Cannot Synthesize Signal - vhdl

I am a newbie when it comes to VHDL, but i am working on a counter than can manually count up and down by the push of a button.. Somehow i am only getting this error, and i dunno what i am doing wrong, all other checks are good. any suggestion?
This is the error i get:
ERROR:Xst:827 - line 101: Signal s2 cannot be synthesized, bad synchronous description.
The description style you are using to describe a synchronous element (register, memory, etc.) is not supported in the current software release.
entity updown is Port (
rst : in STD_LOGIC;
plus , plusin: in STD_LOGIC;
minus, minusin : in STD_LOGIC;
clk : in STD_LOGIC;
ud_out, ud_out2 : out STD_LOGIC_VECTOR (3 downto 0)
);
end updown;
architecture Behavioral of updown is
signal s : unsigned (3 downto 0):= "0000";
signal s2 : unsigned (3 downto 0) := "0000";
begin
process(rst, plus, minus, clk, plusin, minusin)
begin
if rst='1' then
s <= "0000";
s2 <= "0000";
else
if rising_edge (clk) then
if plus ='1' or plusin = '1' then
if s = "1001" then
s <= "0000";
if s2 = "1001" then
s2 <= "0000";
else
s2 <= s2 + 1;
end if;
else
s <= s + 1;
end if;
end if;
else
if minus ='1' or minusin = '1' then
if s = "0000" then
s <= "1001";
if s2= "0000" then
s2 <= "1001";
else
s2 <= s2 - 1;
end if;
else
s <= s - 1;
end if;
end if;
end if;
end if;
end process;
ud_out <= std_logic_vector(s);
ud_out2 <= std_logic_vector(s2);
end Behavioral;

Your description of a synchronous process is flawed. A synchronous process has events that update only on the edge of a clock signal (although in this case there is an also an asynchronous reset behaviour )
Your sensitivity list contains more than it needs to describe a synchronous process.
Replace
process(rst, plus, minus, clk, plusin, minusin)
with
process(rst, clk )
signals will then only update when the clock transisitions, or rst changes.
Some compilers are even more picky, and might require you to change
else if rising_edge (clk)then
to
elsif rising_edge(clk) then
EDIT:
This should work. I've layed it out clearly so its actually easy to follow what's going on. I'd suggest you do the same in future. It make simple closure errors easy to spot
entity updown is
port (
signal clk : in std_logic;
signal rst : in std_logic;
signal plus : in std_logic;
signal plusin : in std_logic;
signal minus : in std_logic;
signal minusin : in std_logic;
signal ud_out : out std_logic_vector(3 downto 0);
signal ud_out2 : out std_logic_vector(3 downto 0)
);
end entity updown;
architecture behavioral of updown is
signal s : unsigned (3 downto 0);
signal s2 : unsigned (3 downto 0);
begin
p_counter_process: process(rst, clk)
begin
if rst ='1' then
s <= (others => '0');
s2 <= (others => '0');
elsif rising_edge(clk) then
if plus ='1' or plusin = '1' then
if s = "1001" then
s <= "0000";
if s2 = "1001" then
s2 <= "0000";
else
s2 <= s2 + 1;
end if;
else
s <= s +1;
end if;
end if;
-- you had a mismatched end if statement here. Removed
if minus ='1' or minusin = '1' then
if s = "0000" then
s <= "1001";
if s2= "0000" then
s2 <= "1001";
else
s2 <= s2 - 1;
end if;
else
s <= s - 1;
end if;
end if;
end if;
end process;
ud_out <= std_logic_vector(s);
ud_out2 <= std_logic_vector(s2);
end architecture;

Related

Different Clock Domain VHDL

I'm making a custom hardware ARINC 429 Core.
For now I have described the module in transmission (TX-FSM), according to the ARINC 429 standard and a FIFO in transmission from which it takes the data and sends them to the outside.
The FIFO works at a frequency of 2MHz (clk2M), while TX-FSM can generate a frequency of 100kb / s or 12.5kb / s (clk429) from 2MHz as per standard.
Since the FIFO works at a higher frequency (2 MHz), and the TX-FSM works at a lower frequency (100 kb/s), when the TX-FSM requests a data from the FIFO by raising the "TX_FIFO_rd" signal ("rd_en" on FIFO ), the FIFO supplies all the data contained within it, since in the FIFO clock domain the "rd_en" signal remains high for several cycles.
The FIFO should only provide one data at a time. Once the data has been transmitted, the TX-FSM will request the next data.
How can I make the FIFO and TX-FSM work in sync using a single clock?
