Am I inserting into a max heap properly? - data-structures

I'm studying for my final, and am not sure if I am inserting the values 6, 7, 57, 54, 96, 3, 9, 4, 2, 8, 32 properly. I end up with a tree looking like:
96
/ \
57 9
/ \ / \
6 54 3 7
/ \ / \
4 2 8 32
Can anyone tell me if this is correct, or if it's not point out where I messed up? Thanks!

It is correct. Why do you think you messed up anyway?

Yes you're solution is correct
As long as you add the new element at the end of the list which represents a binary heap, then apply heapify on that element.
Heapify should compare the element with its' parent and if it is greater, it should swap these elements and keep going until you reach the root.
here are some stages:
6 --> 7 --> 57
/ / \
6 6 7
Here is a java example:
public class BinaryMinHeap {
public void insert(int value) {
if (heapSize == data.length)
throw new HeapException("Heap's underlying storage is overflow");
else {
heapSize++;
data[heapSize - 1] = value;
heapify(heapSize - 1);
}
}
…
private void heapify(int nodeIndex) {
int parentIndex, tmp;
if (nodeIndex != 0) {
parentIndex = getParentIndex(nodeIndex);
if (data[parentIndex] < data[nodeIndex]) {
tmp = data[parentIndex];
data[parentIndex] = data[nodeIndex];
data[nodeIndex] = tmp;
heapify(parentIndex);
}
}
}
}
code source: here

Related

How does the Root Method Work in Quick-Union? [duplicate]

I've been studying the quick union algorithm. the code below was the example for the implementation.
Can someone explain to me what happens inside the root method please?
public class quickUnion {
private int[] id;
public void QuickUnionUF(int N){
id = new int [N];
for(int i = 0; i < N; i++){
id[i] = i;
}
}
private int root(int i){
while (i != id[i]){
i = id[i];
}
return i;
}
public boolean connected(int p, int q){
return root(p) == root(q);
}
public void union(int p, int q){
int i = root(p);
int j = root(q);
id[i] = j;
}
}
The core principle of union find is that each element belongs to a disjoint set of elements. This means that, if you draw a forest (set of trees), the forest will contain all the elements, and no element will be in two different trees.
When building these trees, you can imagine that any node either has a parent or is the root. In this implementation of union find (and in most union find implementations), the parent of each element is stored in an array at that element's index. Thus the element equivalent to id[i] is the parent of i.
You might ask: what if i has no parent (aka is a root)? In this case, the convention is to set i to itself (i is its own parent). Thus, id[i] == i simply checks if we have reached the root of the tree.
Putting this all together, the root function traverses, from the start node, all the way up the tree (parent by parent) until it reaches the root. Then it returns the root.
As an aside:
In order for this algorithm to get to the root more quickly, general implementations will 'flatten' the tree: the fewer parents you need to get through to get to the root, the faster the root function will return. Thus, in many implementations, you will see an additional step where you set the parent of an element to its original grandparent (id[i] = id[id[i]]).
The main point of algorithm here is: always keep root of one vertex equals to itself.
Initialization: Init id[i] = i. Each vertex itself is a root.
Merge Root:
If we merge root 5 and root 6. Assume that we want to merge root 6 into root 5. So id[6] = 5. id[5] = 5. --> 5 is root.
If we continue to merge 4 to 6. id[4] = 4 -> base root. id[6] = 5. -> not base root. We continue to find: id[5] = 5 -> base root. so we assign id[4] = 6
In all cases, we always keep convention: if x is base root, id[x] == x That is the main point of algorithm.
From Pdf file provided in the course Union find
Root of i is id[id[id[...id[i]...]]].
according to the given example
public int root(int p){
while(p != id[p]){
p = id[p];
}
return p;
}
lets consider a situation :
The elements of id[] would look like
Now lets call
root(3)
The dry run of loop inside root method is:
To understand the role of the root method, one needs to understand how this data structure is helping to organise values into disjoint sets.
It does so by building trees. Whenever two independent values 𝑝 and 𝑞 are said to belong to the same set, 𝑝 is made a child of 𝑞 (which then is the parent of 𝑝). If however 𝑝 already has a parent, then we first move to that parent of 𝑝, and the parent of that parent, ...until we find an ancestor which has no parent. This is root(p), lets call it 𝑝'. We do the same with 𝑞 if it has a parent. Let's call that ancestor 𝑞'. Finally, 𝑝' is made a child 𝑞'. By doing that, we implicitly make the original 𝑝 and 𝑞 members of the same tree.
How can we know that 𝑝 and 𝑞 are members of the same tree? By looking up their roots. If they happen to have the same root, then they are necessarily in the same tree, i.e. they belong to the same set.
Example
Let's look at an example run:
QuickUnionUF array = new QuickUnionUF(10);
This will create the following array:
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
This array represents edges. The from-side of an edge is the index in the array (0..9), and the to-side of the same edge is the value found at that index (also 0..9). As you can see the array is initialised in a way that all edges are self-references (loops). You could say that every value is the root of its own tree (which has no other values).
