I want to use the minkowski sum to predict the exact point of collision between two convex shapes. By my understanding the point where the velocity vector intersects with the minkowski sum is the amount I have to move my object along the vector so they just touch (I already know they will collide). Here's an example of what I mean (for simplicity reasons I just used rectangles):
I mean I could just calculate the intersection with every line of the convex hull and just use the closest but that seems horribly inefficient. My idea was to calculate the simplex closest to the vector but I have no idea how best to do it. I found a algorithm which calculates the smallest distance between to objects or to be more precise the smallest distance from the minkowski sum to the origin (http://www.codezealot.org/archives/153). One part of the algorithm tries to find the simplex closest to origin which is kinda what I want to do. I tried to change it to my needs but I wasn't successful. To me it sounds like there should be a very simple solution but I am not that good with vector math.
I hope I could make my problem clear since my english is not so good :D
You can transform the problem as follows:
1) rotate the plane so that the velocity vector becomes horizontal
2) consider the portions of the polygon outlines facing each other (these are two convex polylines); now you have to find the shortest horizontal distance between these two polylines
3) through every vertex of one of the polylines, draw an horizontal line; this will parition the plane into a set of horizontal slices
4) transform every slice using a shear transformation that brings the two vertices defining it onto the Y axis by horizontal moves; this transform preserves horizontal distances
5) while the first polyline is transformed into a straight line (the Y axis), the other polyline is transformed into another polyline; find the vertex(es) closest to the Y axis. This gives you the length of the collision vector.
As a by-product, step 2) will tell you if the polygons do collide, if the ranges of Y values overlap.
Related
I have a 3D mesh consisting of triangle polygons. My mesh can be either oriented left or right:
I'm looking for a method to detect mesh direction: right vs left.
So far I tried to use mesh centroid:
Compare centroid to bounding-box (b-box) center
See if centroid is located left of b-box center
See if centroid is located right of b-box center
But the problem is that the centroid and b-box center don't have a reliable difference in most cases.
I wonder what is a quick algorithm to detect my mesh direction.
Update
An idea proposed by #collapsar is ordering Convex Hull points in clockwise order and investigating the longest edge:
UPDATE
Another approach as suggested by #YvesDaoust is to investigate two specific regions of the mesh:
Count the vertices in two predefined regions of the bounding box. This is a fairly simple O(N) procedure.
Unless your dataset is sorted in some way, you can't be faster than O(N). But if the point density allows it, you can subsample by taking, say, every tenth point while applying the procedure.
You can as well keep your idea of the centroid, but applying it also in a subpart.
The efficiency of an algorithm to solve your problem will depend on the data structures that represent your mesh. You might need to be more specific about them in order to obtain a sufficiently performant procedure.
The algorithms are presented in an informal way. For a more rigorous analysis, math.stackexchange might be a more suitable place to ask (or another contributor is more adept to answer ...).
The algorithms are heuristic by nature. Proposals 1 and 3 will work fine for meshes whose local boundary's curvature is mostly convex locally (skipping a rigorous mathematical definition here). Proposal 2 should be less dependent on the mesh shape (and can be easily tuned to cater for ill-behaved shapes).
Proposal 1 (Convex Hull, 2D)
Let M be the set of mesh points, projected onto a 'suitable' plane as suggested by the graphics you supplied.
Compute the convex hull CH(M) of M.
Order the n points of CH(M) in clockwise order relative to any point inside CH(M) to obtain a point sequence seq(P) = (p_0, ..., p_(n-1)), with p_0 being an arbitrary element of CH(M). Note that this is usually a by-product of the convex hull computation.
Find the longest edge of the convex polygon implied by CH(M).
Specifically, find k, such that the distance d(p_k, p_((k+1) mod n)) is maximal among all d(p_i, p_((i+1) mod n)); 0 <= i < n;
Consider the vector (p_k, p_((k+1) mod n)).
If the y coordinate of its head is greater than that of its tail (ie. its projection onto the line ((0,0), (0,1)) is oriented upwards) then your mesh opens to the left, otherwise to the right.
Step 3 exploits the condition that the mesh boundary be mostly locally convex. Thus the convex hull polygon sides are basically short, with the exception of the side that spans the opening of the mesh.
Proposal 2 (bisector sampling, 2D)
Order the mesh points by their x coordinates int a sequence seq(M).
split seq(M) into 2 halves, let seq_left(M), seq_right(M) denote the partition elements.
Repeat the following steps for both point sets.
3.1. Select randomly 2 points p_0, p_1 from the point set.
3.2. Find the bisector p_01 of the line segment (p_0, p_1).
3.3. Test whether p_01 lies within the mesh.
3.4. Keep a count on failed tests.
Statistically, the mesh point subset that 'contains' the opening will produce more failures for the same given number of tests run on each partition. Alternative test criteria will work as well, eg. recording the average distance d(p_0, p_1) or the average length of (p_0, p_1) portions outside the mesh (both higher on the mesh point subset with the opening). Cut off repetition of step 3 if the difference of test results between both halves is 'sufficiently pronounced'. For ill-behaved shapes, increase the number of repetitions.
