I need some clarification from wikipedia: Knapsack, on the part
This solution will therefore run in O(nW) time and O(nW) space. Additionally, if
we use only a 1-dimensional array m[W] to store the current optimal values
and pass over this array i+1 times, rewriting from m[W] to m[1] every time, we
get the same result for only O(W) space.
I am having trouble understanding how to turn a 2D matrix into a 1D matrix to save space. In addition, to what does rewriting from m[W] to m[1] every time mean (or how does it work).
Please provide some example. Say if I have the set {V,W} --> {(5,4),(6,5),(3,2)} with K = 9.
How would the 1D array look like?
I know this is an old question. But I had to spend some time searching for this and I'm just documenting the approaches here for anyone's future reference.
Method 1
The straightforward 2D method that uses N rows is:
int dp[MAXN][MAXW];
int solve()
{
memset(dp[0], 0, sizeof(dp[0]));
for(int i = 1; i <= N; i++) {
for(int j = 0; j <= W; j++) {
dp[i][j] = (w[i] > j) ? dp[i-1][j] : max(dp[i-1][j], dp[i-1][j-w[i]] + v[i]);
}
}
return dp[N][W];
}
This uses O(NW) space.
Method 2
You may notice that while calculating the entries of the matrix for a particular row, we're only looking at the previous row and not the rows before that. This can be exploited to maintain only 2 rows and keep swapping their roles as current & previous row.
int dp[2][MAXW];
int solve()
{
memset(dp[0], 0, sizeof(dp[0]));
for(int i = 1; i <= N; i++) {
int *cur = dp[i&1], *prev = dp[!(i&1)];
for(int j = 0; j <= W; j++) {
cur[j] = (w[i] > j) ? prev[j] : max(prev[j], prev[j-w[i]] + v[i]);
}
}
return dp[N&1][W];
}
This takes O(2W) = O(W) space. cur is the i-th row and prev is the (i-1)-th row.
Method 3
If you look again, you can see that while we're writing an entry in a row, we're only looking at the items to the left of that in the previous row. We could use this to use a single row and process it right to left so that while we're computing new value for an entry, entries to its left have their old value. This is the 1D table method.
int dp[MAXW];
int solve()
{
memset(dp, 0, sizeof(dp));
for(int i =1; i <= N; i++) {
for(int j = W; j >= 0; j--) {
dp[j] = (w[i] > j) ? dp[j]: max(dp[j], dp[j-w[i]] + v[i]);
}
}
return dp[W];
}
This also uses O(W) space but just uses a single row. The main reason the inner loop has to be reversed is because when we use dp[j-w[i]], we need the value from the previous iteration of outer loop. For this the j values have to be processed in a large to small fashion.
Test case (from http://www.spoj.com/problems/PARTY/)
N = 10, W = 50
w[] = {0, 12, 15, 16, 16, 10, 21, 18, 12, 17, 18} // 1 based indexing
v[] = {0, 3, 8, 9, 6, 2, 9, 4, 4, 8, 9}
answer = 26
In many dynamic programming problems, you will build up a 2D table row by row where each row only depends on the row that immediately precedes it. In the case of the 0/1 knapsack problem, the recurrence (from Wikipedia) is the following:
m[i, w] = m[i - 1, w] if wi > w
m[i, w] = max(m[i - 1, w], m[i - 1, w - wi] + vi) otherwise
Notice that all reads from the table when filling row i only come from row i - 1; the earlier rows in the table aren't actually used. Consequently, you could save space in the 2D table by only storing two rows - the immediately previous row and the row you're filling in. You can further optimize this down to just one row by being a bit more clever about how you fill in the table entries. This reduces the space usage from O(nW) (O(n) rows and O(W) columns) to O(W) (one or two rows and O(W) columns).
This comes at a cost, though. Many DP algorithms don't explicitly compute solutions as they go, but instead fill in the table, then do a second pass over the table at the end to recover the optimal answer. If you only store one row, then you will get the value of the optimal answer, but you might not know what that optimal answer happens to be. In this case, you could read off the maximum value that you can fit into the knapsack, but you won't necessarily be able to recover what you're supposed to do in order to achieve that value.
Hope this helps!
To answer your question: Here if we use 0-based indexing for the array then the correct way to write the recurrence relation would be:
dp[i][j] = (w[i-1] > j) ? dp[i-1][j] : max(dp[i-1][j], dp[i-1][j-w[i-1]] + v[i-1]);
Since i denotes the 1st i items, so for example if i is 5,
then the 5th item would be located in the 4th position in the weights and values array, respectively, hence wt[i-1] and v[i-1].