Calling root on any of the values 0..9, will return the same number, as for all i we have id[i] == i. So at this stage root does not give us much.
Now, let's indicate that two values actually belong to the same set:
array.union(2, 9);
This will result in the assignment id[2] = 9 and so we get this array:
[0, 1, 9, 3, 4, 5, 6, 7, 8, 9]
Graphically, this established link be represented as:
9
/
2
If now we call root(2) we will get 9 as return value. This tells us that 2 is in the same set (i.e. tree) as 9, and 9 happens to get the role of root of that tree (that was an arbitrary choice; it could also have been 2).
Let's also link 3 and 4 together. This is a very similar case as above:
array.union(3, 4);
This assigns id[3] = 4 and results in this array and tree representation:
[0, 1, 9, 4, 4, 5, 6, 7, 8, 9]
9 4
/ /
2 3
Now let's make it more interesting. Let's indicate that 4 and 9 belong to the same set:
array.union(4, 9);
Still root(4) and root(9) just return those same numbers (4 and 9). Nothing special yet... The assignment is id[4] = 9. This results in this array and graph:
[0, 1, 9, 4, 9, 5, 6, 7, 8, 9]
9
/ \
2 4
/
3
Note how this single assignment has joined two distinct trees into one tree. If now we want to check whether 2 and 3 are in the same tree, we call
if (connected(2, 3)) /* do something */
Although we never said 2 and 3 belonged to the same set explicitly, it should be implied from the previous actions. connected will now use calls to root to imply that fact. root(2) will return 9, and also root(3) will return 9. We get to see what root is doing... it is walking upwards in the graph towards the root node of the tree it is in. The array has all the information needed to make that walk. Given an index we can read in the array which is the parent (index) of that number. This may have to be repeated to get to the grandparent, ...etc: It can be a short or long walk, depending how many "edges" there are between the given node and the root of the tree it is in.
/**
* Quick Find Java Implementation Eager's Approach
*/
package com.weekone.union.quickfind;
import java.util.Random;
/**
* #author Ishwar Singh
*
*/
public class UnionQuickFind {
private int[] itemsArr;
public UnionQuickFind() {
System.out.println("Calling: " + UnionQuickFind.class);
}
public UnionQuickFind(int n) {
itemsArr = new int[n];
}
// p and q are indexes
public void unionOperation(int p, int q) {
// displayArray(itemsArr);
int tempValue = itemsArr[p];
if (!isConnected(p, q)) {
itemsArr[p] = itemsArr[q];
for (int i = 0; i < itemsArr.length; i++) {
if (itemsArr[i] == tempValue) {
itemsArr[i] = itemsArr[q];
}
}
displayArray(p, q);
} else {
displayArray(p, q, "Already Connected");
}
}
public boolean isConnected(int p, int q) {
return (itemsArr[p] == itemsArr[q]);
}
public void connected(int p, int q) {
if (isConnected(p, q)) {
displayArray(p, q, "Already Connected");
} else {
displayArray(p, q, "Not Connected");
}
}
private void displayArray(int p, int q) {
// TODO Auto-generated method stub
System.out.println();
System.out.print("{" + p + " " + q + "} -> ");
for (int i : itemsArr) {
System.out.print(i + ", ");
}
}
private void displayArray(int p, int q, String message) {
System.out.println();
System.out.print("{" + p + " " + q + "} -> " + message);
}
public void initializeArray() {
Random random = new Random();
for (int i = 0; i < itemsArr.length; i++) {
itemsArr[i] = random.nextInt(9);
}
}
public void initializeArray(int[] receivedArr) {
itemsArr = receivedArr;
}
public void displayArray() {
System.out.println("INDEXES");
System.out.print("{p q} -> ");
for (int i : itemsArr) {
System.out.print(i + ", ");
}
System.out.println();
}
}
Main Class:-
/**
*
*/
package com.weekone.union.quickfind;
/**
* #author Ishwar Singh
*
*/
public class UQFClient {
/**
* #param args
*/
public static void main(String[] args) {
int[] arr = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
int n = 10;
UnionQuickFind unionQuickFind = new UnionQuickFind(n);
// unionQuickFind.initializeArray();
unionQuickFind.initializeArray(arr);
unionQuickFind.displayArray();
unionQuickFind.unionOperation(4, 3);
unionQuickFind.unionOperation(3, 8);
unionQuickFind.unionOperation(6, 5);
unionQuickFind.unionOperation(9, 4);
unionQuickFind.unionOperation(2, 1);
unionQuickFind.unionOperation(8, 9);
unionQuickFind.connected(5, 0);
unionQuickFind.unionOperation(5, 0);
unionQuickFind.connected(5, 0);
unionQuickFind.unionOperation(7, 2);
unionQuickFind.unionOperation(6, 1);
}
}
Output:
INDEXES
{p q} -> 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
{4 3} -> 0, 1, 2, 3, 3, 5, 6, 7, 8, 9,
{3 8} -> 0, 1, 2, 8, 8, 5, 6, 7, 8, 9,
{6 5} -> 0, 1, 2, 8, 8, 5, 5, 7, 8, 9,
{9 4} -> 0, 1, 2, 8, 8, 5, 5, 7, 8, 8,
{2 1} -> 0, 1, 1, 8, 8, 5, 5, 7, 8, 8,
{8 9} -> Already Connected
{5 0} -> Not Connected
{5 0} -> 0, 1, 1, 8, 8, 0, 0, 7, 8, 8,
{5 0} -> Already Connected
{7 2} -> 0, 1, 1, 8, 8, 0, 0, 1, 8, 8,
{6 1} -> 1, 1, 1, 8, 8, 1, 1, 1, 8, 8,

How many white keys are between two keys?