Proposal 3 (Convex Hull, 3D)
For the sake of completeness only, as your problem description suggests that the analysis effectively takes place in 2D.
Similar to Proposal 1, the computations can be performed in 3D. The convex hull of the mesh points then implies a convex polyhedron whose faces should be ordered by area. Select the face with the maximum area and compute its outward-pointing normal which indicates the direction of the opening from the perspective of the b-box center.
The computation gets more complicated if there is much variation in the side lengths of minimal bounding box of the mesh points, ie. if there is a plane in which most of the variation of mesh point coordinates occurs. In the graphics you've supplied that would be the plane in which the mesh points are rendered assuming that their coordinates do not vary much along the axis perpendicular to the plane.
The solution is to identify such a plane and project the mesh points onto it, then resort to proposal 1.
I am aiming to create the following (a directed arrow that connects two nodes) :
At the moment I have this (a quadratic bezier curve drawn from the center point of one node to the center of another):
(Note I have drawn the bezier above the nodes to show where it begins and ends)
I need a method - heuristic or otherwise - to calculate the point of intersection (circled in red, above) between the bezier curve and the node's (ellipse) circumference.
With this, I could calculate the angle between the node center and the point of intersection to draw the arrow head lines at the correct location and angle.
As a last resort, I could use the quadratic Bézier formula to generate a list of points that lie along the curve and also generate a list of points that lie on the circumference of the circle and use one of the two coordinates that have the least euclidian distance between each other as my intersection point. I'm hoping any answers can leverage geometry or whatever else to better solve it.
The general problem is uneasy as the intersection equation is quartic ((X(t)-Xc)² + (Y(t)-Yc)²=R²), where X and Y are quadratic polynomials). If you have a quartic solver handy you can use it but you'll have to select the right root.
A more reasonable approach is just to intersect the circle with the line segment between the control points. This is approximate but probably unnoticeable if the circle radius is small.
If you want more accuracy, perform one or two Newton's iterations from this point.
I know how to implement n log n closest pair of points algorithm (Shamos and Hoey) for 2D cases (x and y). However for a problem where latitude and longitude are given this approach cannot be used. The distance between two points is calculated using the haversine formula.
I would like to know if there is some way to convert these latitudes and longitudes to their respective x and y coordinates and find the closest pair of points, or if there is another technique that can be used to do it.
I would translate them to three dimensional coordinates and then use the divide and conquer approach using a plane rather than a line. This will definitely work correctly. We can be assured of this because when only examining points on the sphere, the two closest points by arc distance (distance walking over the surface) will also be the two closest by 3-d Cartesian distance. This will have running time O(nlogn).
To translate to 3-d coordinates, the easiest way is to make (0,0,0) the center of the earth and then your coordinates are (cos(lat)*cos(lon),cos(lat)*sin(lan),sin(lat)). For those purposes I'm using a scale for which the radius of the Earth is 1 in order to simplify calculations. If you want distance in some other unit, just multiply all quantities by the radius of the Earth when measured in that unit.
I should note that all this assumes that the earth is a sphere. It's not exactly one and points may actually have altitude as well, so these answers won't really be completely exact, but they will be very close to correct in almost every case.
Given an image of a 2-dimensional irregular (non-convex) shape, how would I able to compute all the ways in which it could lie stable on a flat surface? For example, if the shape is a perfect square rectangle, then it will surely have 4 ways in which it is stable. A circle on the other hand either has no stable orientation or every point is a stable orientation.
EDIT: There's this nice little game called Splitter (Beware, addictive game ahead) that seems close to what I want. Noticed that you cut a piece of the wood out it would fall to the ground and lay in a stable manner.
EDIT: In the end, the approach I took is to compute center of mass (of the shape) and compute the convex hull (using OpenCV), and then loop through every pair of vertices. If the center of mass falls on top of the line formed by the 2 vertices, it is deemed stable, else, no.
First find its center of mass (CM). A stable position is one in which the CM will be higher if you make a slight rotation. Now look at the hull, the smallest convex region that encloses the shape:
(source: walkytalky.net)
If the hull is a polygon, then a stable position is one in which the shape is resting on one of the sides, and the CM is directly over that side (not necessarily over the midpoint of the side, just somewhere over it.
If the hull has curves (that is, if the shape has curves which touch the hull), they must be give special treatment. The shape will be stable when resting on a curved edge iff the CM is directly above the lowest point of the curve, and the radius of the curve at that point is greater than the height of the CM.
Examples:
A rectangle. The hull is simply the rectangle, and the CM is at the center. The shape is stable on each of the four sides.
A rectangle with the sides hollowed, but the corners still intact. The hull is still the original rectangle, and the CM is close to where it used to be. All four sides of the hull are still stable (that is, you can still rest the shape on any two corners).
A circle. The CM is in the center, the hull is the circle. There are no stable positions, since the radius of the curve is always equal to the height of the CM. Give it a slight touch, and it will roll.