Related
I'm stuck on this problem.
Given an array of numbers. At each step we can pick a number like N in this array and sum N with another number that exist in this array. We continue this process until all numbers in this array equals to zero. What is the minimum number of steps required? (We can guarantee initially the sum of numbers in this array is zero).
Example: -20,-15,1,3,7,9,15
Step 1: pick -15 and sum with 15 -> -20,0,1,3,7,9,0
Step 2: pick 9 and sum with -20 -> -11,0,1,3,7,0,0
Step 3: pick 7 and sum with -11 -> -4,0,1,3,0,0,0
Step 4: pick 3 and sum with -4 -> -1,0,1,0,0,0,0
Step 5: pick 1 and sum with -1 -> 0,0,0,0,0,0,0
So the answer of this example is 5.
I've tried using greedy algorithm. It works like this:
At each step we pick maximum and minimum number that already available in this array and sum these two numbers until all numbers in this array equals to zero.
but it doesn't work and get me wrong answer. Can anyone help me to solve this problem?
#include <bits/stdc++.h>
using namespace std;
int a[] = {-20,-15,1,3,7,9,15};
int bruteforce(){
bool isEqualToZero = 1;
for (int i=0;i<(sizeof(a)/sizeof(int));i++)
if (a[i] != 0){
isEqualToZero = 0;
break;
}
if (isEqualToZero)
return 0;
int tmp=0,m=1e9;
for (int i=0;i<(sizeof(a)/sizeof(int));i++){
for (int j=i+1;j<(sizeof(a)/sizeof(int));j++){
if (a[i]*a[j] >= 0) continue;
tmp = a[j];
a[i] += a[j];
a[j] = 0;
m = min(m,bruteforce());
a[j] = tmp;
a[i] -= tmp;
}
}
return m+1;
}
int main()
{
cout << bruteforce();
}
This is the brute force approach that I've written for this problem. Is there any algorithm to solve this problem faster?
This has an np-complete feel, but the following search does an A* search through all possible normalized partial sums on the way to a single non-zero term. Which solves your problem, and means that you don't get into an infinite loop if the sum is not zero.
If greedy works, this will explore the greedy path first, verify that you can't do better, and return fairly quickly. If greedy doesn't work, this may...take a lot longer.
Implementation in Python because that is easy for me. Translation into another language is an exercise for the reader.
import heapq
def find_minimal_steps (numbers):
normalized = tuple(sorted(numbers))
seen = set([normalized])
todo = [(min_steps_remaining(normalized), 0, normalized, None)]
while todo[0][0] < 7:
step_limit, steps_taken, prev, path = heapq.heappop(todo)
steps_taken = -1 * steps_taken # We store negative for sort order
if min_steps_remaining(prev) == 0:
decoded_path = []
while path is not None:
decoded_path.append((path[0], path[1]))
path = path[2]
return steps_taken, list(reversed(decoded_path))
prev_numbers = list(prev)
for i in range(len(prev_numbers)):
for j in range(len(prev_numbers)):
if i != j:
# Track what they were
num_i = prev_numbers[i]
num_j = prev_numbers[j]
# Sum them
prev_numbers[i] += num_j
prev_numbers[j] = 0
normalized = tuple(sorted(prev_numbers))
if (normalized not in seen):
seen.add(normalized)
heapq.heappush(todo, (
min_steps_remaining(normalized) + steps_taken + 1,
-steps_taken - 1, # More steps is smaller is looked at first
normalized,
(num_i, num_j, path)))
# set them back.
prev_numbers[i] = num_i
prev_numbers[j] = num_j
print(find_minimal_steps([-20,-15,1,3,7,9,15]))
For fun I also added a linked list implementation that doesn't just tell you how many minimal steps, but which ones it found. In this case its steps were (-15, 15), (7, 9), (3, 16), (1, 19), (-20, 20) meaning add 15 to -15, 9 to 7, 16 to 3, 19 to 1, and 20 to -20.
Given a 2D array with weights, find the maximum sum of the 2D array with the condition that we can select only one element from a row and the element under the selected element cannot be selected(this condition should hold true for all elements which are selected). Also we can see that sum will contain elements equal to the number of rows.