Let's take a look at these types:
public enum KeyTone : int
{
C = 0,
Cs = 1,
D = 2,
Ds = 3,
E = 4,
F = 5,
Fs = 6,
G = 7,
Gs = 8,
A = 9,
As = 10,
H = 11
}
public class PianoKey
{
public KeyTone Tone { get; set; }
public int Octave { get; set; }
}
PianoKey represents a - well, you guessed - key on the piano. I need to check, how many white keys (e.g. these without "s" suffix) are between two specified white keys. The problem is that keyboard is not regular and there are no black keys between E and F and between H and C from the next octave.
There is an obvious brute-force solution - to jump to next white key until the requested second key is reached. But maybe there is some simpler way to calculate that?
First, calculate the base tone for a given key (I assume all keys to be represented by their integers):
if tone <= KeyTone.E
baseTone = tone / 2
else
baseTone = (tone + 1) / 2
Then, add the octave:
baseTone += Octave * 7
Then, you can find the difference in white keys by simple subtraction:
diffInWhiteKeys = baseTone(key1) - baseTone(key2)
E.g. the difference between E2 and G3 is:
baseTone(E2) = 4 / 2 + 2 * 7 = 16
baseTone(G3) = (7 + 1) / 2 + 3 * 7 = 25
diff = 24 - 16 = 9
, which is exactly the number of white keys you have to advance from E2 to reach G3. If you're interested in the number of white keys between to keys, just subtract one.
Create two static arrays that map
each black key to the next white key to the left or right,
and each white key to itself,
numbering white keys from 0 to 6.
static int[] whiteLeft = new int[] {0, 0, 1, 1, 2, 3, 3, 4, 4, 5, 5, 6};
static int[] whiteRight = new int[] {0, 1, 1, 2, 2, 3, 4, 4, 5, 5, 6, 6};
Then the number of white keys between two keys can be computed as simple as
public static int WhiteKeysBetween(PianoKey left, PianoKey right)
{
int wl = whiteLeft[(int)left.Tone];
int wr = whiteRight[(int)right.Tone];
return (right.Octave - left.Octave) * 7 + (wr - wl - 1);
}
Edit: This also works for white keys between any two keys (white or black). I didn't realize that the problem statement only asks for white keys between white keys.

find all subsets that sum to x - using an initial code

I am trying to build upon a problem, to solve another similar problem... given below is a code for finding the total number of subsets that sum to a particular value, and I am trying to modify the code so that I can return all subsets that sum to that value (instead of finding the count).
Code for finding the total number of suibsets that sum to 'sum':
/**
* method to return number of sets with a given sum.
**/
public static int count = 0;
public static void countSubsetSum2(int arr[], int k, int sum) {
if(sum == 0) {
count++;
return;
}
if(sum != 0 && k == 0) {
return;
}
if(sum < arr[k - 1]) {
countSubsetSum2(arr, k-1, sum);
}
countSubsetSum2(arr, k-1, sum - arr[k-1]);
countSubsetSum2(arr, k-1, sum);
}
Can someone propose some changes to this code, to make it return the subsets rather than the subset count?
Firstly, your code isn't correct.
The function, at every step, recurses with the sum excluding and including the current element 1, moving on to the next element, thanks to these lines:
countSubsetSum2(arr, k-1, sum - arr[k-1]);
countSubsetSum2(arr, k-1, sum);
But then there's also this:
if(sum < arr[k - 1]) {
countSubsetSum2(arr, k-1, sum);
}
which causes it to recurse twice with the sum excluding the current element under some circumstances (which it should never do).
Essentially you just need to remove that if-statement.
If all the elements are positive and sum - arr[k-1] < 0, we'd keep going, but we can never get a sum of 0 since the sum can't increase, thus we'd be doing a lot of unnecessary work. So, if the elements are all positive, we can add a check for if(arr[k - 1] <= sum) to the first call to improve the running time. If the elements aren't all positive, the code won't find all sums.