FIFO VHDL code:
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity FIFO is
generic (
FIFO_WIDTH : natural := 32;
FIFO_DEPTH : integer := 10;
ALMOST_FULL_LEVEL : integer := 8;
ALMOST_EMPTY_LEVEL : integer := 2
);
port (
reset : in std_logic;
clk : in std_logic;
-- FIFO Write Interface
wr_en : in std_logic;
wr_data : in std_logic_vector(FIFO_WIDTH-1 downto 0);
ALMOST_FULL : out std_logic;
FULL : out std_logic;
-- FIFO Read Interface
rd_en : in std_logic;
rd_data : out std_logic_vector(FIFO_WIDTH-1 downto 0);
ALMOST_EMPTY : out std_logic;
EMPTY : out std_logic
);
end FIFO;
architecture rtl of FIFO is
type t_FIFO_DATA is array (0 to FIFO_DEPTH) of std_logic_vector(FIFO_WIDTH-1 downto 0);
signal r_FIFO_DATA : t_FIFO_DATA := (others => (others => '0'));
signal r_WR_INDEX : integer range 0 to FIFO_DEPTH -1 := 0;
signal r_RD_INDEX : integer range 0 to FIFO_DEPTH -1 := 0;
-- # Words in FIFO, has extra range to allow for assert conditions
signal r_FIFO_COUNT : integer range -1 to FIFO_DEPTH+1 := 0;
signal w_FULL : std_logic;
signal w_EMPTY : std_logic;
begin
-- FIFO process
-------------------------------------------------------------------
-------------------------------------------------------------------
WRITE_INDEX : process(clk)
begin
if rising_edge(clk) then
if reset = '1' then
r_WR_INDEX <= 1;
else
if (wr_en = '1' and w_FULL = '0') then
if r_WR_INDEX = FIFO_DEPTH-1 then
r_WR_INDEX <= 1;
else
r_WR_INDEX <= r_WR_INDEX + 1;
end if;
end if;
end if;
end if;
end process;
READ_INDEX : process(clk)
begin
if rising_edge(clk) then
if reset = '1' then
r_RD_INDEX <= 0;
else
if (rd_en = '1' and w_EMPTY = '0') then
if r_RD_INDEX = FIFO_DEPTH-1 then
r_RD_INDEX <= 0;
else
r_RD_INDEX <= r_RD_INDEX + 1;
end if;
end if;
end if;
end if;
end process;
COUNT_INDEX : process(clk)
begin
if rising_edge(clk) then
if reset = '1' then
r_FIFO_COUNT <= 0;
else
if (wr_en = '1' and rd_en = '0') then
r_FIFO_COUNT <= r_FIFO_COUNT + 1;
elsif (wr_en = '0' and rd_en = '1') then
if r_FIFO_COUNT > 0 then
r_FIFO_COUNT <= r_FIFO_COUNT - 1;
end if;
end if;
end if;
end if;
end process;
Write_Data : process (clk) is
begin
if rising_edge(clk) then
if wr_en = '1' then
r_FIFO_DATA(r_WR_INDEX) <= wr_data;
end if;
end if;
end process;
rd_data <= r_FIFO_DATA(r_RD_INDEX);
w_FULL <= '1' when r_FIFO_COUNT = FIFO_DEPTH else '0';
w_EMPTY <= '1' when r_FIFO_COUNT = 0 else '0';
ALMOST_FULL <= '1' when r_FIFO_COUNT > ALMOST_FULL_LEVEL else '0';
ALMOST_EMPTY <= '1' when r_FIFO_COUNT < ALMOST_EMPTY_LEVEL else '0';
FULL <= w_FULL;
EMPTY <= w_EMPTY;
end rtl;
TX-FSM code
-- Arinc 429 trasmitter interface
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity Tx is
port
(
--INPUT
clk2M : in std_logic; -- clock signal
reset : in std_logic; -- reset signal
enable : in std_logic; -- enable signal
en_parity : in std_logic; -- enable parity bit
parity : in std_logic; -- odd/even parity
speed : in std_logic; -- speed 100kbps or 12.5kbps
gap : in std_logic; -- gap between two messages: 4 or 64 bit of gap
TX_FIFO_ep : in std_logic; -- TX FIFO EMPTY
a429TX_in : in std_logic_vector (31 downto 0); -- data in
--OUTPUT
a429TX_outA : out std_logic; -- positive out
a429TX_outB : out std_logic; -- negative out
TX_FIFO_rd : out std_logic -- TX FIFO READ
);
end entity;
architecture RTL_A429TX of Tx is
-- FSM state name
type state_type is (IDLE,START, PAR,TRANSMITTING,WAITING);
signal state : state_type;
-- FSM register
signal shift_reg : std_logic_vector (31 downto 0);
signal shift_counter : std_logic_vector (4 downto 0);
signal gap_counter : std_logic_vector (6 downto 0);
-- speed clock register
signal clk429 : std_logic;
signal clk429_counter : integer;
signal clk429_max_count : integer;
signal clk429_half_count : integer;
begin
-- speed clock process
-------------------------------------------------------------------
-------------------------------------------------------------------
-- select speed process
process (speed)
begin
if (speed = '1') then
clk429_max_count <= 19; -- 100kbs/s
clk429_half_count <= 10;
else
clk429_max_count <= 159; -- 12.5kbs/s
clk429_half_count <= 80;
end if;
end process;
-- clock429 generate speed process
process (clk2M, reset)
begin
if (reset = '1') then
clk429 <= '0';
elsif rising_edge(clk2M) then
if (clk429_counter <= clk429_half_count ) then
clk429 <= '1';
else
clk429 <= '0';
end if;
end if;
end process;
-- counter activity process
process (clk2M, reset)
begin
if (reset = '1') then
clk429_counter <= 0;
elsif rising_edge(clk2M) then
if (clk429_counter >= clk429_max_count) then
clk429_counter <= 0;
else
clk429_counter <= clk429_counter + 1;
end if;
end if;
end process;
-------------------------------------------------------------------
-------------------------------------------------------------------
-- a429TX interface process
process (clk429, reset)
variable p : std_logic;
begin
if reset = '1' then
state <= IDLE;
shift_reg <= (others => '0');
shift_counter <= (others => '0');
gap_counter <= (others => '0');
a429TX_outA <= '0';
a429TX_outB <= '0';
TX_FIFO_rd <= '0';
elsif rising_edge(clk429) then
case state is
when IDLE => -- idle state
if (enable = '1') then
if (gap = '1') then
gap_counter <= "0000100"; -- 4
else
gap_counter <= "1000000"; -- 64
end if;
if TX_FIFO_ep = '0' then
TX_FIFO_rd <= '1';
state <= START;
else
state <= IDLE;
end if;
else
state <= IDLE;
end if;
when START =>
-- data formatting
TX_FIFO_rd <= '0';
shift_reg <= a429TX_in(31 downto 8)& a429TX_in(0) & a429TX_in(1) & a429TX_in(2) & a429TX_in(3) & a429TX_in(4) & a429TX_in(5) & a429TX_in(6) & a429TX_in(7);
shift_counter <= "11111";
if ( en_parity = '1') then
state <= PAR;
else
state <= TRANSMITTING;
end if;
when PAR => -- parity state
--TX_FIFO_rd <= '0';
p := '0';
for I in 31 downto 0 loop
p := p xor shift_reg(I);
end loop;
if (parity = '1') then
shift_reg(31) <= p; -- odd
else
shift_reg(31) <= not p; -- even
end if;
state <= TRANSMITTING;
when TRANSMITTING => -- transmission state
--TX_FIFO_rd <= '0';
a429TX_outA <= shift_reg(0);
a429TX_outB <= not shift_reg(0);
shift_reg <= shift_reg(0) & shift_reg(31 downto 1);
if (shift_counter = "00000") then
state <= WAITING;
else
shift_counter <= shift_counter -1;
state <= TRANSMITTING;
end if;
when WAITING => -- wait state. generate gap
a429TX_outA <= '0';
a429TX_outB <= '0';
if (gap_counter > 0) then
gap_counter <= gap_counter - 1;
state <= WAITING;
else
state <= IDLE;
end if;
when others => -- default
state <= IDLE;
end case;
elsif falling_edge (clk429) then
a429TX_outA <= '0';
a429TX_outB <= '0';
end if;
end process;
clk429 <= clk429;
end architecture;
Thanks for your help.
