Why using heuristics in an algorithm takes away asymptotic optimality? - algorithm

I was reading about some geometric routing algorithms, there it says that when employing heuristics in a version of the main algorithm it may improve performance, but takes away asymptotic optimality.
Why is that the case? Should we prefer asymptotic optimality over better performance? Are there prototypical cases where one should prefer asymptotic optimality? Are there any benchmarks known?

I think you are asking about optimization problems where heuristics run fast but might not achieve the totally optimal solution, whereas truly optimal solution finding algorithms can run much slower in the worst-case although they always give the totally optimal solution. If so, here's some info. In general, the decision to use a heuristic algorithm often depends on how well it approximates the optimal solution "in practice", and if this typical solution quality is good enough for you, and whether or not you think your particular problem instance falls into the category of the problems that are encountered in practice. If you are interested, you can look up approximation algorithms for NP-complete problems. There are some problems where the score of the solution found by a heuristic is within a constant multiplier (1 + epsilon) of the score of the optimal solution, and you can choose epsilon; however typically the running time increases as epsilon decreases.

My guess is that they are talking about use of (non-admissible) heuristics for approximation algorithms. For instance, the traveling salesman problem is NP-complete, yet there are heuristic approximation methods that are much faster than known algorithms for NP-complete problems but are only guaranteed to get within a few percent of optimal.

Related

How efficient is efficient when it comes to Polynomial Time Algorithms?

I hope this is the right place for this question.
Polynomial time algorithms! How do polynomial time algorithms (PTAs) actually relate to the processing power, memory size (RAM) and storage of computers?
We consider PTAs to be efficient. We know that even for a PTA, the time complexity increases with the input size n. Take for example, there already exists a PTA that determines if a number is prime. But what happens if I want to check a number this big https://justpaste.it/3fnj2? Is the PTA for prime check still considered efficient? Is there a computer that can compute if such a big number like that is prime?
Whether yes or no (maybe no, idk), how does the concept of polynomial time algorithms actually apply in the real world? Is their some computing bound or something for so-called polynomial time algorithms?
I've tried Google searches on this but all I find are mathematical Big O related explanations. I don't find articles that actual relate the concept of PTAs to computing power. I would appreciate some explanation or links to some resources.
There are a few things to explain.
Regarding Polynomial Time as efficient is just an arbitrary agreement. The mathematicians have defined a set Efficient_Algorithms = {P algorithm, where P Polynomial}. That is only a mathematical definition. Mathematicians don't see your actual hardware and they don't care for it. They work with abstract concepts. Yes, scientists consider O(n^100) as efficient.
But you cannot compare one to one statements from theoretical computer science with computer programs running on hardware. Scientists work with formulas and theorems while computer programs are executed on electric circuits.
The Big-Oh notation does not help you for comparing implementations of an algorithms. The Big-Oh notation compares algorithms but not the implementations of them. This can be illustrated as follows. Consider you have a prime checking algorithm with a high polynomial complexity. You implement it and you see it does not perform well for practical use cases. So you use a profiler. It tells you where the bottle neck is. You find out that 98% of the computations time are matrix multiplications. So you develop a processor that does exactly such calculations extremely fast. Or you buy the most modern graphics card for this purpose. Or you wait 150 years for a new hardware generation. Or you achieve to make most of these multiplications parallel. Imagine you achieved somehow to reduce the time for matrix multiplications by 95%. With this wonderful hardware you run your algorithm. And suddenly it performs well. So your algorithm is actually efficient. It was only your hardware that was not powerful enough. This is not an thought experiment. Such dramatic improvements of computation power are reality quite often.
The very most of algorithms that have a polynomial complexity have such because the problems they are solving are actually of polynomial complexity. Consider for example the matrix multiplication. If you do it on paper it is O(n^3). It is the nature of this problem that it has a polynomial complexity. In practice and daily life (I think) most problems for which you have a polynomial algorithm are actually polynomial problems. If you have a polynomial problem, then a polynomial algorithm is efficient.
Why do we talk about polynomial algorithms and why do we consider them as efficient? As already said, this is quite arbitrary. But as a motivation the following words may be helpful. When talking about "polynomial algorithms", we can say there are two types of them.
The algorithms that have a complexity that is even lower than polynomial (e.t. linear or logarithmic). I think we can agree to say these are efficient.
The algorithms that are actually polynomial and not lower than polynomial. As illustrated above, in practice these algorithms are oftentimes polynomial because they solve problems that are actually of polynomial nature and therefore require polynomial complexity. If you see it this way, then of course we can say, these algorithms are efficient.
In practice if you have a linear problem you will normally recognise it as a linear problem. Normally you would not apply an algorithm that has a worse complexity to a linear problem. This is just practical experience. If you for example search an element in a list you would not expect more comparisons than the number of elements in the list. If in such cases you apply an algorithm that has a complexity O(n^2), then of course this polynomial algorithm is not efficient. But as said, such mistakes are oftentimes so obvious, that they don't happen.
So that is my final answer to your question: In practice software developers have a good feeling for linear complexity. Good developers also have a feeling of logarithmic complexity in real life. In consequence that means, you don't have to worry about complexity theory too much. If you have polynomial algorithm, then you normally have a quite good feeling to tell if the problem itself is actually linear or not. If this is not the case, then your algorithm is efficient. If you have an exponential algorithm, it may not be obvious what is going on. But in practice you see the computation time, do some experiments or get complains from users. Exponential complexity is normally not deniable.