Now on to printing the sums
If you understand the code well, changing it to print the sums instead should be pretty easy. I suggest you work on understanding it a bit more - trace what the program will do by hand, then trace what you want the program to do.
And a hint for solving the actual problem: On noting that countSubsetSum2(arr, k-1, sum - arr[k-1]); recurses with the sum including the current element (and the other recursive call recurses with the sum excluding the current element), what you should do should become clear.
1: Well, technically it's reversed (we start with the target sum and decrease to 0 instead of starting at 0 and increasing to sum), but the same idea is there.
This is the code that works:
import java.util.LinkedList;
import java.util.Iterator;
import java.util.List;
public class subset{
public static int count = 0;
public static List list = new LinkedList();
public static void countSubsetSum2(int arr[], int k, int sum) {
if(sum <= 0 || k < 0) {
count++;
return;
}
if(sum == arr[k]) {
System.out.print(arr[k]);
for(Iterator i = list.iterator(); i.hasNext();)
System.out.print("\t" + i.next());
System.out.println();
}
list.add(arr[k]);
countSubsetSum2(arr, k-1, sum - arr[k]);
list.remove(list.size() - 1);
countSubsetSum2(arr, k-1, sum);
}
public static void main(String[] args)
{
int [] array = {1, 4, 5, 6};
countSubsetSum2(array, 3, 10);
}
}
First off, the code you have there doesn't seem to actually work (I tested it on input [1,2,3, ..., 10] with a sum of 3 and it output 128).
To get it working, first note that you implemented the algorithm in a pretty unorthodox way. Mathematical functions take input and produce output. (Arguably) the most elegant programming functions should also take input and produce output because then we can reason about them as we reason about math.
In your case you don't produce any output (the return type is void) and instead store the result in a static variable. This means it's hard to tell exactly what it means to call countSubsetSum2. In particular, what happens if you call it multiple times? It does something different each time (because the count variable will have a different starting value!) Instead, if you write countSubsetSum2 so that it returns a value then you can define its behavior to be: countSubsetSum2 returns the number of subsets of the input arr[0...k] that sum to sum. And then you can try proving why your implementation meets that specification.
I'm not doing the greatest job of explaining, but I think a more natural way to write it would be:
// Algorithm stops once k is the least element in the array
if (k == 0) {
if (sum == 0 || sum == arr[k]) {
// Either we can sum to "sum"
return 1;
}
else {
// Or we can't sum to "sum"
return 0;
}
}
// Otherwise, let's recursively see if we can sum to "sum"
// Any valid subset either includes arr[k]
return countSubsetSum2(arr, k-1, sum - arr[k]) +
// Or it doesn't
countSubsetSum2(arr, k-1, sum);
As described above, this function takes an input and outputs a value that we can define and prove to be true mathematically (caveat: it's usually not quite a proof because there are crazy edge cases in most programming languages unfortunately).
Anyways, to get back to your question. The issue with the above code is that it doesn't store any data... it just returns the count. Instead, let's generate the actual subsets while we're generating them. In particular, when I say Any valid subset either includes arr[k] I mean... the subset we're generating includes arr[k]; so add it. Below I assumed that the code you wrote above is java-ish. Hopefully it makes sense:
// Algorithm stops once k is the least element in the array
if (k == 0) {
if (sum == 0 || sum == arr[k]) {
// Either we can sum to "sum" using just arr[0]
// So return a list of all of the subsets that sum to "sum"
// There are actually a few edge cases here, so we need to be careful
List<Set<int>> ret = new List<Set<int>>();
// First consider if the singleton containing arr[k] could equal sum
if (sum == arr[k])
{
Set<int> subSet = new Subset<int>();
subSet.Add(arr[k]);
ret.Add(subSet);
}
// Now consider the empty set
if (sum == 0)
{
Set<int> subSet = new Subset<int>();
ret.Add(subSet);
}
return ret;
}
else {
// Or we can't sum to "sum" using just arr[0]
// So return a list of all of the subsets that sum to "sum". None
// (given our inputs!)
List<Set<int>> ret = new List<Set<int>>();
return ret;
}
}
// Otherwise, let's recursively generate subsets summing to "sum"
// Any valid subset either includes arr[k]
List<Set<int>> subsetsThatNeedKthElement = genSubsetSum(arr, k-1, sum - arr[k]);
// Or it doesn't
List<Set<int>> completeSubsets = genSubsetSum(arr, k-1, sum);
// Note that subsetsThatNeedKthElement only sum to "sum" - arr[k]... so we need to add
// arr[k] to each of those subsets to create subsets which sum to "sum"
// On the other hand, completeSubsets contains subsets which already sum to "sum"
// so they're "complete"
// Initialize it with the completed subsets
List<Set<int>> ret = new List<Set<int>>(completeSubsets);
// Now augment the incomplete subsets and add them to the final list
foreach (Set<int> subset in subsetsThatNeedKthElement)
{
subset.Add(arr[k]);
ret.Add(subset);
}
return ret;
The code is pretty cluttered with all the comments; but the key point is that this implementation always returns what it's specified to return (a list of sets of ints from arr[0] to arr[k] which sum to whatever sum was passed in).
