these locations (0,0), (0,1),
# (1,0), and (1,1). Thus, we just need to put the diagonals in the
# appropriate corners of each of our axes, and so long as we use the
# right transform and disable clipping.
d = .015 # how big to make the diagonal lines in axes coordinates
# arguments to pass plot, just so we don't keep repeating them
kwargs = dict(transform=ax.transAxes, color='k', clip_on=False)
ax.plot((1-d,1+d),(-d,+d), **kwargs) # top-left diagonal
ax.plot((1-d,1+d),(1-d,1+d), **kwargs) # bottom-left diagonal
kwargs.update(transform=ax2.transAxes) # switch to the bottom axes
ax2.plot((-d,d),(-d,+d), **kwargs) # top-right diagonal
ax2.plot((-d,d),(1-d,1+d), **kwargs) # bottom-right diagonal
# What's cool about this is that now if we vary the distance between
# ax and ax2 via f.subplots_adjust(hspace=...) or plt.subplot_tool(),
# the diagonal lines will move accordingly, and stay right at the tips
# of the spines they are 'breaking'
plt.show()
I see many suggestions for this feature but no indication that it's been implemented. Here is a workable solution for the time-being. It applies a step-function transform to the x-axis. It's a lot of code, but it's fairly simple since most of it is boilerplate custom scale stuff. I have not added any graphics to indicate the location of the break, since that is a matter of style. Good luck finishing the job.
from matplotlib import pyplot as plt
from matplotlib import scale as mscale
from matplotlib import transforms as mtransforms
import numpy as np
def CustomScaleFactory(l, u):
class CustomScale(mscale.ScaleBase):
name = 'custom'
def __init__(self, axis, **kwargs):
mscale.ScaleBase.__init__(self)
self.thresh = None #thresh
def get_transform(self):
return self.CustomTransform(self.thresh)
def set_default_locators_and_formatters(self, axis):
pass
class CustomTransform(mtransforms.Transform):
input_dims = 1
output_dims = 1
is_separable = True
lower = l
upper = u
def __init__(self, thresh):
mtransforms.Transform.__init__(self)
self.thresh = thresh
def transform(self, a):
aa = a.copy()
aa[a>self.lower] = a[a>self.lower]-(self.upper-self.lower)
aa[(a>self.lower)&(a<self.upper)] = self.lower
return aa
def inverted(self):
return CustomScale.InvertedCustomTransform(self.thresh)
class InvertedCustomTransform(mtransforms.Transform):
input_dims = 1
output_dims = 1
is_separable = True
lower = l
upper = u
def __init__(self, thresh):
mtransforms.Transform.__init__(self)
self.thresh = thresh
def transform(self, a):
aa = a.copy()
aa[a>self.lower] = a[a>self.lower]+(self.upper-self.lower)
return aa
def inverted(self):
return CustomScale.CustomTransform(self.thresh)
return CustomScale
mscale.register_scale(CustomScaleFactory(1.12, 8.88))
x = np.concatenate((np.linspace(0,1,10), np.linspace(9,10,10)))
xticks = np.concatenate((np.linspace(0,1,6), np.linspace(9,10,6)))
y = np.sin(x)
plt.plot(x, y, '.')
ax = plt.gca()
ax.set_xscale('custom')
ax.set_xticks(xticks)
plt.show()
Check the brokenaxes package:
import matplotlib.pyplot as plt
from brokenaxes import brokenaxes
import numpy as np
fig = plt.figure(figsize=(5,2))
bax = brokenaxes(
xlims=((0, .1), (.4, .7)),
ylims=((-1, .7), (.79, 1)),
hspace=.05
)
x = np.linspace(0, 1, 100)
bax.plot(x, np.sin(10 * x), label='sin')
bax.plot(x, np.cos(10 * x), label='cos')
bax.legend(loc=3)
bax.set_xlabel('time')
bax.set_ylabel('value')
A very simple hack is to
scatter plot rectangles over the axes' spines and
draw the "//" as text at that position.