If arr[i][j] is any selected element then I cannot select arr[i+1][j]. Also from each row only one element can be selected. Example if arr[i][1] is selected arr[i] [2 or 3 or..] cannot be selected
Edit- I tried solving it using DP.
Took a 2D array DP where
DP[i][j]= max(arr[i+1][k] for k=1 to n and k!=j)+ arr[i][j]
Then did this to build the DP matrix and finally looped to calculate the maximum.
But I think complexity is very high when I approach like this. Please help!
Input Matrix-
1 2 3 4
5 6 7 8
9 1 4 2
6 3 5 7
Output-
27
class Solution {
private static int maximumSum(int[][] mat){
int rows = mat.length;
int cols = mat[0].length;
int[] ans = new int[cols];
int[] index = new int[cols];
int max_val = 0;
for(int i=0;i<cols;++i){
ans[i] = mat[0][i];
index[i] = i;
max_val = Math.max(max_val,ans[i]); // needed for 1 row input
}
for(int i=1;i<rows;++i){
int[] temp = new int[cols];
for(int j=0;j<cols;++j){
temp[j] = ans[j];
int max_row_index = -1;
for(int k=0;k<cols;++k){
if(k == index[j]) continue;
if(max_row_index == -1 || mat[i][k] > mat[i][max_row_index]){
max_row_index = k;
}
}
temp[j] += mat[i][max_row_index];
index[j] = max_row_index;
max_val = Math.max(max_val,temp[j]);
}
ans = temp;
}
return max_val;
}
public static void main(String[] args) {
int[][] arr = {
{1,2,3,4},
{5,6,7,8},
{9,1,4,2},
{6,3,5,7}
};
System.out.println(maximumSum(arr));
}
}
Output:
27
Algorithm:
Let's adapt a top-down approach here. We go from start to end rows maintaining the answers in our ans array.
Let's workout through your example.
Case:
{1,2,3,4},
{5,6,7,8},
{9,1,4,2},
{6,3,5,7}
For first row, ans is as is [1,2,3,4].
For second row, we loop through [5,6,7,8] for each 1,2,3,4 skipping underneath columns for each index. For example, for 1, we skip 5 underneath and take max among all columns and add it to 1. Same goes for other elements.
So, now ans array looks like [9, 10, 11, 11].
Now, we workout for [9, 10, 11, 11] with next row [9,1,4,2] and so on. For this, we get [13, 19, 20, 20] and for this with last row [6,3,5,7], we get [20, 26, 27, 26] where 27 is the highest value and the final answer.
Time Complexity: O(n3), Space complexity: O(m) where m is the number of columns.
Update #1:
You can reduce the complexity from O(n3) to O(n2) by maintaining 2 max indexes for each row. This would always work since even if index of 1 max is same as the current index j of temp[j], the other max index would always provide the maximum value. Thanks to #MBo for this suggestion. This I leave as an exercise to the reader.
Update #2:
We also need to maintain the indexes of which element was picked in the last row.
This is necessary to remember since we can judge the path accurately for the current row.
Here 5 different sets are shown. S1 contains 1. Next set S2 is calculated from S1 considering the following logic:
Suppose Sn contains {a1,a2,a3,a4.....,an} and middle element of Sn is b.
Then the set Sn+1 contains elements {b,b+a1,b+a2,......,b+an}. Total (n+1) elements. If a set contains even number of elements then middle element is (n/2 +1) .
Now, if n is given as input then we have to display all the elements of set Sn.
Clearly it is possible to solve the problem in O(n) time.
we can compute all the middle element as (2^(n-1) - middle element of the previous set + 1) where s1 ={1} is base case. In this way O(n) time we will get the all middle elements till (n-1)th set. So, middle element of (n-1)th set is the first element of the nth set set. (middle element of (n-1)th set + middle element of (n-2)th set) is the middle second element of the nth set. In this way we will get all the elements of nth set.
So it needs O(n) time.