FYI, there is another approach which is "bottom-up" (i.e. doesn't use recursion) which should be more performant. If you implement it that way, then you need to store extra data in static state (a "memoized table")... which is a bit ugly but practical. However, when you implement it this way you need to have a more clever way of generating the subsets. Feel free to ask that question in a separate post after giving it a try.
Based, on the comments/suggestions here, I have been able to get the solution for this problem in this way:
public static int counter = 0;
public static List<List<Integer>> lists = new ArrayList<>();
public static void getSubsetCountThatSumToTargetValue(int[] arr, int k, int targetSum, List<Integer> list) {
if(targetSum == 0) {
counter++;
lists.add(list);
return;
}
if(k <= 0) {
return;
}
getSubsetCountThatSumToTargetValue(arr, k - 1, targetSum, list);
List<Integer> appendedlist = new ArrayList<>();
appendedlist.addAll(list);
appendedlist.add(arr[k - 1]);
getSubsetCountThatSumToTargetValue(arr, k - 1, targetSum - arr[k - 1], appendedlist);
}
The main method looks like this:
public static void main(String[] args) {
int[] arr = {1, 2, 3, 4, 5};
SubSetSum.getSubsetCountThatSumToTargetValue(arr, 5, 9, new ArrayList<Integer>());
System.out.println("Result count: " + counter);
System.out.println("lists: " + lists);
}
Output:
Result: 3
lists: [[4, 3, 2], [5, 3, 1], [5, 4]]
A Python implementation with k moving from 0 to len() - 1:
import functools
def sum_of_subsets( numbers, sum_original ):
def _sum_of_subsets( list, k, sum ):
if sum < 0 or k == len( numbers ):
return
if ( sum == numbers[ k ] ):
expression = functools.reduce( lambda result, num: str( num ) if len( result ) == 0 else \
"%s + %d" % ( result, num ),
sorted( list + [ numbers[ k ]] ),
'' )
print "%d = %s" % ( sum_original, expression )
return
list.append( numbers[ k ] )
_sum_of_subsets( list, k + 1, sum - numbers[ k ])
list.pop( -1 )
_sum_of_subsets( list, k + 1, sum )
_sum_of_subsets( [], 0, sum_original )
...
sum_of_subsets( [ 8, 6, 3, 4, 2, 5, 7, 1, 9, 11, 10, 13, 12, 14, 15 ], 15 )
...
15 = 1 + 6 + 8
15 = 3 + 4 + 8
15 = 1 + 2 + 4 + 8
15 = 2 + 5 + 8
15 = 7 + 8
15 = 2 + 3 + 4 + 6
15 = 1 + 3 + 5 + 6
15 = 4 + 5 + 6
15 = 2 + 6 + 7
15 = 6 + 9
15 = 1 + 2 + 3 + 4 + 5
15 = 1 + 3 + 4 + 7
15 = 1 + 2 + 3 + 9
15 = 2 + 3 + 10
15 = 3 + 5 + 7
15 = 1 + 3 + 11
15 = 3 + 12
15 = 2 + 4 + 9
15 = 1 + 4 + 10
15 = 4 + 11
15 = 1 + 2 + 5 + 7
15 = 1 + 2 + 12
15 = 2 + 13
15 = 1 + 5 + 9
15 = 5 + 10
15 = 1 + 14
15 = 15

Finding all possible combinations of numbers to reach a given sum

How would you go about testing all possible combinations of additions from a given set N of numbers so they add up to a given final number?
A brief example:
Set of numbers to add: N = {1,5,22,15,0,...}
Desired result: 12345
This problem can be solved with a recursive combinations of all possible sums filtering out those that reach the target. Here is the algorithm in Python:
def subset_sum(numbers, target, partial=[]):
s = sum(partial)
# check if the partial sum is equals to target
if s == target:
print "sum(%s)=%s" % (partial, target)
if s >= target:
return # if we reach the number why bother to continue
for i in range(len(numbers)):
n = numbers[i]
remaining = numbers[i+1:]
subset_sum(remaining, target, partial + [n])
if __name__ == "__main__":
subset_sum([3,9,8,4,5,7,10],15)
#Outputs:
#sum([3, 8, 4])=15
#sum([3, 5, 7])=15
#sum([8, 7])=15
#sum([5, 10])=15
This type of algorithms are very well explained in the following Stanford's Abstract Programming lecture - this video is very recommendable to understand how recursion works to generate permutations of solutions.
