Best practices for Spring Transactions and generic DAOs & Services - spring

I work on a Java EE application with Spring and JPA (EclispeLink). We developed a user-friendly interface for administrating the database tables. As I know more about Spring and Transactions now, I decided to refactor my code to add better transaction management. The question is how to best deal with generic DAOs, generic services and Spring transactions?
Our current solution was:
A generic BasicDAO which deals with all common database actions (find, create, update, delete...)
A DaoFactory which contains a map of implementations of BasicDao for all entity types (which only need basic database actions) and which gets the entitymanager injected by spring to pass it to the daos
A generic BasicService which offers the common services (actually directly linked to the dao methods)
A ServiceFactory which contains a map of implementations of BasicService for all entity types, which gets the daoFactory injected and passes it to the services. It has a method "getService(Class T)" to provide the right service to the controllers.
Controllers corresponding to the right entity types which delegate their requests to a generic controller which handles the request parameters using reflection and retrieves the right service from the service factory's map to call the update/create/remove method.
Problem is that, when I add the #Transactionnal annotations on the generic Service and my serviceFactory creates the typed services in its map, these services don't seem to have active transactions running.
1) Is it normal, due to the genericity and the fact that only spring-managed services can have transactions?
2) What is the best solution to solve my problem:
Create managed typed services only implementing the generic service and inject them directly in my serviceFactory?
Remove the service layer for these basic services? (but maybe I'll get the same problem with transactions on my dao generic layer...)
Other suggestions?
I read some questions related to these points on the web but couldn't find examples which went as far into genericity as here, so I hope somebody can advise me... Thanks in advance!

For basic gets you don't need a service layer.
A service layer is for dealing with multiple aggregate roots - ie complex logic invloving multiple different entities.
My implementation of a generic repository looks like this :
public class DomainRepository<T> {
#Resource(name = "sessionFactory")
protected SessionFactory sessionFactory;
public DomainRepository(Class genericType) {
this.genericType = genericType;
}
#Transactional(readOnly = true)
public T get(final long id) {
return (T) sessionFactory.getCurrentSession().get(genericType, id);
}
#Transactional(readOnly = true)
public <T> List<T> getFieldEquals(String fieldName, Object value) {
final Session session = sessionFactory.getCurrentSession();
final Criteria crit = session.createCriteria(genericType).
add(Restrictions.eq(fieldName, value));
return crit.list();
}
//and so on ..
with different types instantiated by spring :
<bean id="tagRepository" class="com.yourcompnay.data.DomainRepository">
<constructor-arg value="com.yourcompnay.domain.Tag"/>
</bean>
and can be referenced like so :
#Resource(name = "tagRepository")
private DomainRepository<Tag> tagRepository;
And can also be extended manually for complex entities.