Is it better to use genetic algorithm to solve the 0-1 Knapsack problem?

The Knapsack problem is a combinatorial optimization problem where one has to maximize the bene t of objects in a knapsack without exceeding its capacity. We know that there are many ways to solve this problem, genetic algorithm, dynamic programmming, and greedy method. I want to know what is the advantage and disadvantage to use the genetic algorithm comparing with dynamic programming? Space complexity, time complexity, and optimality?
So in order to answer this, it is important to consider what you think is the most important: Speed or Accuracy
Genetic algorithms do not guarantee finding the most optimal solution, however, they typically run very quickly.
Some quick descriptions of a Genetic Algorithm might yield:
It is an estimation function and does not guarantee finding the globally optimal solution
It typically runs very fast (both in memory usage and complexity)
Actual calculations are hard, since genetic algorithms are typically problem specific and chaotic in nature. A good base for what its complexity might look like:
O( O(Fitness) * (O(mutation) + O(crossover)))
However, Dynamic Programming does guarantee to find the most optimal solution, granted with a much longer run time. Some quick descriptions of Dynamic Programming might yield:
It is an exact function -- guarantees convergence on the most globally optimal solution
High memory usage and a very long run time
Complexity for knapsack 01 problem is something like: O(numItems * knapsackCapacity), and memory complexity like O(knapsackCapacity) (credits to this post for that)
If you are asking what is preferred, that is subject specific. If you want a good enough guess quickly, GA is probably the way to go. But if you need a guaranteed and verifiable solution, DP is the way to go.
This should satisfy a basic comparison.

Confused about the definition of "Exact Algorithm"