Edit
The above as a generator function, making it a bit more useful. Requires Python 3.3+ because of yield from.
def subset_sum(numbers, target, partial=[], partial_sum=0):
if partial_sum == target:
yield partial
if partial_sum >= target:
return
for i, n in enumerate(numbers):
remaining = numbers[i + 1:]
yield from subset_sum(remaining, target, partial + [n], partial_sum + n)
Here is the Java version of the same algorithm:
package tmp;
import java.util.ArrayList;
import java.util.Arrays;
class SumSet {
static void sum_up_recursive(ArrayList<Integer> numbers, int target, ArrayList<Integer> partial) {
int s = 0;
for (int x: partial) s += x;
if (s == target)
System.out.println("sum("+Arrays.toString(partial.toArray())+")="+target);
if (s >= target)
return;
for(int i=0;i<numbers.size();i++) {
ArrayList<Integer> remaining = new ArrayList<Integer>();
int n = numbers.get(i);
for (int j=i+1; j<numbers.size();j++) remaining.add(numbers.get(j));
ArrayList<Integer> partial_rec = new ArrayList<Integer>(partial);
partial_rec.add(n);
sum_up_recursive(remaining,target,partial_rec);
}
}
static void sum_up(ArrayList<Integer> numbers, int target) {
sum_up_recursive(numbers,target,new ArrayList<Integer>());
}
public static void main(String args[]) {
Integer[] numbers = {3,9,8,4,5,7,10};
int target = 15;
sum_up(new ArrayList<Integer>(Arrays.asList(numbers)),target);
}
}
It is exactly the same heuristic. My Java is a bit rusty but I think is easy to understand.
C# conversion of Java solution: (by #JeremyThompson)
public static void Main(string[] args)
{
List<int> numbers = new List<int>() { 3, 9, 8, 4, 5, 7, 10 };
int target = 15;
sum_up(numbers, target);
}
private static void sum_up(List<int> numbers, int target)
{
sum_up_recursive(numbers, target, new List<int>());
}
private static void sum_up_recursive(List<int> numbers, int target, List<int> partial)
{
int s = 0;
foreach (int x in partial) s += x;
if (s == target)
Console.WriteLine("sum(" + string.Join(",", partial.ToArray()) + ")=" + target);
if (s >= target)
return;
for (int i = 0; i < numbers.Count; i++)
{
List<int> remaining = new List<int>();
int n = numbers[i];
for (int j = i + 1; j < numbers.Count; j++) remaining.Add(numbers[j]);
List<int> partial_rec = new List<int>(partial);
partial_rec.Add(n);
sum_up_recursive(remaining, target, partial_rec);
}
}
Ruby solution: (by #emaillenin)
def subset_sum(numbers, target, partial=[])
s = partial.inject 0, :+
# check if the partial sum is equals to target
puts "sum(#{partial})=#{target}" if s == target
return if s >= target # if we reach the number why bother to continue
(0..(numbers.length - 1)).each do |i|
n = numbers[i]
remaining = numbers.drop(i+1)
subset_sum(remaining, target, partial + [n])
end
end
subset_sum([3,9,8,4,5,7,10],15)
Edit: complexity discussion
As others mention this is an NP-hard problem. It can be solved in exponential time O(2^n), for instance for n=10 there will be 1024 possible solutions. If the targets you are trying to reach are in a low range then this algorithm works. So for instance:
subset_sum([1,2,3,4,5,6,7,8,9,10],100000) generates 1024 branches because the target never gets to filter out possible solutions.
On the other hand subset_sum([1,2,3,4,5,6,7,8,9,10],10) generates only 175 branches, because the target to reach 10 gets to filter out many combinations.
If N and Target are big numbers one should move into an approximate version of the solution.
The solution of this problem has been given a million times on the Internet. The problem is called The coin changing problem. One can find solutions at http://rosettacode.org/wiki/Count_the_coins and mathematical model of it at http://jaqm.ro/issues/volume-5,issue-2/pdfs/patterson_harmel.pdf (or Google coin change problem).
By the way, the Scala solution by Tsagadai, is interesting. This example produces either 1 or 0. As a side effect, it lists on the console all possible solutions. It displays the solution, but fails making it usable in any way.
To be as useful as possible, the code should return a List[List[Int]]in order to allow getting the number of solution (length of the list of lists), the "best" solution (the shortest list), or all the possible solutions.