Worked like a charm for me:
# FAKE BROKEN AXES
# plot a white rectangle on the x-axis-spine to "break" it
xpos = 10 # x position of the "break"
ypos = plt.gca().get_ylim()[0] # y position of the "break"
plt.scatter(xpos, ypos, color='white', marker='s', s=80, clip_on=False, zorder=100)
# draw "//" on the same place as text
plt.text(xpos, ymin-0.125, r'//', fontsize=label_size, zorder=101, horizontalalignment='center', verticalalignment='center')
Example Plot:
For those interested, I've expanded upon #Paul's answer and added it to the matplotlib wrapper proplot. It can do axis "jumps", "speedups", and "slowdowns".
There is no way currently to add "crosses" that indicate the discrete jump like in Joe's answer, but I plan to add this in the future. I also plan to add a default "tick locator" that sets sensible default tick locations depending on the CutoffScale arguments.
Adressing Frederick Nord's question how to enable parallel orientation of the diagonal "breaking" lines when using a gridspec with ratios unequal 1:1, the following changes based on the proposals of Paul Ivanov and Joe Kingtons may be helpful. Width ratio can be varied using variables n and m.
import matplotlib.pylab as plt
import numpy as np
import matplotlib.gridspec as gridspec
x = np.r_[0:1:0.1, 9:10:0.1]
y = np.sin(x)
n = 5; m = 1;
gs = gridspec.GridSpec(1,2, width_ratios = [n,m])
plt.figure(figsize=(10,8))
ax = plt.subplot(gs[0,0])
ax2 = plt.subplot(gs[0,1], sharey = ax)
plt.setp(ax2.get_yticklabels(), visible=False)
plt.subplots_adjust(wspace = 0.1)
ax.plot(x, y, 'bo')
ax2.plot(x, y, 'bo')
ax.set_xlim(0,1)
ax2.set_xlim(10,8)
# hide the spines between ax and ax2
ax.spines['right'].set_visible(False)
ax2.spines['left'].set_visible(False)
ax.yaxis.tick_left()
ax.tick_params(labeltop='off') # don't put tick labels at the top
ax2.yaxis.tick_right()
d = .015 # how big to make the diagonal lines in axes coordinates
# arguments to pass plot, just so we don't keep repeating them
kwargs = dict(transform=ax.transAxes, color='k', clip_on=False)
on = (n+m)/n; om = (n+m)/m;
ax.plot((1-d*on,1+d*on),(-d,d), **kwargs) # bottom-left diagonal
ax.plot((1-d*on,1+d*on),(1-d,1+d), **kwargs) # top-left diagonal
kwargs.update(transform=ax2.transAxes) # switch to the bottom axes
ax2.plot((-d*om,d*om),(-d,d), **kwargs) # bottom-right diagonal
ax2.plot((-d*om,d*om),(1-d,1+d), **kwargs) # top-right diagonal
plt.show()
This is a hacky but pretty solution for x-axis breaks.
The solution is based on https://matplotlib.org/stable/gallery/subplots_axes_and_figures/broken_axis.html, which gets rid of the problem with positioning the break above the spine, solved by How can I plot points so they appear over top of the spines with matplotlib?
