factorial algorithm in pseudo code - algorithm

I've been given the following algorithm, that takes a positive integer K and returns a value:
X = 1
Y = 1
while X ≠ K do
X = X + 1
Y = Y * x
return Y
I'm supposed to figure out what it returns.
As it happens, I know the answer — it returns the factorial of K — but I don't understand why.
How do you go about figuring out what this pseudocode does?

X = 1 <- this is counter which you gonna multiply in every step
Y = 1 <- this is to store the cumulative product after each step
while X ≠ K do <- until you reach K
X = X + 1 <- increase X
Y = Y * X <- multiply with increased X
return Y <- return the product
So in the loop the cumulative product goes like this 1 -> 1*2 - > 2*3 -> 6*4 -> ... -> 1*2*..*(K-1)*K which is K!

Now let's assume that K is 5. Therefore the factorial of 5 is 120.
Then as you enter the loop X value is 2 and y gets the value 2.(1*2)
Then the value of X is 3 after getting into loop, which then makes the value of Y 6 because (3*2).
Then the value of X is 4 after getting into loop, which then makes the value of Y 24 because (4*6).
Then the value of X is 5 after getting into loop, which then makes the value of Y 120.
Then since X==Y the while loop exits and Y value which is the factorial is returned.

this piece of code can be simply rewritten as (in C/C++/Java),
for(X=1;X<=K;X++){
Y=Y*X;
}
Now it describes it self :-)

Related

Code not working with bigger values of for loops

I am implementing a Szudik's pairing function in Matlab, where i pair 2 values coming from 2 different matrices X and Y, into a unique value given by the function 'CantorPairing2D(X,Y), After this i reverse the process to check for it's invertibility given by the function 'InverseCantorPairing2( X )'. But I seem to get an unusual problem, when i check this function for small matrices of size say 10*10, it works fine, but the for my code i have to use a 256 *256 matrices A and B, and then the code goes wrong, actually what it gives is a bit strange, because when i invert the process, the values in the matrix A, are same as cvalues of B in some places, for instance A(1,1)=B(1,1), and A(1,2)=B(1,2). Can somebody help.
VRNEW=CantorPairing2D(VRPRO,BLOCK3);
function [ Z ] = CantorPairing2D( X,Y )
[a,~] =(size(X));
Z=zeros(a,a);
for i=1:a
for j=1:a
if( X(i,j)~= (max(X(i,j),Y(i,j))) )
Z(i,j)= X(i,j)+(Y(i,j))^2;
else
Z(i,j)= (X(i,j))^2+X(i,j)+Y(i,j);
end
end
end
Z=Z./1000;
end
function [ A,B ] = InverseCantorPairing2( X )
[a, ~] =(size(X));
Rfinal=X.*1000;
A=zeros(a,a);
B=zeros(a,a);
for i=1:a
for j=1:a
if( ( Rfinal(i,j)- (floor( sqrt(Rfinal(i,j))))^2) < floor(sqrt(Rfinal(i,j))) )
T=floor(sqrt(Rfinal(i,j)));
B(i,j)=T;
A(i,j)=Rfinal(i,j)-T^2;
else
T=floor( (-1+sqrt(1+4*Rfinal(i,j)))/2 );
A(i,j)=T;
B(i,j)=Rfinal(i,j)-T^2-T;
end
end
end
end
Example if A= 45 16 7 17
7 22 11 25
11 12 9 17
2 11 3 5
B= 0 0 0 1
0 0 0 1
1 1 1 1
1 3 0 0
Then after pairing i get
C =2.0700 0.2720 0.0560 0.3070
1.4060 0.5060 0.1320 0.6510
0.1330 0.1570 0.0910 0.3070
0.0070 0.1350 0.0120 0.0300
after the inverse pairing i should get the same A and same B. But for bigger matrices it is giving unusual behaviour, because some elements of A are same as B.
If possible it would help immensely a counter example where your code does fail.
I got to reproduce your code behaviour and I have rewritten your code in a vectorised fashion. You should get the bug, but hopefully it is a first step to uncover the underlying logic and find the bug itself.
I am not familiar with the specific algorithm, but I observe a discrepancy in the CantorPairing definition.
for elements where Y = X your if statement would be false, since X = max(X,X); so for those elements your Z would be X^2+X+Y, but for hypothesis X =Y, therefore your would have:
X^2+X+X = X^2+2*X;
now, if we perturb slightly the equation and suppose Y = X + 10*eps, your if statement would be true (since Y > X) and your Z would be X + Y ^2; since X ~=Y we can approximate to X + X^2
therefore your equation is very temperamental to numerical approximation ( and you definitely have a discontinuity in Z). Again, I am not familiar with the algorithm and it may very well be the behaviour you want, but it is unlikely: so I am pointing this out.
Following is my version of your code, I report it also because I hope it will be pedagogical in getting you acquainted with logical indexing and vectorized code (which is the idiomatic form for MATLAB, let alone much faster than nested for loops).
function [ Z ] = CantorPairing2D( X,Y )
[a,~] =(size(X));
Z=zeros(a,a);
firstConditionIndeces = Y > X; % if Y > X then X is not the max between Y and X
% update elements on which to apply first equation
Z(firstConditionIndeces) = X(firstConditionIndeces) + Y(firstConditionIndeces).^2;
% update elements on the remaining elements
Z(~firstConditionIndeces) = X(~firstConditionIndeces).^2 + X(~firstConditionIndeces) + Y(~firstConditionIndeces) ;
Z=Z./1000;
end
function [ A,B ] = InverseCantorPairing2( X )
[a, ~] =(size(X));
Rfinal=X.*1000;
A=zeros(a,a);
B=zeros(a,a);
T = zeros(a,a) ;
% condition deciding which updates to be applied
indecesToWhichApplyFstFcn = Rfinal- (floor( sqrt(Rfinal )))^2 < floor(sqrt(Rfinal)) ;
% elements on which to apply the first update
T(indecesToWhichApplyFstFcn) = floor(sqrt(Rfinal )) ;
B(indecesToWhichApplyFstFcn) = floor(Rfinal(indecesToWhichApplyFstFcn)) ;
A(indecesToWhichApplyFstFcn) = Rfinal(indecesToWhichApplyFstFcn) - T(indecesToWhichApplyFstFcn).^2;
% updates on which to apply the remaining elements
A(~indecesToWhichApplyFstFcn) = floor( (-1+sqrt(1+4*Rfinal(~indecesToWhichApplyFstFcn )))/2 ) ;
B(~indecesToWhichApplyFstFcn) = Rfinal(~indecesToWhichApplyFstFcn) - T(~indecesToWhichApplyFstFcn).^2 - T(~indecesToWhichApplyFstFcn) ;
end