Here id the complete java code I have written:
public class SpecialSubset {
private static Scanner inp;
public static void main(String[] args) {
// TODO Auto-generated method stub
int N,fst,mid,con=0;
inp = new Scanner(System.in);
N=inp.nextInt();
int[] setarr=new int[N];
int[] midarr=new int[N];
fst=1;
mid=1;
midarr[0]=1;
for(int i=1;i<N;i++)
{
midarr[i]=(int) (Math.pow(2, i)-midarr[i-1]+1);
}
setarr[0]=midarr[N-2];
System.out.print(setarr[0]);
System.out.print(" ");
for(int i=1,j=N-3;i<N-1;i++,j--)
{
setarr[i]=setarr[i-1]+midarr[j];
System.out.print(setarr[i]);
System.out.print(" ");
}
setarr[N-1]=setarr[N-2]+1;
System.out.print(setarr[N-1]);
}
}
Here is the link of the Question:
https://www.hackerrank.com/contests/projecteuler/challenges/euler103
IS it possible to solve the problem with less than O(n) time?
#Paul Boddington has given an answer that relies on the sequence of first numbers of these sets being the Narayana-Zidek-Capell numbers and has checked it for some small-ish values. However, there was no proof of the conjecture given. This answer is in addition to the above, to make it complete. I'm no HTML/CSS/Markdown guru, so you'll have to excuse the bad positioning of subscripts (If anyone can improve those - be my guest.
Notation:
Let aij be the i-th number in the j-th set.
I'll also define bj as the first number of the j-2-th set. This is the sequence the proof is about. The -2 is to account for the first and second 1 in the Narayana-Zidek-Capell sequence.
Generating rules:
The problem statement didn't clarify what "center number" is for a even-length set (a list really, but whatever), but it seems they meant the "center right" in that case. I'll denote the rules numbers in bold when I use them below.
a11 = 1
a1n = aceil(n+1⁄2)n-1
ain = a1n + ai-1n-1
bn = a1n-2
Proof:
First step is to make a slightly more involved formula for ain by unwinding the recursion a bit more and substituting b:
ain = Σ a1n-j = Σ bn-j+2 for j in [0 ... i-1]
Next, we consider two cases for bn - one where n is odd, one where n is even.
Even case:
b2n+2 = a12n =
2 = aceil(2n+1⁄2)2n-1 = an+12n-1 =
3 = a12n-1 + an2n-2 =
2, 4 = b2n+1 + a12n-1 =
5 = 2 * b2n+1
Odd case:
b2n+1 = a12n-1 =
2 = aceil(2n⁄2)2n-2 = an2n-2 =
3 = a12n-2 + an-12n-3 =
4 = 2 * b2n + (an-12n-3 - a12n-2) =
2 = 2 * b2n + (an-12n-3 - an2n-3) =
5 = 2 * b2n - bn
These rules are the exact sequence definition, and provide a way to generate the nth set in linear time (as opposed to quadratic when generating each set in turn)
The smallest numbers in the sets appear to be the Narayana-Zidek-Capell numbers
1, 1, 2, 3, 6, 11, 22, ...
The other numbers are obtained from the first number by repeatedly adding these numbers in reverse.
For example,
S6 = {11, 17, 20, 22, 23, 24}
+6 +3 +2 +1 +1
Using a recurrence for the Narayana-Zidek-Capell sequence found in that link, I have managed to produce a solution for this problem that runs in O(n) time. Here is a solution in Java. It only works for n <= 32 due to int overflow, but it could be written using BigInteger to work for higher values.
static Set<Integer> set(int n) {
int[] a = new int[n + 2];
for (int i = 1; i < n + 2; i++) {
if (i <= 2)
a[i] = 1;
else if (i % 2 == 0)
a[i] = 2 * a[i - 1];
else
a[i] = 2 * a[i - 1] - a[i / 2];
}
Set<Integer> set = new HashSet<>();
int sum = 0;
for (int i = n + 1; i >= 2; i--) {
sum += a[i];
set.add(sum);
}
return set;
}
I'm not able to justify right now why this is the same as the set in the question, but I'm working on it. However I have checked for all n <= 32 that this algorithm gives the same set as the "obvious" algorithm, so I'm reasonably sure it's correct.
There is a matrix, m×n. Several groups of people locate at some certain spots. In the following example, there are three groups and the number 4 indicates there are four people in this group. Now we want to find a meeting point in the matrix so that the cost of all groups moving to that point is the minimum. As for how to compute the cost of moving one group to another point, please see the following example.
Group1: (0, 1), 4
Group2: (1, 3), 3
Group3: (2, 0), 5
. 4 . .
. . . 3
5 . . .
If all of these three groups moving to (1, 1), the cost is:
4*((1-0)+(1-1)) + 5*((2-1)+(1-0))+3*((1-1)+(3-1))
My idea is :
Firstly, this two dimensional problem can be reduced to two one dimensional problem.
