APNs error handling in ruby - ruby

I want to send notifications to apple devices in batches (1.000 device tokens in batch for example). Ant it seems that I can't know for sure that message was delivered to APNs.
Here is the code sample:
ssl_connection(bundle_id) do |ssl, socket|
device_tokens.each do |device_token|
ssl.write(apn_message_for device_token)
# I can check if there is an error response from APNs
response_has_an_error = IO.select([socket],nil,nil,0) != nil
# ...
end
end
The main problem is if network is down after the ssl_connection is established
ssl.write(...)
will never raise an error. Is there any way to ckeck that connection still works?
The second problem is in delay between ssl.write and ready error answer from APNs. I can pass timeout parameter to IO.select after last messege was sent. Maybe It's OK to wait for a few seconds for 1.000 batch, but wat if I have to send 1.000 messages for differend bundle_ids?

At https://zeropush.com, we use a gem named grocer to handle our communication with Apple and we had a similar problem. The solution we found was to use the socket's read_non_block method before each write to check for incoming data on the socket which would indicate an error.
It makes the logic a bit funny because read_non_block throws IO::WaitReadable if there is no data to read. So we call read_non_block and catch IO::WaitReadable before continuing as normal. In our case, catching the exception is the happy case. You may be able to use a similar approach rather than using IO.select(...).
One issue to be aware of is that Apple may not respond immediately and any notifications sent between a failing notification and reading from the socket will be lost.
You can see the code we are using in production at https://github.com/SymmetricInfinity/grocer/blob/master/lib/grocer/connection.rb#L30.

Related

Trying to send a FIX api message to ctrader server using Ruby but receiving no response

Trying to see if I can get a response from ctrader server.
Getting no response and seems to hang at "s.recv(1024)". So not sure what could be going wrong here. I have limited experience with sockets and network coding.
I have checked my login credentials and all seems ok.
Note: I am aware of many FIX engines that are available for this purpose but wanted to
try this on my own.
ctrader FIX guides
require 'socket'
hostname = "h51.p.ctrader.com"
port = 5201
#constructing a fix message to see what ctrader server returns
#8=FIX.4.4|9=123|35=A|49=demo.ctrader.*******|56=cServer|57=QUOTE|50=QUOTE|34=1|52=20220127-16:49:31|98=0|108=30|553=********|554=*******|10=155|
fix_message = "8=FIX.4.4|9=#{bodylengthsum}|" + bodylength + "10=#{checksumcalc}|"
s = TCPSocket.new(hostname, port)
s.send(fix_message.force_encoding("ASCII"),0)
print fix_message
puts s.recv(1024)
s.close
Sockets are by default blocking on read. When you call recv that call will block if no data is available.
The fact that your recv call is not returning anything, would be an indication that the server did not send you any reply at all; the call is blocking waiting for incoming data.
If you would use read instead, then the call will block until all the requested data has been received.
So calling recv(1024) will block until 1 or more bytes are available.
Calling read(1024) will block until all 1024 bytes have been received.
Note that you cannot rely on a single recv call to return a full message, even if the sender sent you everything you need. Multiple recv calls may be required to construct the full message.
Also note that the FIX protocol gives the msg length at the start of each message. So after you get enough data to see the msg length, you could call read to ensure you get the rest.
If you do not want your recv or read calls to block when no data (or incomplete data) is available, then you need to use non-blocking IO instead for your reads. This is complex topic, which you need to research, but often used when you don't want to block and need to read arbitary length messages. You can look here for some tips.
Another option would be to use something like EventMachine instead, which makes it easier to deal with sockets in situations like this, without having to worry about blocking in your code.

Raise exception when TCP connection broken

I'm building a server which accepts connections through TCP (using TCPServer). I mostly just read data (socket.gets.chomp) and write data (socket.print).
socket.gets will return nil if the connection has been closed by the client in the meantime, so .chomp will raise NoMethodError. This is hard to handle specifically since it's such an unspecific exception - I want to distinguish exceptions caused by the connection loss from other causes of NoMethodError, such as me typoing a method.
Ideally, I would receive something more specific such as SocketError whenever trying to interact with a closed socket, rather than just getting back nil. How could I accomplish that?
I have already considered these options:
Write a wrapper for TCPSocket or IO which checks on socket availability before every call (a lot of work to do cleanly considering how many methods there are in IO)
Check each return value for nil (even more effort and code redundancy as my application grows, also I would still .print to the socket when it's already closed)
Monkey patching NilClass for chomp (again only handles this specific use case, and monkey patching should be avoided for clean code)
Being at end of file is not intrinsically an error, nor is it normally understood to mean a "broken" connection like your title says.
For example, HTTP allows multiple requests to be sent over a single connection. After completely reading a request you can read again, and if the connection is closed you'd get nil, which tells you there are no more requests coming. This situation isn't considered an error condition by most/all HTTP software.
Most Ruby software handles nil return from read as an indication that the network conversation is over (successfully). I suggest you do something like that.
If you wish to consider EOF an error, you could create a wrapper class for IO that would "upgrade" nil return from read into an exception of some kind, but I would suggest rethinking whether this is really what you need.
See also https://ruby-doc.org/core-3.0.0/IO.html#method-i-read.