Run both FIFOs at the 2 MHz clk2M, and then generate a single cycle enable indication on TX_FIFO_rd when FIFO read data transfer is required.
Thereby you can get the benefit from synchronous design, without the hazzle of handling multiple clock domains.
Also, it is not good (but actually very bad :-) synchronous design practice to generate internal clock like the clk429, since it results in error prune design and more complex timing closure with Static Timing Analysis (STA). Instead make an enable signal that is asserted a single cycle, run the design on the clk2M, and the only update the relevant state when the enable signal is high.

How can i reduce number of ALMs in my VHDL design?

I'm trying to implement an alarm module for the digital clock in VHDL. I have written architecture for it, but when I run Compilation I get too many Adaptive Logic Modules (around 2000), which I think is too much. I will post my code below.
I think division and modulus operation could be causing it, in this line of code.
alarm_hour1 <= std_logic_vector(to_unsigned(savedHours/10,alarm_hour1'length));
alarm_hour0 <= std_logic_vector(to_unsigned(savedHours mod 10,alarm_hour0'length));
alarm_minute1 <= std_logic_vector(to_unsigned(savedMinutes/10,alarm_minute1'length));
alarm_minute0 <= std_logic_vector(to_unsigned(savedMinutes mod 10,alarm_minute0'length));
Still, I'm not sure how can I work around this.
Also, I would be very grateful if You give more comments on my design, and point out some mistakes, and ways how I can improve my design. I'm fairly new to VHDL so any advice is appreciated.
Thanks a lot.
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.numeric_std.all;
entity alarm is
port(
--INPUTS
reset : in std_logic;
clock : in std_logic;
alarm_enable : in std_logic;
alarm_set : in std_logic;
alarm_increment : in std_logic;
alarm_decrement : in std_logic;
currentTime_hour1 : in std_logic_vector(3 downto 0);
currentTime_hour0 : in std_logic_vector(3 downto 0);
currentTime_minute1 : in std_logic_vector(3 downto 0);
currentTime_minute0 : in std_logic_vector(3 downto 0);
--OUTPUTS
alarm_buzzer : out std_logic;
alarm_hour1 : buffer std_logic_vector(3 downto 0) := "0000";
alarm_hour0 : buffer std_logic_vector(3 downto 0) := "0000";
alarm_minute1 : buffer std_logic_vector(3 downto 0) := "0000";
alarm_minute0 : buffer std_logic_vector(3 downto 0) := "0000"
);
end alarm;
architecture alarmBehaviour of alarm is
--ALARM TIME
signal savedHours : integer := 0;
signal savedMinutes : integer := 0;
signal incrementDecrementbuttonDetect : std_logic;
signal set_lastButtonState : std_logic := '0';
signal setButtonDetect : std_logic := '0';
--STATE MACHINE
type state_type is (idle, setHour, setMinute);
signal state_reg, state_next : state_type;
begin
incrementDecrementbuttonDetect <= alarm_increment or alarm_decrement;
--STATE REGISTER
process(clock, reset)
begin
if (reset = '1') then
state_reg <= idle;
elsif rising_edge(clock) then
state_reg <= state_next;
end if;
end process;
--SET BUTTON PRESSED
process(clock)
begin
if(rising_edge(clock)) then
if(alarm_set = '1' and set_lastButtonState = '0') then
setButtonDetect <= '1';
else
setButtonDetect <= '0';
end if;
set_lastButtonState <= alarm_set;
end if;
end process;
--NEXT STATE
process(state_reg, setButtonDetect)
begin
case state_reg is
when idle =>
if setButtonDetect = '1' then
state_next <= setHour;
else
state_next <= idle;
end if;
when setHour =>
if setButtonDetect = '1' then
state_next <= setMinute;
else
state_next <= setHour;
end if;
when setMinute =>
if setButtonDetect = '1' then
state_next <= idle;
else
state_next <= setMinute;
end if;
end case;
end process;
process (incrementDecrementbuttonDetect, state_reg)
begin
if rising_edge(incrementDecrementbuttonDetect) then
case state_reg is
when idle =>
when setHour =>
if alarm_increment = '1' then
if savedHours = 23 then
savedHours <= 0;
else
savedHours <= savedHours + 1;
end if;
else null;
end if;
if alarm_decrement = '1' then
if savedHours = 0 then
savedHours <= 23;
else
savedHours <= savedHours - 1;
end if;
else null;
end if;
when setMinute =>
if alarm_increment = '1' then
if savedMinutes = 59 then
savedMinutes <= 0;
else
savedMinutes <= savedMinutes + 1;
end if;
else null;
end if;
if alarm_decrement = '1' then
if savedMinutes = 0 then
savedMinutes <= 59;
else
savedMinutes <= savedMinutes - 1;
end if;
else null;
end if;
end case;
end if;
end process;
alarm_hour1 <= std_logic_vector(to_unsigned(savedHours/10,alarm_hour1'length));
alarm_hour0 <= std_logic_vector(to_unsigned(savedHours mod 10,alarm_hour0'length));
alarm_minute1 <= std_logic_vector(to_unsigned(savedMinutes/10,alarm_minute1'length));
alarm_minute0 <= std_logic_vector(to_unsigned(savedMinutes mod 10,alarm_minute0'length));
--ALARM BUZZER CONDITION
process (currentTime_hour1, currentTime_hour0, currentTime_minute1, currentTime_minute0,
alarm_enable, alarm_hour1, alarm_hour0, alarm_minute1, alarm_minute0)
begin
if((alarm_hour1 = currentTime_hour1) and (alarm_hour0 = currentTime_hour0)
and (alarm_minute1 = currentTime_minute1) and (alarm_minute0 = currentTime_minute0) and alarm_enable = '1') then
alarm_buzzer <= '1';
else
alarm_buzzer <= '0';
end if;
end process;
end alarmBehaviour;
Consider keeping the alarm time in Binary-Coded Decimal (BCD) format instead of binary format, whereby you can compare it directly with the current time, that is provided in BCD format.