from matplotlib.patches import Rectangle
import matplotlib.pyplot as plt
def axis_break(axis, xpos=[0.1, 0.125], slant=1.5):
d = slant # proportion of vertical to horizontal extent of the slanted line
anchor = (xpos[0], -1)
w = xpos[1] - xpos[0]
h = 1
kwargs = dict(marker=[(-1, -d), (1, d)], markersize=12, zorder=3,
linestyle="none", color='k', mec='k', mew=1, clip_on=False)
axis.add_patch(Rectangle(
anchor, w, h, fill=True, color="white",
transform=axis.transAxes, clip_on=False, zorder=3)
)
axis.plot(xpos, [0, 0], transform=axis.transAxes, **kwargs)
fig, ax = plt.subplots(1,1)
plt.plot(np.arange(10))
axis_break(ax, xpos=[0.1, 0.12], slant=1.5)
axis_break(ax, xpos=[0.3, 0.31], slant=-10)
if you want to replace an axis label, this would do the trick:
from matplotlib import ticker
def replace_pos_with_label(fig, pos, label, axis):
fig.canvas.draw() # this is needed to set up the x-ticks
labs = axis.get_xticklabels()
labels = []
locs = []
for text in labs:
x = text._x
lab = text._text
if x == pos:
lab = label
labels.append(lab)
locs.append(x)
axis.xaxis.set_major_locator(ticker.FixedLocator(locs))
axis.set_xticklabels(labels)
fig, ax = plt.subplots(1,1)
plt.plot(np.arange(10))
replace_pos_with_label(fig, 0, "-10", axis=ax)
replace_pos_with_label(fig, 6, "$10^{4}$", axis=ax)
axis_break(ax, xpos=[0.1, 0.12], slant=2)
Related
I created a numpy array by calculating the density of dwellings within an area through the following code:
def myplot(x, y, z, s, bins=10000):
heatmap, xedges, yedges = np.histogram2d(x, y, bins=bins, weights=z)
heatmap = gaussian_filter(heatmap, sigma=s)
extent = [xedges[0], xedges[-1], yedges[0], yedges[-1]]
return heatmap.T, extent
fig, axs = plt.subplots(2, 2)
# Generate some test data
x = buildings["x"]
y = buildings["y"]
weights = buildings["Area"]
sigmas = [0, 16, 32, 64]
for ax, s in zip(axs.flatten(), sigmas):
if s == 0:
ax.plot(x, y, weights, 'k.', markersize=5)
ax.set_title("Scatter plot")
else:
img, extent = myplot(x, y, weights, s)
ax.imshow(img, extent=extent, origin='lower', cmap=cm.jet)
ax.set_title("Smoothing with $\sigma$ = %d" % s)
plt.savefig('export_'+str(s)+'.png', dpi=150, bbox_inches='tight')
plt.show()
This is the result and works fine:
enter image description here
Now I need to save it as a geotif and I know the extreme coordinates of the box angles. I tried to do that using the following code:
# create a georeferenced box
transform = from_bounds(extent[0], extent[1],extent[2], extent[3], 10000, 10000)
# save the georeferenced tif
with rio.open('data.tif', 'w', driver='GTiff', height=10000, width=10000, count=1, dtype='float64', nodata=0, crs=32632, transform=transform) as dst:
dst.write(img, 1)
The problem is that the result is transpose and not on the right position. Could you help me to find the solution?
I tried to develop the code but did not work
You should simply use numpy.transpose on your array - it is a very fast operation that does not copy the array.
GDAL uses traditional C style raster coordinates. In numpy an array with shape (x, y) is x lines of y pixels, while in GDAL it is the other way around.
# save the georeferenced tif
with rio.open('data.tif', 'w', driver='GTiff', height=10000, width=10000, count=1, dtype='float64', nodata=0, crs=32632, transform=transform) as dst:
dst.write(img.tranpose(), 1)
I have a question about animations. I would like to animate what it looks like to take an increasingly higher rank approximation of an image using the Singular Value Decomposition to show students an example of image compression. The animate function updates the array within im to a higher and higher rank approximation of the image X using the function X_reduced.
import numpy as np
from numpy.linalg import svd
from matplotlib.animation import FuncAnimation, ArtistAnimation
# Read Images
image_path = 'images/bellie.jpg'
img = imread(image_path)
X = np.asarray(img).mean(axis=2)
# Do economy svd
U, S, V = svd(X, full_matrices=False)
def X_reduced(U, S, V, r):
# Compute rank = r approximation
return U[:, :r] # np.diag(S)[:r, :r] # V[:r, :]
# Create figure and ax objects
fig, ax = plt.subplots()
X_0 = np.random.rand(*X.shape)
im = ax.imshow(X_0, cmap='gray')
def init():
im.set_data(np.random.rand(*X.shape))
return [im]
def animate(r):
im.set_array(X_reduced(U, S, V, r))
return [im]
anim = FuncAnimation(fig, animate, init_func=init, frames=100, interval=20)
plt.rcParams['animation.html'] = 'jshtml'
anim
Here is the output. It's animating something, but not what I want. If I just plot a single figure with a few subplots for different ranks it does work. The result is here.
fig, axs = plt.subplots(2,2)
ranks = [10, 25, 100, 200]
for i, ax in enumerate(axs.reshape(-1)):
ax.imshow(X_reduced(U, S, V, ranks[i]))
Is there anyone that could help me out? Me and the students I am going to teach about the SVD will be very grateful!