What does it mean by saying "an algorithm is exact" in terms of Optimization and/or Computer Science? I need a precisely logical/epistemological definition.
Exact and approximate algorithms are methods for solving optimization problems.
Exact algorithms are algorithms that always find the optimal solution to a given optimization problem.
However, in combinatorial problems or total optimization problems, conventional methods are usually not effective enough, especially when the problem search area is large and complex. Among other methods we can use heuristics to solve that problems. Heuristics tend to give suboptimal solutions. A subset of heuristics are approximation algorithms.
When we use approximation algorithms we can prove a bound on the ratio between the optimal solution and the solution produced by the algorithm.
E.g. In some NP-hard problems there are some polynomial-time approximation algorithms while the best known exact algorithms need exponential time.
For example while there is a polynomial-time approximation algorithm for Vertex Cover, the best exact algorithm (using memoization) runs in O(1.1889n) pp 62-63.
The term exact is usually used to mean "the opposite of approximate". An approximation algorithm finds a solution to a slight variation of an optimzation problem that admits soltions that are "close" to the optimum in some sense, but nonetheless are desirable. As #Sirko said in the comments, the approximation is usually of interest because the exact problem is intractable or undecidable, where the approximate version is not. Often, more than one kind of approximation may be of interest.
Here are examples:
An exact algorithm for the Traveling Salesman problem is NP Complete. The TSP is to find a route of minimum length L for visiting each of N cities on a map. NP Completeness says the best known algorithms still need time that is an exponential function of N. An approximation algorithm for TSP finds a route of length no more than cL for some fixed c > 1. For example, you can easily construct the minimum spanning tree of the cities in time that is a polynomial in N and walk around the tree, covering each edge twice, to obtain an approximatoin algorithm for the case c = 2. The implied goal is to find algorithms for constants c as close to one as possible.
An exact algorithm for compiling a program that produces correct results in minimum time from any given source code is - under reasonable assumptions - undecidable. Yet of course we use "optimizing compilers" every day that improve the speed of code with no promise of true optimality.
In optimization, there are two kinds of algorithms. Exact and approximate algorithms.
Exact algorithms can find the optimum solution with precision.
Approximate algorithms can find a near optimum solution.
The main difference is that exact algorithms apply in "easy" problems.
What makes a problem "easy" is that it can be solved in reasonable time and the computation time doesn't scale up exponentially if the problem gets bigger. This class of problems is known as P(Deterministic Polynomial Time). Problems of this class are used to be optimized using exact algorithms.
For every other class of problems approximate algorithms are preferred.

Minimum Bandwidth Problem

I'm interesting the NP-complete "minimum bandwidth" problem for finding the minimum bandwidth of a graph. For those not familiar, here is a link about it...
http://en.wikipedia.org/wiki/Graph_bandwidth
I've implemented the Cuthill-McKee algorithm, and this was very successful at giving me a permutation of the vertices in which the bandwidth was reduced; however, I'm looking for the minimum bandwidth, not just a reduced bandwidth that is close. If any of you have experience with this problem, what algorithms provide solutions that are the minimum and not just reduced? I don't need actual implementation of any algorithm, I just want suggestions for what algorithms to research that yield actual minimum bandwidths.
That's interesting problem, but when I read Wiki (your link):
Both the unweighted and weighted
versions are special cases of the
quadratic bottleneck assignment
problem. The bandwidth problem is
NP-hard, even for some special
cases.[4] Regarding the existence of
efficient approximation algorithms, it
is known that the bandwidth is NP-hard
to approximate within any constant,
and this even holds when the input
graphs are restricted to caterpillar
trees (Dubey, Feige & Unger 2010). On
the other hand, a number of
polynomially-solvable special cases
are known.
So wiki says it's NP-Hard to approximate it with any constant (So there is no PTAS for this problem) and your chance is just use heuristic algorithms, sure brute force algorithm works, (numbering node with numbers between 1..n randomly in startup, after that use brute force) but you should spend 1000 year to solve it for caterpillar.
You should search for heuristic algorithms, not approximation and exact algorithms.
As it is NP complete you have to use some kind of "brute force" algorith. So mainly you have the different brute force as option, e.g. like branch-and-bound or linear programming (its LIP, so its in NP).
As it is NP complete you can also take every solution to a different NP complete problem (TSP, SAT,...) by transforming the problem instance from the NP-completeness proof, apply the algorith, and transform it back.
The simplest improvement you can do, is probably to take the result of your Cuthill-McKee algorithm and throw Tabu Search on it.
See this answer for an overview on some of the algorithms that can be applied.

What is the difference between a heuristic and an algorithm?