This is a good example of how using the appropriate internal data format can reduce the computational problem significantly, since you can simply eliminate the costly division and modulo operations by keeping just one data format (BCD) instead of mixing BCD and binary data formats.
The range of signals savedHours and savedMinutes is not specified, so Quartus assumes they are 32 bits wide. Inference of a divider with one 32-bit operand results into a large tree of conditional subtractions.
Updating your code to something like
--ALARM TIME
signal savedHours : natural range 0 to 23 := 0;
signal savedMinutes : natural range 0 to 59 := 0;
will very likely result into less ALM usage.
Also, please note that rising_edge should be used for clock signals only (at VHDL starter level). Instead of connecting logic to the clock input of a register, what you probably want is some button debounce logic.

VHDL Vivado Combinatorial Loop Alert

I am trying to implement a simple ALU:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;
entity simple_alu is
Port (
clk : in std_logic;
rst : in std_logic;
op : in std_logic_vector (1 downto 0);
in0 : in std_logic_vector (31 downto 0);
in1 : in std_logic_vector (31 downto 0);
res : out std_logic_vector (31 downto 0);
done_flag : out std_logic
);
end simple_alu;
architecture Behavioral of simple_alu is
type state_type is (start, add, sub, mul, pow, done);
signal state, next_state : state_type := start;
signal status : std_logic := '0';
signal inter, shift_reg, zero : std_logic_vector (31 downto 0) := (others => '0');
begin
SYNC_PROC: process (clk, rst)
begin
if (rst = '0') then
if rising_edge(clk) then
state <= next_state;
res <= inter;
done_flag <= status;
end if;
else
state <= start;
res <= (others => '0');
done_flag <= '0';
end if;
end process;
--MEALY State-Machine - Outputs based on state and inputs
OUTPUT_DECODE: process (state, in0, in1, shift_reg)
variable result, temp : std_logic_vector (31 downto 0);
variable flag : std_logic := '0';
begin
shift_reg <= in1;
temp := temp;
flag := flag;
result := result;
case state is
when start =>
result := std_logic_vector(to_signed(1, 32));
temp := in0;
flag := '0';
when add => result := std_logic_vector(signed(in0) + signed(in1));
when sub => result := std_logic_vector(signed(in0) - signed(in1));
when mul => result := std_logic_vector(resize(signed(in0) * signed(in1), 32));
when pow =>
if (shift_reg(shift_reg'low) = '1') then
result := std_logic_vector(resize(signed(result) * signed(temp), 32));
else
result := result;
end if;
temp := std_logic_vector(resize(signed(temp) * signed(temp), 32));
shift_reg <= std_logic_vector(shift_right(signed(shift_reg), 1));
when done =>
result := result;
flag := '1';
when others =>
end case;
inter <= result;
status <= flag;
end process;
NEXT_STATE_DECODE: process (state, op, shift_reg, zero, rst) -- rst indicates that one input (op, in0 or in1) changed
begin
--declare default state for next_state to avoid latches
next_state <= state; --default is to stay in current state
case (state) is
when start =>
case (op) is
when "00" => next_state <= add;
when "01" => next_state <= sub;
when "10" => next_state <= mul;
when "11" => next_state <= pow;
when others => next_state <= done;
end case;
when add => next_state <= done;
when sub => next_state <= done;
when mul => next_state <= done;
when pow =>
if (shift_reg = zero) then
next_state <= done;
else
next_state <= pow;
end if;
when done =>
if (rst = '1') then
next_state <= start;
end if;
when others =>
end case;
end process;
end Behavioral;
This seems to be working, at least in this testbench:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;
entity simple_alu_tb is
end simple_alu_tb;
architecture Behavioral of simple_alu_tb is
component simple_alu is
Port (
clk : in std_logic;
rst : in std_logic;
op : in std_logic_vector (1 downto 0);
in0 : in std_logic_vector (31 downto 0);
in1 : in std_logic_vector (31 downto 0);
res : out std_logic_vector (31 downto 0);
done_flag : out std_logic
);
end component;
signal clk : std_logic := '0';
signal rst : std_logic := '0';
signal op : std_logic_vector (1 downto 0) := (others => '0');
signal in0 : std_logic_vector (31 downto 0) := (others => '0');
signal in1 : std_logic_vector (31 downto 0) := (others => '0');
signal res : std_logic_vector (31 downto 0) := (others => '0');
signal done_flag : std_logic := '0';
constant clk_period : time := 1 ns;
begin
--Instantiate the Unit Under Test (UUT)
uut: simple_alu Port Map (
clk => clk,
rst => rst,
op => op,
in0 => in0,
in1 => in1,
res => res,
done_flag => done_flag
);
-- Clock process definitions
clk_process :process
begin
clk <= '1';
wait for clk_period/2;
clk <= '0';
wait for clk_period/2;
end process;
stim_proc: process
begin
wait for 2*clk_period;
rst <= '1';
wait for clk_period;
rst <= '0';
wait for 4*clk_period;