How to test when the end of an SMS message has been reached

I am writing an application which acts on commands received via SMS (in Python, but the problem occurs in other languages).
This page on the CMGL command shows the following command and response:
AT+CMGL="ALL"
+CMGL: 1,"REC UNREAD","+31628870634",,"11/01/09,10:26:26+04"
This is text message 1
+CMGL: 2,"REC UNREAD","+31628870634",,"11/01/09,10:26:49+04"
This is text message 2
OK
Most implementations I have looked at look for a valid status such as OK or ERROR to detect the end of the response.
I am trying to find a way to determine the difference between this status code and the end of the message.
Otherwise it would be possible for a malicious sender to send a message of
Hello<CR><LF>OK<CR><LF>+CMGL: 1,(rest of fake message...)
Because I am receiving data on the serial port, there is no clear way to tell when I have reached the end of one message from the GSM board.
Could anyone point me to some information on the best practice here please? Other implementations I have seen do not seem to cover this issue.
The only idea I have had so far (but feels quite messy) is to keep reading until a timeout has been hit. Then check the number of OK / ERROR lines in the message and only accept the last.

sendReliable message sometimes not received by opposite peer

I've created a real time game for Google Play Game Services. It's in the later alpha stages right now. I have a question about sendReliableMessage. I've noticed certain cases where the other peer doesn't receive the message. I am aware that there is a callback onRealTimeMessageSent and I have some code in my MainActivity:
#Override
public void onRealTimeMessageSent(int i, int i2, String s) {
if(i== GamesStatusCodes.STATUS_OK)
{
}
else
{
lastMessageStatus=i;
sendToast("lastMessageStatus:"+Integer.toString(lastMessageStatus));
}
}
My games render loop is checking every iteration the value of lastMessageStatus and if there was something other than STATUS_OK I'm painting a T-Rex right now.
My question is is checking the sent status really enough? I also could create source code where the sender has to wait for an Acknowledged message. Each message would be stamped with a UUID and if ack is not received within a timeout then the sender would send the message again? Is an ACK based system necessary to create a persistent connection?
I've noticed certain cases where there is some lag before the opposite peer received the reliable message and I was wondering is there a timeout on the sendReliable message? Google Play Services documentation doesn't seem to indicate in the documentation that there is a timeout at all.
Thank you
Reliable messages are just that, reliable. There are not a lot of use cases for the onRealTimeMessageSent callback for reliable messages because, as you said, it does not guarantee that the recipient has processed the message yet. Only that it was sent.
It may seem annoying, but an ACK-based system is the best way to know for sure that your user has received the message. A UUID is one good way to do this. I have done this myself and found it to work great (although now you have round-trip latency).
As far as timeout, that is not implemented in the RealTime Messaging API. I have personally found round trip latency (send message, receive ACK in callback) to be about 200ms, and I have never found a way to make a message fail to deliver eventually even when purposefully using bad network conditions.

Block TCP-send till ACK returned

I am programming a client application sending TCP/IP packets to a server. Because of timeout issues I want to start a timer as soon as the ACK-Package is returned (so there can be no timeout while the package has not reached the server). I want to use the winapi.
Setting the Socket to blocking mode doesn't help, because the send command returns as soon as the data is written into the buffer (if I am not mistaken). Is there a way to block send till the ACK was returned, or is there any other way to do this without writing my own TCP-implementation?
Regards
It sounds like you want to do the minimum implementation to achieve your goal. In this case you should set your socket to blocking, and following the send which blocks until all data is sent, you call recv which in turn will block until the ACK packet is received or the server end closes or aborts the connection.
If you wanted to go further with your implementation you'd have to structure your client application in such a way that supports asynchronous communication. There are a few techniques with varying degrees of complexity; polling using select() simple, event model using WSASelectEvent/WSAWaitForMultipleEvents challenging, and the IOCompletionPort model which is very complicated.
peudocode... Will wait until ack is recevied, after which time you can call whatever functionallity you want -i chose some made up function send_data.. which would then send information over the socket after receiving the ack.
data = ''
while True
readable, writable, errors = select([socket])
if socket in readble
data += recv(socket)
if is_ack(data)
timer.start() #not sure why you want this
break
send_data(socket)

Resources