Here is an example. It is very inefficient, but it is easy to understand.
object Sum extends App {
def sumCombinations(total: Int, numbers: List[Int]): List[List[Int]] = {
def add(x: (Int, List[List[Int]]), y: (Int, List[List[Int]])): (Int, List[List[Int]]) = {
(x._1 + y._1, x._2 ::: y._2)
}
def sumCombinations(resultAcc: List[List[Int]], sumAcc: List[Int], total: Int, numbers: List[Int]): (Int, List[List[Int]]) = {
if (numbers.isEmpty || total < 0) {
(0, resultAcc)
} else if (total == 0) {
(1, sumAcc :: resultAcc)
} else {
add(sumCombinations(resultAcc, sumAcc, total, numbers.tail), sumCombinations(resultAcc, numbers.head :: sumAcc, total - numbers.head, numbers))
}
}
sumCombinations(Nil, Nil, total, numbers.sortWith(_ > _))._2
}
println(sumCombinations(15, List(1, 2, 5, 10)) mkString "\n")
}
When run, it displays:
List(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
List(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2)
List(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2)
List(1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2)
List(1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2)
List(1, 1, 1, 1, 1, 2, 2, 2, 2, 2)
List(1, 1, 1, 2, 2, 2, 2, 2, 2)
List(1, 2, 2, 2, 2, 2, 2, 2)
List(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5)
List(1, 1, 1, 1, 1, 1, 1, 1, 2, 5)
List(1, 1, 1, 1, 1, 1, 2, 2, 5)
List(1, 1, 1, 1, 2, 2, 2, 5)
List(1, 1, 2, 2, 2, 2, 5)
List(2, 2, 2, 2, 2, 5)
List(1, 1, 1, 1, 1, 5, 5)
List(1, 1, 1, 2, 5, 5)
List(1, 2, 2, 5, 5)
List(5, 5, 5)
List(1, 1, 1, 1, 1, 10)
List(1, 1, 1, 2, 10)
List(1, 2, 2, 10)
List(5, 10)
The sumCombinations() function may be used by itself, and the result may be further analyzed to display the "best" solution (the shortest list), or the number of solutions (the number of lists).
Note that even like this, the requirements may not be fully satisfied. It might happen that the order of each list in the solution be significant. In such a case, each list would have to be duplicated as many time as there are combination of its elements. Or we might be interested only in the combinations that are different.
For example, we might consider that List(5, 10) should give two combinations: List(5, 10) and List(10, 5). For List(5, 5, 5) it could give three combinations or one only, depending on the requirements. For integers, the three permutations are equivalent, but if we are dealing with coins, like in the "coin changing problem", they are not.
Also not stated in the requirements is the question of whether each number (or coin) may be used only once or many times. We could (and we should!) generalize the problem to a list of lists of occurrences of each number. This translates in real life into "what are the possible ways to make an certain amount of money with a set of coins (and not a set of coin values)". The original problem is just a particular case of this one, where we have as many occurrences of each coin as needed to make the total amount with each single coin value.
A Javascript version:
function subsetSum(numbers, target, partial) {
var s, n, remaining;
partial = partial || [];
// sum partial
s = partial.reduce(function (a, b) {
return a + b;
}, 0);
// check if the partial sum is equals to target
if (s === target) {
console.log("%s=%s", partial.join("+"), target)
}
if (s >= target) {
return; // if we reach the number why bother to continue
}
for (var i = 0; i < numbers.length; i++) {
n = numbers[i];
remaining = numbers.slice(i + 1);
subsetSum(remaining, target, partial.concat([n]));
}
}
subsetSum([3,9,8,4,5,7,10],15);
// output:
// 3+8+4=15
// 3+5+7=15
// 8+7=15
// 5+10=15
In Haskell:
filter ((==) 12345 . sum) $ subsequences [1,5,22,15,0,..]
And J:
(]#~12345=+/#>)(]<##~[:#:#i.2^#)1 5 22 15 0 ...
As you may notice, both take the same approach and divide the problem into two parts: generate each member of the power set, and check each member's sum to the target.
There are other solutions but this is the most straightforward.
Do you need help with either one, or finding a different approach?
There are a lot of solutions so far, but all are of the form generate then filter. Which means that they potentially spend a lot of time working on recursive paths that do not lead to a solution.
Here is a solution that is O(size_of_array * (number_of_sums + number_of_solutions)). In other words it uses dynamic programming to avoid enumerating possible solutions that will never match.
For giggles and grins I made this work with numbers that are both positive and negative, and made it an iterator. It will work for Python 2.3+.
def subset_sum_iter(array, target):
sign = 1
array = sorted(array)
if target < 0:
array = reversed(array)
sign = -1
# Checkpoint A
last_index = {0: [-1]}
for i in range(len(array)):
for s in list(last_index.keys()):
new_s = s + array[i]
if 0 < (new_s - target) * sign:
pass # Cannot lead to target
elif new_s in last_index:
last_index[new_s].append(i)
else:
last_index[new_s] = [i]
# Checkpoint B
# Now yield up the answers.
def recur(new_target, max_i):
for i in last_index[new_target]:
if i == -1:
yield [] # Empty sum.
elif max_i <= i:
break # Not our solution.
else:
for answer in recur(new_target - array[i], i):
answer.append(array[i])
yield answer
for answer in recur(target, len(array)):
yield answer
And here is an example of it being used with an array and target where the filtering approach used in other solutions would effectively never finish.
def is_prime(n):
for i in range(2, n):
if 0 == n % i:
return False
elif n < i * i:
return True
if n == 2:
return True
else:
return False
def primes(limit):
n = 2
while True:
if is_prime(n):
yield(n)
n = n + 1
if limit < n:
break
for answer in subset_sum_iter(primes(1000), 76000):
print(answer)
This prints all 522 answers in under 2 seconds. The previous approaches would be lucky to find any answers in the current lifetime of the universe. (The full space has 2^168 = 3.74144419156711e+50 possible combinations to run through. That...takes a while.)