op <= "00"; -- add
in0 <= std_logic_vector(to_signed(12, 32));
in1 <= std_logic_vector(to_signed(3, 32));
rst <= '1';
wait for clk_period;
rst <= '0';
wait for 2*clk_period;
assert (res = std_logic_vector(to_signed(15, 32))) report "addition failed" severity failure;
wait for 4*clk_period;
op <= "01"; -- sub
in0 <= std_logic_vector(to_signed(12, 32));
in1 <= std_logic_vector(to_signed(3, 32));
rst <= '1';
wait for clk_period;
rst <= '0';
wait for 2*clk_period;
assert (res = std_logic_vector(to_signed(9, 32))) report "subtraction failed" severity failure;
wait for 4*clk_period;
op <= "10"; -- mul
in0 <= std_logic_vector(to_signed(12, 32));
in1 <= std_logic_vector(to_signed(3, 32));
rst <= '1';
wait for clk_period;
rst <= '0';
wait for 2*clk_period;
assert (res = std_logic_vector(to_signed(36, 32))) report "multiplication failed" severity failure;
wait for 4*clk_period;
op <= "11"; -- pow
in0 <= std_logic_vector(to_signed(12, 32));
in1 <= std_logic_vector(to_signed(7, 32));
rst <= '1';
wait for clk_period;
rst <= '0';
wait for 4*clk_period;
assert (res = std_logic_vector(to_signed(35831808, 32))) report "power failed" severity failure;
wait for 4*clk_period;
op <= "11"; -- pow
in0 <= std_logic_vector(to_signed(12, 32));
in1 <= std_logic_vector(to_signed(6, 32));
rst <= '1';
wait for clk_period;
rst <= '0';
wait for 4*clk_period;
assert (res = std_logic_vector(to_signed(2985984, 32))) report "power failed" severity failure;
wait;
end process;
end Behavioral;
I would like to implement that as AXI4-lite component. So I generate the wrapper, adapt the write process and instantiate my module as follows:
...
process (S_AXI_ACLK)
variable loc_addr :std_logic_vector(OPT_MEM_ADDR_BITS downto 0);
begin
if rising_edge(S_AXI_ACLK) then
if S_AXI_ARESETN = '0' then
-- command_reg <= (others => '0');
-- done_flag <= '0';
slv_reg1 <= (others => '0');
slv_reg2 <= (others => '0');
-- slv_reg3 <= (others => '0');
else
loc_addr := axi_awaddr(ADDR_LSB + OPT_MEM_ADDR_BITS downto ADDR_LSB);
if (slv_reg_wren = '1') then
case loc_addr is
when b"00" =>
for byte_index in 0 to (C_S_AXI_DATA_WIDTH/8-4) loop -- write to command register only
if ( S_AXI_WSTRB(byte_index) = '1' ) then
-- Respective byte enables are asserted as per write strobes
-- slave registor 0
command_reg(byte_index*8+7 downto byte_index*8) <= S_AXI_WDATA(byte_index*8+7 downto byte_index*8);
end if;
end loop;
when b"01" =>
for byte_index in 0 to (C_S_AXI_DATA_WIDTH/8-1) loop
if ( S_AXI_WSTRB(byte_index) = '1' ) then
-- Respective byte enables are asserted as per write strobes
-- slave registor 1
slv_reg1(byte_index*8+7 downto byte_index*8) <= S_AXI_WDATA(byte_index*8+7 downto byte_index*8);
end if;
end loop;
when b"10" =>
for byte_index in 0 to (C_S_AXI_DATA_WIDTH/8-1) loop
if ( S_AXI_WSTRB(byte_index) = '1' ) then
-- Respective byte enables are asserted as per write strobes
-- slave registor 2
slv_reg2(byte_index*8+7 downto byte_index*8) <= S_AXI_WDATA(byte_index*8+7 downto byte_index*8);
end if;
end loop;
-- when b"11" => -- do not write to reg3
-- for byte_index in 0 to (C_S_AXI_DATA_WIDTH/8-1) loop
-- if ( S_AXI_WSTRB(byte_index) = '1' ) then
-- -- Respective byte enables are asserted as per write strobes
-- -- slave registor 3
-- slv_reg3(byte_index*8+7 downto byte_index*8) <= S_AXI_WDATA(byte_index*8+7 downto byte_index*8);
-- end if;
-- end loop;
when others =>
command_reg <= command_reg;
done_flag <= done_flag;
slv_reg1 <= slv_reg1;
slv_reg2 <= slv_reg2;
-- slv_reg3 <= slv_reg3;
end case;
end if;
end if;
end if;
end process;
...
-- Add user logic here
-- byte0 byte1 byte2 byte3
slv_reg0 <= done_flag & "0000000" & "00000000" & "00000000" & command_reg;
alu : simple_alu
port map (
clk => S_AXI_ACLK,
rst => slv_reg_wren, -- reset on every write to a register, high active
op => command_reg(1 downto 0),
in0 => slv_reg1,
in1 => slv_reg2,
res => slv_reg3,
done_flag => done_flag
);
-- User logic ends
But when I try to generate the bitstream for my wrapper design which includes the Zync UltraScale+ MPSoC, AXI Interconnect, Processor System Reset and my AXI Peripheral I get the following error:
ERROR: [DRC LUTLP-1] Combinatorial Loop Alert: 1 LUT cells form a combinatorial loop. This can create a race condition. Timing analysis may not be accurate. The preferred resolution is to modify the design to remove combinatorial logic loops. If the loop is known and understood, this DRC can be bypassed by acknowledging the condition and setting the following XDC constraint on any one of the nets in the loop: 'set_property ALLOW_COMBINATORIAL_LOOPS TRUE [get_nets <myHier/myNet>]'. One net in the loop is design_1_i/simple_alu_0/U0/simple_alu_v1_0_S00_AXI_inst/alu/state[0]_i_2_n_0. Please evaluate your design. The cells in the loop are: design_1_i/simple_alu_0/U0/simple_alu_v1_0_S00_AXI_inst/alu/state[0]_i_2.