I'm struggling a bit to figure out
how to make sure all lines get recognized with Line Hough Transform taken from sckit-image library.
https://scikit-image.org/docs/dev/auto_examples/edges/plot_line_hough_transform.html#id3
Here below all lines got recognized:
But if I apply the same script on similar image,
one line will get ignored after applying the Hough transform,
I have read the documentation which says:
The Hough transform constructs a histogram array representing the parameter
space (i.e., an :math:`M \\times N` matrix, for :math:`M` different values of
the radius and :math:`N` different values of :math:`\\theta`). For each
parameter combination, :math:`r` and :math:`\\theta`, we then find the number
of non-zero pixels in the input image that would fall close to the
corresponding line, and increment the array at position :math:`(r, \\theta)`
appropriately.
We can think of each non-zero pixel "voting" for potential line candidates. The
local maxima in the resulting histogram indicates the parameters of the most
probably lines
So my conclusion is the line got removed since it hadn't got enough "votes",
(I have tested it with different precisions (0.05, 0.5, 0.1) degree, but still got the same issue).
Here is the code:
import numpy as np
from skimage.transform import hough_line, hough_line_peaks
from skimage.feature import canny
from skimage import data,io
import matplotlib.pyplot as plt
from matplotlib import cm
# Constructing test image
image = io.imread("my_image.png")
# Classic straight-line Hough transform
# Set a precision of 0.05 degree.
tested_angles = np.linspace(-np.pi / 2, np.pi / 2, 3600)
h, theta, d = hough_line(image, theta=tested_angles)
# Generating figure 1
fig, axes = plt.subplots(1, 3, figsize=(15, 6))
ax = axes.ravel()
ax[0].imshow(image, cmap=cm.gray)
ax[0].set_title('Input image')
ax[0].set_axis_off()
ax[1].imshow(np.log(1 + h),
extent=[np.rad2deg(theta[-1]), np.rad2deg(theta[0]), d[-1], d[0]],
cmap=cm.gray, aspect=1/1.5)
ax[1].set_title('Hough transform')
ax[1].set_xlabel('Angles (degrees)')
ax[1].set_ylabel('Distance (pixels)')
ax[1].axis('image')
ax[2].imshow(image, cmap=cm.gray)
origin = np.array((0, image.shape[1]))
for _, angle, dist in zip(*hough_line_peaks(h, theta, d)):
y0, y1 = (dist - origin * np.cos(angle)) / np.sin(angle)
ax[2].plot(origin, (y0, y1), '-r')
ax[2].set_xlim(origin)
ax[2].set_ylim((image.shape[0], 0))
ax[2].set_axis_off()
ax[2].set_title('Detected lines')
plt.tight_layout()
plt.show()
How should I "catch" this line too,
any suggestion?
Shorter lines have lower accumulator values in the Hough transform, so you have to adjust the threshold appropriately. If you know how many line segments you are looking for, you can set the threshold fairly low and then limit the number of peaks detected.
Here's a condensed version of the code above, with modified threshold, for reference:
import numpy as np
from skimage.transform import hough_line, hough_line_peaks
from skimage import io
import matplotlib.pyplot as plt
from matplotlib import cm
from skimage import color
# Constructing test image
image = color.rgb2gray(io.imread("my_image.png"))
# Classic straight-line Hough transform
# Set a precision of 0.05 degree.
tested_angles = np.linspace(-np.pi / 2, np.pi / 2, 3600)
h, theta, d = hough_line(image, theta=tested_angles)
hpeaks = hough_line_peaks(h, theta, d, threshold=0.2 * h.max())
fig, ax = plt.subplots()
ax.imshow(image, cmap=cm.gray)
for _, angle, dist in zip(*hpeaks):
(x0, y0) = dist * np.array([np.cos(angle), np.sin(angle)])
ax.axline((x0, y0), slope=np.tan(angle + np.pi/2))
plt.show()
(Note: axline requires matplotlib 3.3.)