In the one dimensional problem, I can prove that the best spot must be one of these groups.
In this way, I can give a O(G^2) algorithm.(G is the number of group).
Use iterator's example for illustration:
{(-100,0,100),(100,0,100),(0,1,1)},(x,y,population)
for x, {(-100,100),(100,100),(0,1)}, 0 is the best.
for y, {(0,100),(0,100),(1,1)}, 0 is the best.
So it's (0, 0)
Is there any better solution for this problem.
I like the idea of noticing that the objective function can be decomposed to give the sum of two one-dimensional problems. The remaining problems look a lot like the weighted median to me (note "solves the following optimization problem in "http://www.stat.ucl.ac.be/ISdidactique/Rhelp/library/R.basic/html/weighted.median.html" or consider what happens to the objective function as you move away from the weighted median).
The URL above seems to say the weighted median takes time n log n, which I guess means that you could attain their claim by sorting the data and then doing a linear pass to work out the weighted median. The numbers you have to sort are in the range [0, m] and [0, n] so you could in theory do better if m and n are small, or - of course - if you are given the data pre-sorted.
Come to think of it, I don't see why you shouldn't be able to find the weighted median with a linear time randomized algorithm similar to that used to find the median (http://en.wikibooks.org/wiki/Algorithms/Randomization#find-median) - repeatedly pick a random element, use it to partition the items remaining, and work out which half the weighted median should be in. That gives you expected linear time.
I think this can be solved in O(n>m?n:m) time and O(n>m?n:m) space.
We have to find the median of x coordinates and median of all y coordinates in the k points and the answer will be (x_median,y_median);
Assumption is this function takes in the following inputs:
total number of points :int k= 4+3+5 = 12;
An array of coordinates:
struct coord_t c[12] = {(0,1),(0,1),(0,1), (0,1), (1,3), (1,3),(1,3),(2,0),(2,0),(2,0),(2,0),(2,0)};
c.int size = n>m ? n:m;
Let the input of the coordinates be an array of coordinates. coord_t c[k]
struct coord_t {
int x;
int y;
};
1. My idea is to create an array of size = n>m?n:m;
2. int array[size] = {0} ; //initialize all the elements in the array to zero
for(i=0;i<k;i++)
{
array[c[i].x] = +1;
count++;
}
int tempCount =0;
for(i=0;i<k;i++)
{
if(array[i]!=0)
{
tempCount += array[i];
}
if(tempCount >= count/2)
{
break;
}
}
int x_median = i;
//similarly with y coordinate.
int array[size] = {0} ; //initialize all the elements in the array to zero
for(i=0;i<k;i++)
{
array[c[i].y] = +1;
count++;
}
int tempCount =0;
for(i=0;i<k;i++)
{
if(array[i]!=0)
{
tempCount += array[i];
}
if(tempCount >= count/2)
{
break;
}
}
int y_median = i;
coord_t temp;
temp.x = x_median;
temp.y= y_median;
return temp;
Sample Working code for MxM matrix with k points:
*Problem
Given a MxM grid . and N people placed in random position on the grid. Find the optimal meeting point of all the people.
/
/
Answer:
Find the median of all the x coordiates of the positions of the people.
Find the median of all the y coordinates of the positions of the people.
*/
#include<stdio.h>
#include<stdlib.h>
typedef struct coord_struct {
int x;
int y;
}coord_struct;
typedef struct distance {
int count;
}distance;
coord_struct toFindTheOptimalDistance (int N, int M, coord_struct input[])
{
coord_struct z ;
z.x=0;
z.y=0;
int i,j;
distance * array_dist;
array_dist = (distance*)(malloc(sizeof(distance)*M));
for(i=0;i<M;i++)
{
array_dist[i].count =0;
}
for(i=0;i<N;i++)
{
array_dist[input[i].x].count +=1;
printf("%d and %d\n",input[i].x,array_dist[input[i].x].count);
}
j=0;
for(i=0;i<=N/2;)
{
printf("%d\n",i);
if(array_dist[j].count !=0)
i+=array_dist[j].count;
j++;
}
printf("x coordinate = %d",j-1);
int x= j-1;
for(i=0;i<M;i++)
array_dist[i].count =0;
for(i=0;i<N;i++)
{
array_dist[input[i].y].count +=1;
}
j=0;
for(i=0;i<N/2;)
{
if(array_dist[j].count !=0)
i+=array_dist[j].count;
j++;
}
int y =j-1;
printf("y coordinate = %d",j-1);
z.x=x;
z.y =y;
return z;
}
int main()
{
coord_struct input[5];
input[0].x =1;
input[0].y =2;
input[1].x =1;
input[1].y =2;
input[2].x =4;
input[2].y =1;
input[3].x = 5;
input[3].y = 2;
input[4].x = 5;
input[4].y = 2;
int size = m>n?m:n;
coord_struct x = toFindTheOptimalDistance(5,size,input);
}
Your algorithm is fine, and divide the problem into two one-dimensional problem. And the time complexity is O(nlogn).