ERROR: [DRC LUTLP-1] Combinatorial Loop Alert: 1 LUT cells form a combinatorial loop. This can create a race condition. Timing analysis may not be accurate. The preferred resolution is to modify the design to remove combinatorial logic loops. If the loop is known and understood, this DRC can be bypassed by acknowledging the condition and setting the following XDC constraint on any one of the nets in the loop: 'set_property ALLOW_COMBINATORIAL_LOOPS TRUE [get_nets <myHier/myNet>]'. One net in the loop is design_1_i/simple_alu_0/U0/simple_alu_v1_0_S00_AXI_inst/alu/state[1]_i_3_n_0. Please evaluate your design. The cells in the loop are: design_1_i/simple_alu_0/U0/simple_alu_v1_0_S00_AXI_inst/alu/state[1]_i_3.
Please excuse the huge amount of code, I couldn't find a way to show the error with a smaller example.
I tried the solution proposed here:
set_property SEVERITY {Warning} [get_drc_checks LUTLP-1]
But that did nothing. I also tried setting set_property ALLOW_COMBINATORIAL_LOOPS TRUE for the two nets but that leaves me unsure about the functionality of my circuit. I am using Vivado v2018.3, my target is the Ultra96 from Avnet. Any clues?
EDIT: I have updated the code to reflect the current implementation, I get warnings about latches for result_reg, flag_reg and temp_reg. How do I resolve those?
After a long struggle I finally came up with this solution:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;
entity simple_alu is
Port (
clk : in std_logic;
rst : in std_logic;
op : in std_logic_vector (1 downto 0);
in0 : in std_logic_vector (31 downto 0);
in1 : in std_logic_vector (31 downto 0);
res : out std_logic_vector (31 downto 0);
done_flag : out std_logic
);
end simple_alu;
architecture Behavioral of simple_alu is
type state_type is (start, add, sub, mul, pow, done);
signal state, next_state : state_type := start;
signal result, next_result, temp, next_temp, shift_reg, next_shift_reg, zero : std_logic_vector (31 downto 0) := (others => '0');
signal next_done_flag : std_logic := '0';
begin
SYNC_PROC: process (clk, rst)
begin
if rising_edge(clk) then
if (rst = '1') then
state <= start;
else
state <= next_state;
res <= next_result;
result <= next_result;
temp <= next_temp;
shift_reg <= next_shift_reg;
done_flag <= next_done_flag;
end if;
end if;
end process;
--MEALY State-Machine - Outputs based on state and inputs
OUTPUT_DECODE: process (state, result, in0, in1, temp, shift_reg)
begin
next_done_flag <= '0';
next_result <= result;
next_shift_reg <= shift_reg;
next_temp <= temp;
case state is
when start =>
next_result <= std_logic_vector(to_signed(1, 32));
next_temp <= in0;
next_shift_reg <= in1;
when add => next_result <= std_logic_vector(signed(in0) + signed(in1));
when sub => next_result <= std_logic_vector(signed(in0) - signed(in1));
when mul => next_result <= std_logic_vector(resize(signed(in0) * signed(in1), 32));
when pow =>
if (shift_reg(shift_reg'low) = '1') then
next_result <= std_logic_vector(resize(signed(result) * signed(temp), 32));
else
next_result <= result;
end if;
next_temp <= std_logic_vector(resize(signed(temp) * signed(temp), 32));
next_shift_reg <= std_logic_vector(shift_right(signed(shift_reg), 1));
when done => next_done_flag <= '1';
when others =>
end case;
end process;
NEXT_STATE_DECODE: process (state, op, shift_reg, zero)
begin
--declare default state for next_state to avoid latches
next_state <= state; --default is to stay in current state
case (state) is
when start =>
case (op) is
when "00" => next_state <= add;
when "01" => next_state <= sub;
when "10" => next_state <= mul;
when "11" => next_state <= pow;
when others => next_state <= done;
end case;
when add => next_state <= done;
when sub => next_state <= done;
when mul => next_state <= done;
when pow =>
if (shift_reg = zero) then
next_state <= done;
else
next_state <= pow;
end if;
when done =>
when others =>
end case;
end process;
end Behavioral;
The problem was that I did not understand how hardware description works, now I know a little (at least I hope so..). Especially how clocked and unclocked processes are connected (save intermediate results in registers). I will leave this question up just in case another beginner stumbles upon the same issue. If you think I should remove it, please state that in a comment and I will do so.
Here are some resources that helped me:
this question and in particular the accepted answer
some rules I picked up somewhere:
Don't read from the signals to which you write.
Have a correct sensitivity list (all signals that you read should be in the sensitivity list)
Make sure that all signals to which your write are assigned in every path. (for example: in each branch of an if-else-statement)
For processes which use variable, make sure every variable is initialized a default value before reading it (in another variable or signal ).