Related

Factory design pattern and Spring

I am wondering what is the current best practice as to the use of factory pattern within the context of Spring framework in using dependency injection. My wonder arises about whether the factory pattern is still relevant nowadays in light of the use of Spring dependency injection. I did some searching and see some past discussion (Dependency Injection vs Factory Pattern) but seem there is different view.
I see in some real life project in using a Map to hold all the beans and rely on autowiring to create those beans. When the bean is needed, it get it via the map using the key.
public abstract class Service {
//some methods
}
#Component
public class serviceA extends Service {
//implementation
}
#Component
public class serviceB extends Service {
//implementation
}
Map<String, Service> services;
But I see there is some difference among the two approaches.
Using the above method, all beans are created on application start up and the creation of object is handled by the framework. It also implies there is only one bean for each type.
While for factory pattern, the factory class creates the object on request. And it can create a new object for each request.
I think a deeper question may be, when Spring framework is used in a project, should it be strived to not create any object inside a class, which means the factory pattern ( or any creational design patterns?) should not be used, as Spring is supposed to be the central handler of the objects dependency ?
The answer to this question can be really deep and broad, I'll try to provide some points that hopefully will help.
First off, spring stores its beans (singletons) in the ApplicationContext. Essentially this is the map you're talking about. In a nutshell, it allows getting the bean by name, type, etc.
ApplicationContext, while being a really important concept, is not the whole Spring, in fact Spring framework allows much more flexibility:
You say, using a map implies that all the beans will be created at the beginning of the application and there is one instance of the bean.
Spring has a concept of Lazy beans, basically supporting a concept of beans being actually created only when they're required for the first time, so Spring supports the "delayed" beans initialization
Spring also allows more than one instance of a bean per type. So this map is more "advanced". For example you can create more than one implementation of the interface and use declare both as beans. As long as you provide enough information about what bean should be injected to the class that might use them (for example with a help of qualifiers suppored in spring), you're good to go. In addition, there are features in spring IoC container that allow injecting all registered implementations of an interface into a list:
interface Foo {}
#Component
class FooImpl1 implements Foo {}
#Component
class FooImpl2 implements Foo {}
class Client {
#Autowired
List<Foo> allFoos;
}
Now you say:
While for factory pattern, the factory class creates the object on request. And it can create a new object for each request.
Actually Spring can create objects per request. Not all beans have to be singletons, in general spring has a concept of scopes for this purposes.
For example, scope prototype means that Spring will create a bean upon each usage. In particular one interesting usage that spring supports in variety of ways is Injecting prototype bean into singleton. Some solutions use exactly like a factory (read about annotation #Lookup others rely on auto-generated proxy in runtime (like javax.inject.Provider). Prototype scope beans are not held in the application context, so here again spring goes beyond a simple map abstraction.
Last feature that you haven't mentioned is that sometimes even for singletons the initialization can be a little bit more complicated then calling a constructor with Parameters. Spring can address that by using Java Configurations:
#Configuration
public class MyConfig {
public SomeComplicatedObject foo(#Value("...") config, Bar bar) {
SomeComplicatedObject obj = new SomeComplicatedObject() // lets pretend this object is from some thirdparty, it only has no-op constructor, and you can't place spring annotations on it (basically you can't change it):
obj.setConfig(config);
obj.setBar(bar);
return obj;
}
}
The method foo here initializes the object SomeComplicatedObject and returns it. This can be used instead of factories to integrate "legacy" code (well, java configurations go way beyond this, but its out of scope for this question).
So bottom line, you Spring as an IoC container can provide many different ways to deal with object creation, in particular it can do everything that factory design pattern offers.
Now, I would like to also refer to your last sentense:
I think a deeper question may be, when Spring framework is used in a project, should it be strived to not create any object inside a class, which means the factory pattern ( or any creational design patterns?) should not be used, as Spring is supposed to be the central handler of the objects dependency ?
Indeed you don't have to use Factory Pattern when using Spring, since (as I hopefully have convinced you) provides everything that factory can do and more.
Also I agree that spring is supposed to be the central handler of the objects dependency (unless there are also parts of the application which are written in a different manner so you have to support both :) )
I don't think we should avoid using "new" altogether, not everything should/can be a bean, but I do see (from my subjective experience, so this is arguable) that you use it much less leaving the creation of most of the objects to Spring.
Should we avoid a usage of any creation design pattern? I don't think so, sometimes you can opt for implementing "builder" design pattern for example, its also a creational pattern but spring doesn't provide a similar abstraction.
I think if your project uses Spring framework you should use it. Although it depends on your project design e.g. You may use creational patterns along side with Spring IoC. e.g when you have abstraction layers not framework dependant (agnostic code)
interface ServiceFactory {
Service create(String type);
}
#Component
class SpringServiceFactory implements ServiceFactory {
#Autowired private ApplicationContext context;
Service create(String type) {
return context.getBean(type)
}
}
I use Factory pattern as well when I refactor legacy not unit testable code which also uses Spring Framework in order to implement unit tests.
// legacy service impossible to mock
class LegacyApiClient implements Closeable {...}
#Component
class LegacyApiClientFactory {
LegacyApiClient create(String endpoint) {
return new LegacyApiClient(endpoint);
}
}
#Component
class OtherService {
private final String endpoint
private final LegacyApiClientFactory factory;
OtherService(#Value("${post.endpoint}") String endpoint,
LegacyApiClientFactory factory) {...}
void doCall {
try (LegacyApiClient client = factory.create(endpoint)) {
client.postSomething();
}
}
}
....
// a random unit test
LegacyApiClient client = mock(LegacyApiClient.class)
LegacyApiClientFactory factory = mock(LegacyApiClientFactory.class)
OtherService service = new OtherService("http://scxsc", factory);
when(factory.create(any())).thenReturn(client)
service.doCall()
....