You only need to divide every groups of people into n single people, so every move to left, right, up or down will be 1 for each people. We only need to find where's the (n + 1) / 2th people stand for row and column respectively.
Consider your sample. {(-100,0,100),(100,0,100),(0,1,1)}.
Let's take the line numbers out. It's {(-100,100),(100,100),(0,1)}, and that means 100 people stand at -100, 100 people stand at 100, and 1 people stand at 0.
Sort it by x, and it's {(-100,100),(0,1),(100,100)}. There is 201 people in total, so we only need to set the location at where the 101th people stands. It's 0, and that's for the answer.
The column number is with the same algorithm. {(0,100),(0,100),(1,1)}, and it's sorted. The 101th people is at 0, so the answer for column is also 0.
The answer is (0,0).
I can think of O(n) solution for one dimensional problem, which in turn means you can solve original problem in O(n+m+G).
Suppose, people are standing like this, a_0, a_1, ... a_n-1: a_0 people at spot 0, a_1 at spot 1. Then the solution in pseudocode is
cur_result = sum(i*a_i, i = 1..n-1)
cur_r = sum(a_i, i = 1..n-1)
cur_l = a_0
for i = 1:n-1
cur_result = cur_result - cur_r + cur_l
cur_r = cur_r - a_i
cur_l = cur_l + a_i
end
You need to find point, where cur_result is minimal.
So you need O(n) + O(m) for solving 1d problems + O(G) to build them, meaning total complexity is O(n+m+G).
Alternatively you solve 1d in O(G*log G) (or O(G) if data is sorted) using the same idea. Choose the one from expected number of groups.
you can solve this in O(G Log G) time by reducing it to, two one dimensional problems as you mentioned.
And as to how to solve it in one dimension, just sort them and go through them one by one and calculate cost moving to that point. This calculation can be done in O(1) time for each point.
You can also avoid Log(G) component if your x and y coordinates are small enough for you to use bucket/radix sort.
Inspired by kilotaras's idea. It seems that there is a O(G) solution for this problem.
Since everyone agree with the two dimensional problem can be reduced to two one dimensional problem. I will not repeat it again. I just focus on how to solve the one dimensional problem
with O(G).
Suppose, people are standing like this, a[0], a[1], ... a[n-1]. There is a[i] people standing at spot i. There are G spots having people(G <= n). Assuming these G spots are g[1], g[2], ..., g[G], where gi is in [0,...,n-1]. Without losing generality, we can also assume that g[1] < g[2] < ... < g[G].
It's not hard to prove that the optimal spot must come from these G spots. I will pass the
prove here and left it as an exercise if you guys have interest.
Since the above observation, we can just compute the cost of moving to the spot of every group and then chose the minimal one. There is an obvious O(G^2) algorithm to do this.
But using kilotaras's idea, we can do it in O(G)(no sorting).
cost[1] = sum((g[i]-g[1])*a[g[i]], i = 2,...,G) // the cost of moving to the
spot of first group. This step is O(G).
cur_r = sum(a[g[i]], i = 2,...,G) //How many people is on the right side of the
second group including the second group. This step is O(G).
cur_l = a[g[1]] //How many people is on the left side of the second group not
including the second group.
for i = 2:G
gap = g[i] - g[i-1];
cost[i] = cost[i-1] - cur_r*gap + cur_l*gap;
if i != G
cur_r = cur_r - a[g[i]];
cur_l = cur_l + a[g[i]];
end
end
The minimal of cost[i] is the answer.
Using the example 5 1 0 3 to illustrate the algorithm.
In this example,
n = 4, G = 3.
g[1] = 0, g[2] = 1, g[3] = 3.
a[0] = 5, a[1] = 1, a[2] = 0, a[3] = 3.