finite state machine & avoiding metastability

I'm trying to do an electronic dice using fsm as well as avoiding metastability in the process. so I've written this code
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity Dice is
port( clk : in std_logic; -- clock
reset : in std_logic;
key_in : in std_logic; -- key to be preesed to change state
seven_seg : out std_logic_vector (6 downto 0)
);
end Dice;
architecture rulling of Dice is
constant s_one : std_logic_vector (6 downto 0) := "1111001";
constant s_two : std_logic_vector (6 downto 0) := "0100100";
constant s_three : std_logic_vector (6 downto 0) := "0110000";
constant s_four : std_logic_vector (6 downto 0) := "0011001";
constant s_five : std_logic_vector (6 downto 0) := "0010010";
constant s_six : std_logic_vector (6 downto 0) := "0000010";
signal state : std_logic_vector (6 downto 0) := "1111001";
signal Metastable : std_logic;
signal stablee : std_logic;
begin
fsm : process(clk,reset)
begin
if reset = '1' then
--Metastable <= '0';
--stablee <= '0';
--state <= s_one;
seven_seg <= s_one;
else
if rising_edge(clk) then
Metastable <= key_in;
stablee <= Metastable;
case state is
when s_one =>
seven_seg <= s_one; -- writing my OFL (output function logic) what to do inside the state!
if (stablee = '0') then
state <= s_two; -- define my NSL (nest state logic) what conditons there is to change state!
else
state <= s_one;
end if; -- ofl
when s_two =>
seven_seg <= s_two;
if (stablee = '0') then
state <= s_three;
else
state <= s_two;
end if;
when s_three =>
seven_seg <= s_three;
if (stablee = '0') then
state <= s_four;
else
state <= s_three;
end if;
when s_four =>
seven_seg <= s_four;
if (stablee = '0') then
state <= s_five;
else
state <= s_four;
end if;
when s_five =>
seven_seg <= s_five;
if (stablee = '0') then
state <= s_six;
else
state <= s_five;
end if;
when s_six =>
seven_seg <= s_six;
if (stablee = '0') then
state <= s_one;
else
state <= s_six;
end if;
when others =>
state <= s_one;
seven_seg <= s_one;
end case;
end if;
end if;
end process fsm;
end rulling;
for metastability I'm implementing this enter image description here
My question is when i press the debounced button witch is low active for the key_in nothing happens! but when I press the reset button and press key_in its move throw the states. Im really new to VHDL so any help appreciated.

Modelsim Altera VHDL MEMORY ROM

I am confused on to why my VHDL design is not working. I am to create a top.vhd file that will program an FPGA board to display addresses 0 through 15 and the corresponding values to each address. When I simulate my design, all the clocks and resets work. The problem I am having is my FSM processes and Address process. I know there is a lot going on here, so if you need clarification I can answer your questions.
library IEEE;
use IEEE.std_logic_1164.ALL;
use IEEE.numeric_std.all;
entity top is
port(Clock : in std_logic;
Reset : in std_logic;
SW : in std_logic_vector (1 downto 0);
HEX2, HEX4: out std_logic_vector ( 6 downto 0);
KEY0: in std_logic);
end entity;
architecture top_arch of top is
component char_decoder is
port(BIN_IN : in std_logic_vector (3 downto 0);
HEX_OUT : out std_logic_vector (6 downto 0));
end component;
component rom_16x4_sync is
port (clock: in std_logic;
address: in std_logic_vector (3 downto 0);
rom_en: in std_logic;
data_out: out std_logic_vector(3 downto 0));
end component;
type state_type is (start, read_rom, clear_addr, done);
signal current_state, next_state : state_type;
signal Rom_en, addr_count_clr, addr_count_en : std_logic;
signal address_counter : integer range 0 to 15;
signal address_uns : unsigned (3 downto 0);
signal clock_slow : std_logic;
signal rom_out : std_logic_vector (3 downto 0);
begin
char : char_decoder port map (BIN_IN => rom_out, HEX_OUT => HEX2);
char1 : char_decoder port map (BIN_IN => std_logic_vector(address_uns), HEX_OUT => HEX4);
clock_slow <= Clock;
rom : rom_16x4_sync port map (clock => clock_slow, address => std_logic_vector(address_uns), rom_en => Rom_en, data_out => rom_out);
State_Memory : process (clock_slow, Reset)
begin
if (Reset = '0') then
current_state <= start;
elsif (clock_slow'event and clock_slow = '1') then
current_state <= next_state;
end if;
end process;
NEXT_STATE_LOGIC : process (current_state)
begin
case (current_state) is
when start => if (KEY0 = '0') then
next_state <= read_rom;
else next_state <= start;
end if;
when read_rom => if (address_counter = 15) then
next_state <= clear_addr;
else
address_counter <= address_counter + 1;
end if;
when clear_addr => next_state <= done;
address_counter <= 0;
when done => next_state <= done;
end case;
end process;
OUTPUT_LOGIC : process (current_state)
begin
case (current_state) is
when start => Rom_en <= '0';
addr_count_en <= '0';
addr_count_clr <= '0';
when read_rom => Rom_en <= '1';
addr_count_en <= '1';
addr_count_clr <= '0';
when clear_addr => Rom_en <= '0';
addr_count_en <= '1';
addr_count_clr <= '1';
when done => Rom_en <= '0';
addr_count_en <= '0';
addr_count_clr <= '0';
end case;
end process;
Address_Count : process (addr_count_en, addr_count_clr, clock_slow)
begin
if (clock_slow'event and clock_slow = '1') then
if (addr_count_en = '1') then
if (addr_count_clr = '1') then
address_uns <= "0000";
else
address_uns <= address_uns + 1;
end if;
end if;
end if;
end process;
address_uns <= to_unsigned(address_counter,4);
end architecture;
I commented on what I could see wrong with your code:
address_counter isn't clocked and is redundant. Remove the assignments and change the comparison to address_uns (which should also go into the sensitivity list) in process NEXT_STATE_LOGIC. Remove the concurrent signal assignment to address_uns following process Address_Counter. If processes Address_Count and OUTPUT_LOGIC are correct as well as rom_16x4_sync you should have something that works.
Well I had most the bits and pieces sitting around from other questions to gen a complete MCVE together with little effort mostly by copying and pasting and that gave:
As you can see that didn't work, and the reason why is that address_uns needs to be reset (it's default value is all 'U's).
Adding a reset gives:
So the gist of this is that your state machine was almost correct, it was missing the address counter in it's sensitivity list and had two address counters. Limiting that to one and resetting it so you weren't adding 1 to all 'U's shows your state machine is working.