Identifying Spring MVC architecture pattern

I'm working through a spring mvc video series and loving it!
https://www.youtube.com/channel/UCcawgWKCyddtpu9PP_Fz-tA/videos
I'd like to learn more about the specifics of the exact architecture being used and am having trouble identifying the proper name - so that I can read further.
For example, I understand that the presentation layer is MVC, but not really sure how you would more specifically describe the pattern to account for the use of service and resource objects - as opposed to choosing to use service, DAO and Domain objects.
Any clues to help me better focus my search on understanding the layout below?
application
core
models/entities
services
rest
controllers
resources
resource_assemblers
Edit:
Nathan Hughes comment clarified my confusion with the nomenclature and SirKometa connected the architectural dots that I was not grasping. Thanks guys.
As far as I can tell the layout you have mentioned represents the application which communicates with the world through REST services.
core package represents all the classes (domain, services, repositories) which are not related to view.
model package - Assuming you are aiming for the typical application you do have a model/domain/entity package which represents your data For example: https://github.com/chrishenkel/spring-angularjs-tutorial-10/blob/master/src/main/java/tutorial/core/models/entities/Account.java.
repository package - Since you are using Spring you will most likely use also since spring-data or even spring-data-jpa with Hibernate as your ORM Library. It will most likely lead you to use Repository interfaces (author of videos you watch for some reason decided not to use it though). Anyway it will be your layer to access database, for example: https://github.com/chrishenkel/spring-angularjs-tutorial-10/blob/master/src/main/java/tutorial/core/repositories/jpa/JpaAccountRepo.java
service package will be your package to manipulate data. It's not the best example but this layer doesn't access your database directly, it will use Repositories to do it, but it might also do other things - it will be your API to manipulate data in you application. Let's say you want to have a fancy calculation on your wallet before you save it to DB, or like here https://github.com/chrishenkel/spring-angularjs-tutorial-10/blob/master/src/main/java/tutorial/core/services/impl/AccountServiceImpl.java you want to make sure that the Blog you try to create doesn't exist yet.
controllers package contain all classes which will be used by DispacherServlet to take care of the requests. You will read "input" from the request, process it (use your Services here) and send your responses.
resource_assemblers package in this case is framework specific (Hateoas). As far as I can tell it's just a DTO for your json responses (for example you might want to store password in your Account but exposing it through json won't be a good idea, and it would happen if you didn't use DTO).
Please let me know if that is the answer you were looking for.
This question may be of interest to you as well as this explanation.
You are mostly talking about the same things in each case, Spring just uses annotations so that when it scans them it knows what type of object you are creating or instantiating.
Basically everything request flows through the controller annotated with #Controller. Each method process the request and (if needed) calls a specific service class to process the business logic. These classes are annotated with #Service. The controller can instantiate these classes by autowiring them in #Autowire or resourcing them #Resource.
#Controller
#RequestMapping("/")
public class MyController {
#Resource private MyServiceLayer myServiceLayer;
#RequestMapping("/retrieveMain")
public String retrieveMain() {
String listOfSomething = myServiceLayer.getListOfSomethings();
return listOfSomething;
}
}
The service classes then perform their business logic and if needed, retrieve data from a repository class annotated with #Repository. The service layer instantiate these classes the same way, either by autowiring them in #Autowire or resourcing them #Resource.
#Service
public class MyServiceLayer implements MyServiceLayerService {
#Resource private MyDaoLayer myDaoLayer;
public String getListOfSomethings() {
List<String> listOfSomething = myDaoLayer.getListOfSomethings();
// Business Logic
return listOfSomething;
}
}
The repository classes make up the DAO, Spring uses the #Repository annotation on them. The entities are the individual class objects that are received by the #Repository layer.
#Repository
public class MyDaoLayer implements MyDaoLayerInterface {
#Resource private JdbcTemplate jdbcTemplate;
public List<String> getListOfSomethings() {
// retrieve list from database, process with row mapper, object mapper, etc.
return listOfSomething;
}
}
#Repository, #Service, and #Controller are specific instances of #Component. All of these layers could be annotated with #Component, it's just better to call it what it actually is.
So to answer your question, they mean the same thing, they are just annotated to let Spring know what type of object it is instantiating and/or how to include another class.
I guess the architectural pattern you are looking for is Representational State Transfer (REST). You can read up on it here:
http://en.wikipedia.org/wiki/Representational_state_transfer
Within REST the data passed around is referred to as resources:
Identification of resources:
Individual resources are identified in requests, for example using URIs in web-based REST systems. The resources themselves are conceptually separate from the representations that are returned to the client. For example, the server may send data from its database as HTML, XML or JSON, none of which are the server's internal representation, and it is the same one resource regardless.