(1) cost[1] = 1*1+3*3 = 10, cur_r = 4, cur_l = 5.
(2) cost[2] = 10 - 4*1 + 5*1 = 11, gap = g[2] - g[1] = 1, cur_r = 4 - a[g[2]] = 3, cur_l = 6.
(3) cost[3] = 11 - 3*2 + 6*2 = 17, gap = g[3] - g[2] = 2.
I got asked this question on a interview for Google a couple of weeks ago, I didn't quite get the answer and I was wondering if anyone here could help me out.
You have an array with n elements. The elements are either 0 or 1.
You want to split the array into k contiguous subarrays. The size of each subarray can vary between ceil(n/2k) and floor(3n/2k). You can assume that k << n.
After you split the array into k subarrays. One element of each subarray will be randomly selected.
Devise an algorithm for maximizing the sum of the randomly selected elements from the k subarrays.
Basically means that we will want to split the array in such way such that the sum of all the expected values for the elements selected from each subarray is maximum.
You can assume that n is a power of 2.
Example:
Array: [0,0,1,1,0,0,1,1,0,1,1,0]
n = 12
k = 3
Size of subarrays can be: 2,3,4,5,6
Possible subarrays [0,0,1] [1,0,0,1] [1,0,1,1,0]
Expected Value of the sum of the elements randomly selected from the subarrays: 1/3 + 2/4 + 3/5 = 43/30 ~ 1.4333333
Optimal split: [0,0,1,1,0,0][1,1][0,1,1,0]
Expected value of optimal split: 1/3 + 1 + 1/2 = 11/6 ~ 1.83333333
I think we can solve this problem using dynamic programming.
Basically, we have:
f(i,j) is defined as the maximum sum of all expected values chosen from an array of size i and split into j subarrays. Therefore the solution should be f(n,k).
The recursive equation is:
f(i,j) = f(i-x,j-1) + sum(i-x+1,i)/x where (n/2k) <= x <= (3n/2k)
I don't know if this is still an open question or not, but it seems like the OP has managed to add enough clarifications that this should be straightforward to solve. At any rate, if I am understanding what you are saying this seems like a fair thing to ask in an interview environment for a software development position.
Here is the basic O(n^2 * k) solution, which should be adequate for small k (as the interviewer specified):
def best_val(arr, K):
n = len(arr)
psum = [ 0.0 ]
for x in arr:
psum.append(psum[-1] + x)
tab = [ -100000 for i in range(n) ]
tab.append(0)
for k in range(K):
for s in range(n - (k+1) * ceil(n/(2*K))):
terms = range(s + ceil(n/(2*K)), min(s + floor((3*n)/(2*K)) + 1, n+1))
tab[s] = max( [ (psum[t] - psum[s]) / (t - s) + tab[t] for t in terms ])
return tab[0]
I used the numpy ceil/floor functions but you basically get the idea. The only `tricks' in this version is that it does windowing to reduce the memory overhead to just O(n) instead of O(n * k), and that it precalculates the partial sums to make computing the expected value for a box a constant time operation (thus saving a factor of O(n) from the inner loop).
I don't know if anyone is still interested to see the solution for this problem. Just stumbled upon this question half an hour ago and thought of posting my solution(Java). The complexity for this is O(n*K^log10). The proof is a little convoluted so I would rather provide runtime numbers:
n k time(ms)
48 4 25
48 8 265
24 4 20
24 8 33
96 4 51
192 4 143
192 8 343919
The solution is the same old recursive one where given an array, choose the first partition of size ceil(n/2k) and find the best solution recursively for the rest with number of partitions = k -1, then take ceil(n/2k) + 1 and so on.