An ellipse. The CM is at the center, the hull is the shape. Now there are two stable positions.
A semicircle. The CM is somewhere on the axis of symmetry, the hull is the shape. Two stable positions.
A narrow semicircular crescent. The hull is a semicircle, the CM is outside the shape (but inside the hull). Two stable positions.
(source: walkytalky.net)
(The ellipse position marked with an X is unstable, because the curvature is smaller than the distance to the centre of mass.)
note: this answer assumes your shape is a proper polygon.
For our purposes, we'll define an equilibrium position as one where the Center of Mass is directly above a point that is between the leftmost and rightmost ground-contact points of the object (assuming the ground is a flat surface perpendicular to the force of gravity). This will work in all cases, for all shapes.
Note that, this is actually the physical definition of rotational equilibrium, as a consequence of Newtonian Rotational Kinematics.
For a proper polygon, if we eliminate cases where they stand on a sole vertex, this definition is equivalent to a stable position.
So, if you have a straight downward gravity, first find the left-most and right-most parts of it that are touching the ground.
Then, calculate your Center of Mass. For a polygon with known vertices and uniform density, this problem is reduced to finding the Centroid (relevant section).
Afterwards, drop a line from your CoM; if the intersection of the CoM and the ground is between those two x values, it's at equilibrium.
If your leftmost point and rightmost point match (ie, in a round object), this will still hold; just remember to be careful with your floating point comparisms.
Note that this can also be used to measure "how stable" an object is -- this measure is the maximum y-distance the Center of Mass can move before it is no longer within the range of the two contact points.
EDIT: nifty diagram made hastily
So, how can you use this to find all the ways it can sit on a table? See:
EDIT
The programmable approach
Instead of the computationally expensive task of rotating the shape, try this instead.
Your shape's representation in your program should probably have a list of all vertices.
Find the vertices of your shape's convex hull (basically, your shape, but with all concave vertices -- vertices that are "pushed in" -- eliminated).
Then Iterate through each of pair of adjacent vertices on your convex hull (ie, if I had vertices A, B, C, D, I'd iterate through AB, BC, CD, DA)
Do this test:
Draw a line A through the two vertices being tested
Draw a line perpendicular to A, going through CoM C.
Find the intersection of the two lines (simple algebra)
If the intersection's y value is in between the y value of the two vertices, it stable. If the y values are all equal, compare the x values.
That should do the trick.
Here is an example of the test being running on one pair of vertices:
If your shape is not represented by its vertices in your data structure, then you should try to convert them. If it's something like a circle or an ellipse, you may use heuristics to guess the answer (a circle has infinite equilibrium positions; an ellipse 4, albeit only two "stable" points). If it's a curved wobbly irregular shape, you're going to have to supply your data structure for me be able to help in a program-related way, instead of just providing case-by-case heuristics.
I'm sure this is not the most efficient algorithm, but it's an idea.
If you can order the verticles of the polygon (assuming it has a finite number of vertices), then just iterate over adjacent pairs of vertices and record the angle it rests at through some form of simulation. There will be duplicate orientations for it to sit on in the case of weird shapes, like stars, but you can accomodate for that by keeping track of the resting rotation.
I'm trying to design an implementation of Vector Quantization as a c++ template class that can handle different types and dimensions of vectors (e.g. 16 dimension vectors of bytes, or 4d vectors of doubles, etc).
I've been reading up on the algorithms, and I understand most of it:
here and here
I want to implement the Linde-Buzo-Gray (LBG) Algorithm, but I'm having difficulty figuring out the general algorithm for partitioning the clusters. I think I need to define a plane (hyperplane?) that splits the vectors in a cluster so there is an equal number on each side of the plane.
[edit to add more info]
This is an iterative process, but I think I start by finding the centroid of all the vectors, then use that centroid to define the splitting plane, get the centroid of each of the sides of the plane, continuing until I have the number of clusters needed for the VQ algorithm (iterating to optimize for less distortion along the way). The animation in the first link above shows it nicely.
My questions are:
What is an algorithm to find the plane once I have the centroid?
How can I test a vector to see if it is on either side of that plane?
If you start with one centroid, then you'll have to split it, basically by doubling it and slightly moving the points apart in an arbitrary direction. The plane is just the plane orthogonal to that direction.
But you don't need to compute that plane.
More generally, the region (i) is defined as the set of points which are closer to the centroid c_i than to any other centroid. When you have two centroids, each region is a half space, thus separated by a (hyper)plane.
How to test on a vector x to see on which side of the plane it is? (that's with two centroids)
Just compute the distance ||x-c1|| and ||x-c2||, the index of the minimum value (1 or 2) will give you which region the point x belongs to.
More generally, if you have n centroids, you would compute all the distances ||x-c_i||, and the centroid x is closest to (i.e., for which the distance is minimal) will give you the region x is belonging to.
I don't quite understand the algorithm, but the second question is easy:
Let's call V a vector which extends from any point on the plane to the point-in-question. Then the point-in-question lies on the same side of the (hyper)plane as the normal N iff V·N > 0