I need help with curve fitting a given set of points. The points form a parabola and I ought to find the peak point of the result. Issue is when I do a curve fit, it sometimes doesn't touch the max y-coordinate even if the actual point is given in the input array.
Following is the code snippet. Here 1.88 is the actual peak y-coordinate (13.05,1.88). But the graph generated by the code does not touch the point due to curve fitting. So is there a way to fit the curve making sure that it touches the max point given in the input array?
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit, minimize_scalar
fig = plt.gcf()
#fig.set_size_inches(18.5, 10.5)
x = [4.59,9.02,13.05,18.47,20.3]
y = [1.7,1.84,1.88,1.7,1.64]
def f(x, p1, p2, p3):
return p3*(p1/((x-p2)**2 + (p1/2)**2))
plt.plot(x,y,"ro")
popt, pcov = curve_fit(f, x, y)
# find the peak
fm = lambda x: -f(x, *popt)
r = minimize_scalar(fm, bounds=(1, 5))
print( "maximum:", r["x"], f(r["x"], *popt) ) #maximum: 2.99846874275 18.3928199902
plt.text(1,1.9,'maximum '+str(round(r["x"],2))+'( #'+str(round(f(r["x"], *popt),2)) + ' )')
x_curve = np.linspace(min(x), max(x), 50)
plt.plot(x_curve, f(x_curve, *popt))
plt.plot(r['x'], f(r['x'], *popt), 'ko')
plt.show()
Here is a graphical code example using your equation with weighted fitting, where I have made the max point larger to more easily see the effect of the weighting. In non-weighted curve fitting, all weights are implicitly 1.0 as all data points have equal weight. Scipy's curve_fit routine uses weights in the form of uncertainties, so that giving a point a very small uncertainty (which I have done) is like giving the point a very large weight. This technique can be used to make a fit pass arbitrarily close to any single data point by any software that can perform weghted fitting.
import numpy, scipy, matplotlib
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
x = [4.59,9.02,13.05,18.47,20.3]
y = [1.7,1.84,2.0,1.7,1.64]
# note the single very small uncertainty - try making this value 1.0
uncertainties = numpy.array([1.0, 1.0, 1.0E-6, 1.0, 1.0])
# rename data to use previous example
xData = numpy.array(x)
yData = numpy.array(y)
def func(x, p1, p2, p3):
return p3*(p1/((x-p2)**2 + (p1/2)**2))
# these are the same as the scipy defaults
initialParameters = numpy.array([1.0, 1.0, 1.0])
# curve fit the test data, first without uncertainties to
# get us closer to initial starting parameters
ssqParameters, pcov = curve_fit(func, xData, yData, p0 = initialParameters)
# now that we have better starting parameters, use uncertainties
fittedParameters, pcov = curve_fit(func, xData, yData, p0 = ssqParameters, sigma=uncertainties, absolute_sigma=True)
modelPredictions = func(xData, *fittedParameters)
absError = modelPredictions - yData
SE = numpy.square(absError) # squared errors
MSE = numpy.mean(SE) # mean squared errors
RMSE = numpy.sqrt(MSE) # Root Mean Squared Error, RMSE
Rsquared = 1.0 - (numpy.var(absError) / numpy.var(yData))
print('Parameters:', fittedParameters)
print('RMSE:', RMSE)
print('R-squared:', Rsquared)
print()
##########################################################
# graphics output section
def ModelAndScatterPlot(graphWidth, graphHeight):
f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)
axes = f.add_subplot(111)
# first the raw data as a scatter plot
axes.plot(xData, yData, 'D')
# create data for the fitted equation plot
xModel = numpy.linspace(min(xData), max(xData))
yModel = func(xModel, *fittedParameters)
# now the model as a line plot
axes.plot(xModel, yModel)
axes.set_xlabel('X Data') # X axis data label
axes.set_ylabel('Y Data') # Y axis data label
plt.show()
plt.close('all') # clean up after using pyplot
graphWidth = 800
graphHeight = 600
ModelAndScatterPlot(graphWidth, graphHeight)
I am using imsave() sequentially to make many PNGs that I will combine as an AVI and I would like to add moving text annotations. I use ImageJ to make AVIs or GIFs.