Loop invariant proof on multiply algorithm

I'm currently stuck on a loop invariant proof in my home assignment. The algorithm that I need to prove correctness of, is:
Multiply(a,b)
x=a
y=0
WHILE x>=b DO
x=x-b
y=y+1
IF x=0 THEN
RETURN(y)
ELSE
RETURN(-1)
I've tried to look at several examples of loop invariants and I have some sense of idea of how its supposed to work out. However in this algorithm above, I have two exit conditions, and I'm a bit lost on how to approach this in a loop invariant proof. In particular its the termination part I'm struggling with, around the IF and ELSE statements.
So far what I've constructed is simply by looking at the termination of the algorithm in which case if x = 0 then it returns the value of y containing the value of n (number of iterations in the while loop), where as if x is not 0, and x < b then it returns -1. I just have a feeling I need to prove this some how.
I hope someone can help share some light on this for me, as the similar cases I've found in here, have not been sufficient.
Thanks alot in advance for your time.
Provided that the algorithm terminates (for this let's assume a>0 and b>0, which is sufficient), one invariant is that at every iteration of your while loop, you have x + by = a.
Proof:
at first, x = a and y = 0 so that's ok
If x + by = a, then (x - b) + (y + 1)b = a, which are the values of x and y for your next iteration
Illustration:
Multiply(a,b)
x=a
y=0
// x + by = a, is true
WHILE x>=b DO
// x + by = a, is true
x=x-b // X = x - b
y=y+1 // Y = y + 1
// x + by = a
// x - b + by + b = a
// (x-b) + (y+1)b = a
// X + bY = a, is still true
// x + by = a, will remain true when you exit the loop
// since we exited the loop, x < b
IF x=0 THEN
// 0 + by = a, and 0 < b
// y = a/b
RETURN(y)
ELSE
RETURN(-1)
This algorithm returns a/b when b divides a, and -1 otherwise. Multiply does not quite sound like an appropriate name for it...
We can't prove correctness without a specification of exactly what the function is supposed to do, which I can't find in your question. Even the name of the function doesn't help: as noted already, your function returns a/b most of the time when b divides a, and -1 otherwise. Multiply is an inappropriate name for it.
Furthermore, if b=0 and a>=b the "algorithm" doesn't terminate so it isn't even an algorithm.
As Alex M noted, a loop invariant for the loop is x + by = a. At the moment the loop exits, we also have x < b. There are no other guarantees on x because (presumably) a could be negative. If we had a guarantee that a and b are positive, then we could guarantee that 0<=x<b at the moment the loop exits, which would mean that it implements the division with remainder algorithm (at the end of the loop, y is quotient and x is remainder, and it terminates by an "infinite descent" type argument: a decreasing sequence of positive integers x must terminate). Then you could conclude that if x=0, b divides a evenly, and the quotient is returned, otherwise -1 is returned.
But that is not a proof, because we are lacking a specification for what the algorithm is supposed to do, and a specification on restrictions on its inputs. (Are a and b any positive integers? Negative and 0 not allowed?)