Spring DTO validation in Service or Controller?

I'm building a straight forward AJAX / JSON web service with Spring. The common data flow is:
some DTO from browser
v
Spring #Controller method
v
Spring #Service method
I'm looking for the most easy way to handle data validation.
I know the #Valid annotation which works pretty well inside #Controller methods.
Why does #Valid not work within #Service methods?
I mean: A service method can be used by any other service and controller. So wouldn't it make much more sense to validate at #Service level?
Let's take this simple example:
MyDTO.java:
public class MyDTO {
#NotNull
public String required
#Min(18)
public int age;
}
MyServiceImpl.java:
public MyDomainObject foo(MyDTO myDTO) {
// persist myDTO
// and return created domain object
}
MyController.java:
#Autowired
MyService myService;
#Autowired // some simple bean mapper like Dozer or Orika
Mapper mapper; // for converting domain objects to DTO
#RequestMapping(...)
public MyDomainObjectDTO doSomething(#RequestBody MyDTO myDTO) {
mapper.map(myService.foo(myDTO), MyDomainObjectDTO.class);
}
Is it common practice that the service method receives the DTO?
If yes: What's the best practice to validate that DTO inside the service method?
If no: Should maybe the controller manipulate the Domain object and just let the service save that object? (this seems pretty useless to me)
In my opinion the service should be responsible for only data consistency.
How do you solve this?
My answer? Both.
The service must check its own contract for validity.
The controller is part of the UI. It should validate and bind for a better user experience, but the service should not rely on it.
The service cannot know how it's being called. What if you wrap it as a REST service?
The service also knows about business logic violations in a way that no UI can. It needs to validate to make sure that the use case is fulfilled appropriately.
Double bag it; do both.
See my other answer: Check preconditions in Controller or Service layer
If you really want to do validation like error handling in your Service layer similar to Spring MVC you can use javax.validation and AspectJ (to advice the methods to validate) which is what I do because I like making reflection do the work and declarative programming (annotations).
Spring MVC doesn't need to do AspectJ/AOP to do the error handling because the methods are being called through reflection (url routing/dispatching).
Finally for you MVC code you should know that #Valid is sort of unofficially deprecated. Instead consider #Validated which will leverage more of the javax.validation features.