What is the difference between a heuristic and an algorithm?
An algorithm is the description of an automated solution to a problem. What the algorithm does is precisely defined. The solution could or could not be the best possible one but you know from the start what kind of result you will get. You implement the algorithm using some programming language to get (a part of) a program.
Now, some problems are hard and you may not be able to get an acceptable solution in an acceptable time. In such cases you often can get a not too bad solution much faster, by applying some arbitrary choices (educated guesses): that's a heuristic.
A heuristic is still a kind of an algorithm, but one that will not explore all possible states of the problem, or will begin by exploring the most likely ones.
Typical examples are from games. When writing a chess game program you could imagine trying every possible move at some depth level and applying some evaluation function to the board. A heuristic would exclude full branches that begin with obviously bad moves.
In some cases you're not searching for the best solution, but for any solution fitting some constraint. A good heuristic would help to find a solution in a short time, but may also fail to find any if the only solutions are in the states it chose not to try.
An algorithm is typically deterministic and proven to yield an optimal result
A heuristic has no proof of correctness, often involves random elements, and may not yield optimal results.
Many problems for which no efficient algorithm to find an optimal solution is known have heuristic approaches that yield near-optimal results very quickly.
There are some overlaps: "genetic algorithms" is an accepted term, but strictly speaking, those are heuristics, not algorithms.
Heuristic, in a nutshell is an "Educated guess". Wikipedia explains it nicely. At the end, a "general acceptance" method is taken as an optimal solution to the specified problem.
Heuristic is an adjective for
experience-based techniques that help
in problem solving, learning and
discovery. A heuristic method is used
to rapidly come to a solution that is
hoped to be close to the best possible
answer, or 'optimal solution'.
Heuristics are "rules of thumb",
educated guesses, intuitive judgments
or simply common sense. A heuristic is
a general way of solving a problem.
Heuristics as a noun is another name
for heuristic methods.
In more precise terms, heuristics
stand for strategies using readily
accessible, though loosely applicable,
information to control problem solving
in human beings and machines.
While an algorithm is a method containing finite set of instructions used to solving a problem. The method has been proven mathematically or scientifically to work for the problem. There are formal methods and proofs.
Heuristic algorithm is an algorithm that is able to produce an
acceptable solution to a problem in
many practical scenarios, in the
fashion of a general heuristic, but
for which there is no formal proof of
its correctness.
An algorithm is a self-contained step-by-step set of operations to be performed 4, typically interpreted as a finite sequence of (computer or human) instructions to determine a solution to a problem such as: is there a path from A to B, or what is the smallest path between A and B. In the latter case, you could also be satisfied with a 'reasonably close' alternative solution.
There are certain categories of algorithms, of which the heuristic algorithm is one. Depending on the (proven) properties of the algorithm in this case, it falls into one of these three categories (note 1):
Exact: the solution is proven to be an optimal (or exact solution) to the input problem
Approximation: the deviation of the solution value is proven to be never further away from the optimal value than some pre-defined bound (for example, never more than 50% larger than the optimal value)
Heuristic: the algorithm has not been proven to be optimal, nor within a pre-defined bound of the optimal solution
Notice that an approximation algorithm is also a heuristic, but with the stronger property that there is a proven bound to the solution (value) it outputs.
For some problems, noone has ever found an 'efficient' algorithm to compute the optimal solutions (note 2). One of those problems is the well-known Traveling Salesman Problem. Christophides' algorithm for the Traveling Salesman Problem, for example, used to be called a heuristic, as it was not proven that it was within 50% of the optimal solution. Since it has been proven, however, Christophides' algorithm is more accurately referred to as an approximation algorithm.
Due to restrictions on what computers can do, it is not always possible to efficiently find the best solution possible. If there is enough structure in a problem, there may be an efficient way to traverse the solution space, even though the solution space is huge (i.e. in the shortest path problem).
Heuristics are typically applied to improve the running time of algorithms, by adding 'expert information' or 'educated guesses' to guide the search direction. In practice, a heuristic may also be a sub-routine for an optimal algorithm, to determine where to look first.