Unable to understand the result of this hash function

I was reading my notes from the algorithms class (several years old) and I found this:
which says: Assuming that
h(k) = k mod m, where m = 4 and k = 100, then h(k) = 4
Is this true? I would think that 4 * 25 = 100, thus h(k) = 0. What am I missing?
I thought it was a typo, but I just checked the newest version of the notes and it's still the same!
The modulo operator can never return that result, as it represents the remainder after integer division.
So this rule holds for positive integers x and y:
x mod y = z ⇒ z < y
Another way to write the above modulo operation is:
⎣x/y⎦.y + z = x
If somehow you would achieve that z == y then obviously you did something wrong in the ⎣x/y⎦ part.

Procedural/imperative programming - Algorithm

Can you please help me understand what ports in r if x = 0,1,2,3
y <-- 0
z <-- 1
r <-- z
while y < x {
Multiply z by 2;
Add z to r;
Increase y; }
In every looping step z is multiplied by 2, so you have the values 2,4,8,16... (or generally 2^n).
r is initially 1, and if you add z, you get 3,7,15,31 (generally 2^(n+1) - 1)
For x = 0 the loop will be skipped, so r stays 1
For x = 1 the loop will... uhm... loop one time, so you get 3
etc.
Apparently, the algorithm computes the sum of the powers of two from 0 to x and uses r as an accumulator for this. On termination, r holds the value 2^(x+1)-1.

Pseudo number generation

Following is text from Data structure and algorithm analysis by Mark Allen Wessis.
Following x(i+1) should be read as x subscript of i+1, and x(i) should be
read as x subscript i.
x(i + 1) = (a*x(i))mod m.
It is also common to return a random real number in the open interval
(0, 1) (0 and 1 are not possible values); this can be done by
dividing by m. From this, a random number in any closed interval [a,
b] can be computed by normalizing.
The problem with this routine is that the multiplication could
overflow; although this is not an error, it affects the result and
thus the pseudo-randomness. Schrage gave a procedure in which all of
the calculations can be done on a 32-bit machine without overflow. We
compute the quotient and remainder of m/a and define these as q and
r, respectively.
In our case for M=2,147,483,647 A =48,271, q = 127,773, r = 2,836, and r < q.
We have
x(i + 1) = (a*x(i))mod m.---------------------------> Eq 1.
= ax(i) - m (floorof(ax(i)/m)).------------> Eq 2
Also author is mentioning about:
x(i) = q(floor of(x(i)/q)) + (x(i) mod Q).--->Eq 3
My question
what does author mean by random number is computed by normalizing?
How author came with Eq 2 from Eq 1?
How author came with Eq 3?
Normalizing means if you have X ∈ [0,1] and you need to get Y ∈ [a, b] you can compute
Y = a + X * (b - a)
EDIT:
2. Let's suppose
a = 3, x = 5, m = 9
Then we have
where [ax/m] means an integer part.
So we have 15 = [ax/m]*m + 6
We need to get 6. 15 - [ax/m]*m = 6 => ax - [ax/m]*m = 6 => x(i+1) = ax(i) - [ax(i)/m]*m
If you have a random number in the range [0,1], you can get a number in the range [2,5] (for example) by multiplying by 3 and adding 2.

Resources