I don't want the axes, numbers, borders or anything, just the color image (as imsave() provides for example) with text (and maybe arrows) inside. These will change frame by frame. Pardon the use of jet.
I could use savefig() with ticks off and then do cropping as post processing, but is there a more convenient, direct, or "matplotlibithic" way to do this that wouldn't be so hard on my hard drive? (final thing will be pretty big).
A code snippet, added by request:
import numpy as np
import matplotlib.pyplot as plt
nx, ny = 101, 101
phi = np.zeros((ny, nx), dtype = 'float')
do_me = np.ones_like(phi, dtype='bool')
x0, y0, r0 = 40, 65, 12
x = np.arange(nx, dtype = 'float')[None,:]
y = np.arange(ny, dtype = 'float')[:,None]
rsq = (x-x0)**2 + (y-y0)**2
circle = rsq <= r0**2
phi[circle] = 1.0
do_me[circle] = False
do_me[0,:], do_me[-1,:], do_me[:,0], do_me[:,-1] = False, False, False, False
n, nper = 100, 100
phi_hold = np.zeros((n+1, ny, nx))
phi_hold[0] = phi
for i in range(n):
for j in range(nper):
phi2 = 0.25*(np.roll(phi, 1, axis=0) +
np.roll(phi, -1, axis=0) +
np.roll(phi, 1, axis=1) +
np.roll(phi, -1, axis=1) )
phi[do_me] = phi2[do_me]
phi_hold[i+1] = phi
change = phi_hold[1:] - phi_hold[:-1]
places = [(32, 20), (54,25), (11,32), (3, 12)]
plt.figure()
plt.imshow(change[50])
for (x, y) in places:
plt.text(x, y, "WOW", fontsize=16)
plt.text(5, 95, "Don't use Jet!", color="white", fontsize=20)
plt.show()
Method 1
Using an excellent answer to another question as a reference, I came up with the following simplified variant which seems to work nicely - just make sure the figsize (which is given in inches) aspect ratio matches the size ratio of the plot data:
import numpy as np
import matplotlib.pyplot as plt
test_image = np.eye(100)
fig = plt.figure(figsize=(4,4))
ax = plt.axes(frameon=False, xticks=[],yticks=[])
ax.imshow(test_image)
plt.savefig('test.png', bbox_inches='tight', pad_inches=0)
Note that I am using imshow with a test_image, which might behave differently from other plotting functions... please let me know in a comment in case you'd like to do something else.
Also note that the image will be (re-) sampled, so the figsize will influence the resolution of the written image.
As pointed out in the comments, the figsize setting doesn't match the size of the output image (or the size on screen, for that matter). To overcome this, use...
Method 2
Reading the FAQ entry Move the edge of an axes to make room for tick labels, I found a way to make the figsize parameter set the output image size directly, by moving the axes' ticks out of the visible area:
import numpy as np
import matplotlib.pyplot as plt
test_image = np.eye(100)
fig = plt.figure(figsize=(4,4))
ax = fig.add_axes([0,0,1,1])
ax.imshow(test_image)
plt.savefig('test.png')
Note that savefig has a default DPI setting (100 in my case) which - in combination with figsize - determines the number of pixels in x and y directions of the saved image. You can override this with the dpi keyword argument to savefig.
If you want to display the image on screen rather than saving it (by using plt.show() instead of the plt.savefig line in the code above), the size of the figure is dependent on (apart from the already familiar figsize parameter) the figure's DPI setting, which also has a default (80 on my system). This value can be overridden by passing the dpi keyword argument to the plt.figure() call.