And the code with all the fixes:
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity char_decoder is
port (
bin_in: in std_logic_vector (3 downto 0);
hex_out: out std_logic_vector (6 downto 0)
);
end entity;
architecture dummy of char_decoder is
-- seven segment display
--
-- a
-- f b
-- g
-- e c
-- d
--
-- SEGMENT is defined (g downto a)
--
type segment7 is array (integer range 0 to 15) of
std_logic_vector (6 downto 0);
constant hex_to_segment: segment7 := (
"1000000", -- 0
"1111001", -- 1
"0100100", -- 2
"0110000", -- 3
"0011001", -- 4
"0010010", -- 5
"0000010", -- 6
"1111000", -- 7
"0000000", -- 8
"0011000", -- 9
"0001000", -- A
"0000011", -- b
"0111001", -- C
"0100001", -- d
"0000110", -- E
"0001110" -- F
);
begin
process (bin_in)
variable seg7_val: integer range 0 to 15;
begin
seg7_val := to_integer(unsigned(bin_in));
hex_out <= hex_to_segment(seg7_val);
end process;
end architecture;
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity rom_16x4_sync is
port (
clock: in std_logic;
address: in std_logic_vector (3 downto 0);
rom_en: in std_logic;
data_out: out std_logic_vector(3 downto 0)
);
end entity;
architecture dummy of rom_16x4_sync is
type rom_array is array (0 to 15) of std_logic_vector(3 downto 0);
function fill_rom return rom_array is
variable ret_val: rom_array;
begin
for i in rom_array'reverse_range loop -- backward to i
ret_val(i) := std_logic_vector(to_unsigned(i,4));
end loop;
return ret_val;
end function;
constant rom: rom_array := fill_rom;
begin
process (clock)
begin
if rising_edge(clock) and rom_en = '1' then -- NO RESET
data_out <= rom(to_integer(unsigned(address)));
end if;
end process;
end architecture;
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity top is
port (
clock: in std_logic;
reset: in std_logic;
sw: in std_logic_vector (1 downto 0); -- not used?
hex2, hex4: out std_logic_vector ( 6 downto 0);
key0: in std_logic
);
end entity;
architecture top_arch of top is
component char_decoder is
port (
bin_in: in std_logic_vector (3 downto 0);
hex_out: out std_logic_vector (6 downto 0)
);
end component;
component rom_16x4_sync is
port (
clock: in std_logic;
address: in std_logic_vector (3 downto 0);
rom_en: in std_logic;
data_out: out std_logic_vector(3 downto 0)
);
end component;
type state_type is (start, read_rom, clear_addr, done);
signal current_state,
next_state: state_type;
signal rom_en,
addr_count_clr,
addr_count_en: std_logic;
-- signal address_counter: integer range 0 to 15;
signal address_uns: unsigned (3 downto 0);
signal clock_slow: std_logic;
signal rom_out: std_logic_vector (3 downto 0);
begin
char:
char_decoder
port map (
bin_in => rom_out,
hex_out => hex2
);
char1:
char_decoder
port map (
bin_in => std_logic_vector(address_uns),
hex_out => hex4
);
clock_slow <= clock;
rom:
rom_16x4_sync
port map (
clock => clock_slow,
address => std_logic_vector(address_uns),
rom_en => rom_en, data_out => rom_out
);
state_memory:
process (clock_slow, reset)
begin
if reset = '0' then
current_state <= start;
elsif clock_slow'event and clock_slow = '1' then
current_state <= next_state;
end if;
end process;
next_state_logic:
-- process (current_state)
process (current_state, address_uns)
begin
case (current_state) is
when start =>
if key0 = '0' then
next_state <= read_rom;
else
next_state <= start;
end if;
when read_rom =>
if address_uns = 15 then
next_state <= clear_addr;
-- else
-- address_counter <= address_counter + 1;
end if;
when clear_addr => -- not a defined sequential logic inference
next_state <= done;
-- address_counter <= 0;
when done =>
next_state <= done;
end case;
end process;
output_logic:
process (current_state)
begin
case (current_state) is
when start =>
rom_en <= '0';
addr_count_en <= '0';
addr_count_clr <= '0';
when read_rom =>
rom_en <= '1';
addr_count_en <= '1';
addr_count_clr <= '0';
when clear_addr =>
rom_en <= '0';
addr_count_en <= '1';
addr_count_clr <= '1';
when done =>
rom_en <= '0';
addr_count_en <= '0';
addr_count_clr <= '0';
end case;
end process;
address_count:
process (addr_count_en, addr_count_clr, clock_slow)
begin
if reset = '0' then -- added reset
address_uns <= (others =>'0');
elsif clock_slow'event and clock_slow = '1' then
if addr_count_en = '1' then
if addr_count_clr = '1' then
address_uns <= "0000";
else
address_uns <= address_uns + 1;
end if;
end if;
end if;
end process;
-- address_uns <= to_unsigned(address_counter, 4);
end architecture;
library ieee;
use ieee.std_logic_1164.all;
entity top_tb is
end entity;
architecture foo of top_tb is
signal clock: std_logic := '0';
signal reset: std_logic := '1';
signal sw: std_logic_vector (1 downto 0) := "00";
signal hex2, hex4: std_logic_vector ( 6 downto 0);
signal key0: std_logic := '0';
begin
DUT:
entity work.top
port map (
clock => clock,
reset => reset,
sw => sw,
hex2 => hex2,
hex4 => hex4,
key0 => key0
);
CLK:
process
begin
wait for 5 ns;
clock <= not clock;
if now > 200 ns then
wait;
end if;
end process;
STIMULIS:
process
begin
wait for 1 ns;
reset <= '0';
wait for 10 ns;
reset <= '1';
wait for 10 ns;
wait;
end process;
end architecture;
The char_decoder I used should be fully functional. The ROM contents are simply dummied up.

Resources