How to manage transactions with JAX-RS, Spring and JPA

I'm using JAX-RS to provide an HTTP-based interface to manage a data model. The data model is stored in a database and interacted with via JPA.
This allows me to modify the interface to the data model to suit REST clients and mostly seems to work quite well. However, I'm not sure how to handle the scenario where a method provided by a JAX-RS resource requires a transaction, which affects the JPA get, update, commit-on-tx-end pattern, because there is only a transaction wrapping the get operation, so the update is never committed. I can see the same problem occurring if a single REST operation requires multiple JPA operations.
As I'm using Spring's transaction support, the obvious thing to do is to apply #Transactional to these methods in the JAX-RS resources. However, in order for this to work, Spring needs to manage the lifecycle of the JAX-RS resources, and the useage examples I'm aware of have resources being created via `new' when needed, which makes me a little nervous anyway.
I can think of the following solutions:
update my JPA methods to provide a transaction-managed version of everything I want to do from my REST interface atomically. Should work, keeps transactions out of the JAX-RS layer, but prevents the get, update, commit-on-tx-end pattern and means I need to create a very granular JPA interface.
Inject Resource objects; but they are typically stateful holding at least the ID of the object being interacted with
Ditch the hierarchy of resources and inject big, stateless super resources at the root that manage the entire hierarchy from that root; not cohesive, big services
Have a hierarchy of injected, stateless, transaction-supporting helper objects that 'shadow' the actual resources; the resources are instantiated and hold ths state but delegate method invocations to the helper objects
Anyone got any suggestions? It's quite possible I've missed some key point somewhere.
Update - to work around the lack of a transaction around the get, update, commit-on-tx-close flow, I can expose the EntityManager merge(object) method and call it manually. Not neat and doesn't solve the larger problem though.
Update 2 #skaffman
Code example:
In JPA service layer, injected, annotations work
public class MyEntityJPAService {
...
#Transactional(readOnly=true) // do in transaction
public MyEntity getMyEntity(final String id) {
return em.find(MyEntity.class, id);
}
In JAX-RS resource, created by new, no transactions
public class MyEntityResource {
...
private MyEntityJPAService jpa;
...
#Transactional // not injected so not effective
public void updateMyEntity(final String id, final MyEntityRepresentation rep) {
MyEntity entity = jpa.getMyEntity(id);
MyEntity.setSomeField(rep.getSomeField());
// no transaction commit, change not saved...
}
I have a few suggestions
Introduce a layer between your JPA and JAX-RS layers. This layer would consist of Spring-managed #Transactional beans, and would compose the various business-level operations from their component JPA calls. This is somewhat similar to your (1), but keeps the JPA layer simple.
Replace JAX-RS with Spring-MVC, which provides the same (or similar) functionality, including #PathVariable, #ResponseBody, etc.
Programmatically wrap your JAX-RS objects in transactional proxies using TransactionProxyFactorybean. This would detct your #Transactional annotations and generate a proxy that honours them.
Use #Configurable and AspectJ LTW to allow Spring to honour #Transactional even if you create the object using `new. See 8.8.1 Using AspectJ to dependency inject domain objects with Spring

good practice mvc with spring

with spring, when we have a service layer, dao layer and controller to manage a form data (list, selected list value, data found by the bd)
is it a good practice to put all this data in a object?
is a good practice to create a method in the service layer who will call many dao method to feed listbox... and feed a ford object or it's better
to call different method in the service layer from the controller ?
public class UserForm {
private SearchCritera searchCritera;
private List<String> city;
private List<String> country;
...
}
public class SearchCritera {
private List<String> selectedCity;
private List<String> selectedCountry;
...
}
maybe there are a better way that the two idea I proposed?
To me, it makes more sense to have what you suggested:
a DAO layer where you access the database with single operations
a service layer where you aggregate calls to the DAO layer and do some business logic
a web / controller layer where you make calls to the service layer and do what is necessary for the view to be rendered.
Keep in mind that either way you're designing your application, you have to configure it so that the transactions are dealt with properly. If your service layer is transactionnal and there are multiple calls from the web layer within the same method to the service layer, then if something goes wrong, likely the database might not end up in a clean state.
What you want to avoid too is to have business logic in your controller layer.

Resources