(note 1): Additionally, algorithms are characterised by whether they include random or non-deterministic elements. An algorithm that always executes the same way and produces the same answer, is called deterministic.
(note 2): This is called the P vs NP problem, and problems that are classified as NP-complete and NP-hard are unlikely to have an 'efficient' algorithm. Note; as #Kriss mentioned in the comments, there are even 'worse' types of problems, which may need exponential time or space to compute.
There are several answers that answer part of the question. I deemed them less complete and not accurate enough, and decided not to edit the accepted answer made by #Kriss
Actually I don't think that there is a lot in common between them. Some algorithm use heuristics in their logic (often to make fewer calculations or get faster results). Usually heuristics are used in the so called greedy algorithms.
Heuristics is some "knowledge" that we assume is good to use in order to get the best choice in our algorithm (when a choice should be taken). For example ... a heuristics in chess could be (always take the opponents' queen if you can, since you know this is the stronger figure). Heuristics do not guarantee you that will lead you to the correct answer, but (if the assumptions is correct) often get answer which are close to the best in much shorter time.
An Algorithm is a clearly defined set of instructions to solve a problem, Heuristics involve utilising an approach of learning and discovery to reach a solution.
So, if you know how to solve a problem then use an algorithm. If you need to develop a solution then it's heuristics.
Heuristics are algorithms, so in that sense there is none, however, heuristics take a 'guess' approach to problem solving, yielding a 'good enough' answer, rather than finding a 'best possible' solution.
A good example is where you have a very hard (read NP-complete) problem you want a solution for but don't have the time to arrive to it, so have to use a good enough solution based on a heuristic algorithm, such as finding a solution to a travelling salesman problem using a genetic algorithm.
Algorithm is a sequence of some operations that given an input computes something (a function) and outputs a result.
Algorithm may yield an exact or approximate values.
It also may compute a random value that is with high probability close to the exact value.
A heuristic algorithm uses some insight on input values and computes not exact value (but may be close to optimal).
In some special cases, heuristic can find exact solution.
A heuristic is usually an optimization or a strategy that usually provides a good enough answer, but not always and rarely the best answer. For example, if you were to solve the traveling salesman problem with brute force, discarding a partial solution once its cost exceeds that of the current best solution is a heuristic: sometimes it helps, other times it doesn't, and it definitely doesn't improve the theoretical (big-oh notation) run time of the algorithm
I think Heuristic is more of a constraint used in Learning Based Model in Artificial Intelligent since the future solution states are difficult to predict.
But then my doubt after reading above answers is
"How would Heuristic can be successfully applied using Stochastic Optimization Techniques? or can they function as full fledged algorithms when used with Stochastic Optimization?"
http://en.wikipedia.org/wiki/Stochastic_optimization
One of the best explanations I have read comes from the great book Code Complete, which I now quote:
A heuristic is a technique that helps you look for an answer. Its
results are subject to chance because a heuristic tells you only how
to look, not what to find. It doesn’t tell you how to get directly
from point A to point B; it might not even know where point A and
point B are. In effect, a heuristic is an algorithm in a clown suit.
It’s less predict- able, it’s more fun, and it comes without a 30-day,
money-back guarantee.
Here is an algorithm for driving to someone’s house: Take Highway 167
south to Puy-allup. Take the South Hill Mall exit and drive 4.5 miles
up the hill. Turn right at the light by the grocery store, and then
take the first left. Turn into the driveway of the large tan house on
the left, at 714 North Cedar.
Here’s a heuristic for getting to someone’s house: Find the last
letter we mailed you. Drive to the town in the return address. When
you get to town, ask someone where our house is. Everyone knows
us—someone will be glad to help you. If you can’t find anyone, call us
from a public phone, and we’ll come get you.
The difference between an algorithm and a heuristic is subtle, and the
two terms over-lap somewhat. For the purposes of this book, the main
difference between the two is the level of indirection from the
solution. An algorithm gives you the instructions directly. A
heuristic tells you how to discover the instructions for yourself, or
at least where to look for them.
They find a solution suboptimally without any guarantee as to the quality of solution found, it is obvious that it makes sense to the development of heuristics only polynomial. The application of these methods is suitable to solve real world problems or large problems so awkward from the computational point of view that for them there is not even an algorithm capable of finding an approximate solution in polynomial time.

Resources