Code:
public class PartitionOptimization {
public static void main(String[] args) {
PartitionOptimization p = new PartitionOptimization();
int[] input = { 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0};
int splitNum = 3;
int lowerLim = (int) Math.ceil(input.length / (2.0 * splitNum));
int upperLim = (int) Math.floor((3.0 * input.length) / (2.0 * splitNum));
System.out.println(input.length + " " + lowerLim + " " + upperLim + " " +
splitNum);
Date currDate = new Date();
System.out.println(currDate);
System.out.println(p.getMaxPartExpt(input, lowerLim, upperLim,
splitNum, 0));
System.out.println(new Date().getTime() - currDate.getTime());
}
public double getMaxPartExpt(int[] input, int lowerLim, int upperLim,
int splitNum, int startIndex) {
if (splitNum <= 1 && startIndex<=(input.length -lowerLim+1)){
double expt = findExpectation(input, startIndex, input.length-1);
return expt;
}
if (!((input.length - startIndex) / lowerLim >= splitNum))
return -1;
double maxExpt = 0;
double curMax = 0;
int bestI=0;
for (int i = startIndex + lowerLim - 1; i < Math.min(startIndex
+ upperLim, input.length); i++) {
double curExpect = findExpectation(input, startIndex, i);
double splitExpect = getMaxPartExpt(input, lowerLim, upperLim,
splitNum - 1, i + 1);
if (splitExpect>=0 && (curExpect + splitExpect > maxExpt)){
bestI = i;
curMax = curExpect;
maxExpt = curExpect + splitExpect;
}
}
return maxExpt;
}
public double findExpectation(int[] input, int startIndex, int endIndex) {
double expectation = 0;
for (int i = startIndex; i <= endIndex; i++) {
expectation = expectation + input[i];
}
expectation = (expectation / (endIndex - startIndex + 1));
return expectation;
}
}
Not sure I understand, the algorithm is to split the array in groups, right? The maximum value the sum can have is the number of ones. So split the array in "n" groups of 1 element each and the addition will be the maximum value possible. But it must be something else and I did not understand the problem, that seems too silly.
I think this can be solved with dynamic programming. At each possible split location, get the maximum sum if you split at that location and if you don't split at that point. A recursive function and a table to store history might be useful.
sum_i = max{ NumOnesNewPart/NumZerosNewPart * sum(NewPart) + sum(A_i+1, A_end),
sum(A_0,A_i+1) + sum(A_i+1, A_end)
}
This might lead to something...
I think its a bad interview question, but it is also an easy problem to solve.
Every integer contributes to the expected value with weight 1/s where s is the size of the set where it has been placed. Therefore, if you guess the sizes of the sets in your partition, you just need to fill the sets with ones starting from the smallest set, and then fill the remaining largest set with zeroes.
You can easily see then that if you have a partition, filled as above, where the sizes of the sets are S_1, ..., S_k and you do a transformation where you remove one item from set S_i and move it to set S_i+1, you have the following cases:
Both S_i and S_i+1 were filled with ones; then the expected value does not change
Both them were filled with zeroes; then the expected value does not change
S_i contained both 1's and 0's and S_i+1 contains only zeroes; moving 0 to S_i+1 increases the expected value because the expected value of S_i increases
S_i contained 1's and S_i+1 contains both 1's and 0's; moving 1 to S_i+1 increases the expected value because the expected value of S_i+1 increases and S_i remains intact
In all these cases, you can shift an element from S_i to S_i+1, maintaining the filling rule of filling smallest sets with 1's, so that the expected value increases. This leads to the simple algorithm:
Create a partitioning where there is a maximal number of maximum-size arrays and maximal number of minimum-size arrays
Fill the arrays starting from smallest one with 1's
Fill the remaining slots with 0's
How about a recursive function:
int BestValue(Array A, int numSplits)
// Returns the best value that would be obtained by splitting
// into numSplits partitions.
This in turn uses a helper:
// The additional argument is an array of the valid split sizes which
// is the same for each call.
int BestValueHelper(Array A, int numSplits, Array splitSizes)
{
int result = 0;
for splitSize in splitSizes
int splitResult = ExpectedValue(A, 0, splitSize) +
BestValueHelper(A+splitSize, numSplits-1, splitSizes);
if splitResult > result
result = splitResult;
}
ExpectedValue(Array A, int l, int m) computes the expected value of a split of A that goes from l to m i.e. (A[l] + A[l+1] + ... A[m]) / (m-l+1).
BestValue calls BestValueHelper after computing the array of valid split sizes between ceil(n/2k) and floor(3n/2k).
I have omitted error handling and some end conditions but those should not be too difficult to add.
Let
a[] = given array of length n
from = inclusive index of array a
k = number of required splits
minSize = minimum size of a split
maxSize = maximum size of a split
d = maxSize - minSize
expectation(a, from, to) = average of all element of array a from "from" to "to"
Optimal(a[], from, k) = MAX[ for(j>=minSize-1 to <=maxSize-1) { expectation(a, from, from+j) + Optimal(a, j+1, k-1)} ]
Runtime (assuming memoization or dp) = O(n*k*d)