Explanation
I was asked to explain the code, but explaining data structures is usually more revealing. So I'll explain the data structures.
Let's consider subset_sum_iter([-2, 2, -3, 3, -5, 5, -7, 7, -11, 11], 10).
At checkpoint A, we have realized that our target is positive so sign = 1. And we've sorted our input so that array = [-11, -7, -5, -3, -2, 2, 3, 5, 7, 11]. Since we wind up accessing it by index a lot, here the the map from indexes to values:
0: -11
1: -7
2: -5
3: -3
4: -2
5: 2
6: 3
7: 5
8: 7
9: 11
By checkpoint B we have used Dynamic Programming to generate our last_index data structure. What does it contain?
last_index = {
-28: [4],
-26: [3, 5],
-25: [4, 6],
-24: [5],
-23: [2, 4, 5, 6, 7],
-22: [6],
-21: [3, 4, 5, 6, 7, 8],
-20: [4, 6, 7],
-19: [3, 5, 7, 8],
-18: [1, 4, 5, 6, 7, 8],
-17: [4, 5, 6, 7, 8, 9],
-16: [2, 4, 5, 6, 7, 8],
-15: [3, 5, 6, 7, 8, 9],
-14: [3, 4, 5, 6, 7, 8, 9],
-13: [4, 5, 6, 7, 8, 9],
-12: [2, 4, 5, 6, 7, 8, 9],
-11: [0, 5, 6, 7, 8, 9],
-10: [3, 4, 5, 6, 7, 8, 9],
-9: [4, 5, 6, 7, 8, 9],
-8: [3, 5, 6, 7, 8, 9],
-7: [1, 4, 5, 6, 7, 8, 9],
-6: [5, 6, 7, 8, 9],
-5: [2, 4, 5, 6, 7, 8, 9],
-4: [6, 7, 8, 9],
-3: [3, 5, 6, 7, 8, 9],
-2: [4, 6, 7, 8, 9],
-1: [5, 7, 8, 9],
0: [-1, 5, 6, 7, 8, 9],
1: [6, 7, 8, 9],
2: [5, 6, 7, 8, 9],
3: [6, 7, 8, 9],
4: [7, 8, 9],
5: [6, 7, 8, 9],
6: [7, 8, 9],
7: [7, 8, 9],
8: [7, 8, 9],
9: [8, 9],
10: [7, 8, 9]
}
(Side note, it is not symmetric because the condition if 0 < (new_s - target) * sign stops us from recording anything past target, which in our case was 10.)
What does this mean? Well, take the entry, 10: [7, 8, 9]. It means that we can wind up at a final sum of 10 with the last number chosen being at indexes 7, 8, or 9. Namely the last number chosen could be 5, 7, or 11.
Let's take a closer look at what happens if we choose index 7. That means we end on a 5. So therefore before we came to index 7, we had to get to 10-5 = 5. And the entry for 5 reads, 5: [6, 7, 8, 9]. So we could have picked index 6, which is 3. While we get to 5 at indexes 7, 8, and 9, we didn't get there before index 7. So our second to last choice has to be the 3 at index 6.
And now we have to get to 5-3 = 2 before index 6. The entry 2 reads: 2: [5, 6, 7, 8, 9]. Again, we only care about the answer at index 5 because the others happened too late. So the third to last choice is has to be the 2 at index 5.
And finally we have to get to 2-2 = 0 before index 5. The entry 0 reads: 0: [-1, 5, 6, 7, 8, 9]. Again we only care about the -1. But -1 isn't an index - in fact I'm using it to signal we're done choosing.
So we just found the solution 2+3+5 = 10. Which is the very first solution we print out.
And now we get to the recur subfunction. Because it is defined inside of our main function, it can see last_index.
The first thing to note is that it calls yield, not return. This makes it into a generator. When you call it you return a special kind of iterator. When you loop over that iterator, you'll get a list of all of the things it can yield. But you get them as it generates them. If it is a long list, you don't put it in memory. (Kind of important because we could get a long list.)
What recur(new_target, max_i) will yield are all of the ways that you could have summed up to new_target using only elements of array with maximum index max_i. That is it answers: "We have to get to new_target before index max_i+1." It is, of course, recursive.
Therefore recur(target, len(array)) is all solutions that reach target using any index at all. Which is what we want.
C++ version of the same algorithm
#include <iostream>
#include <list>
void subset_sum_recursive(std::list<int> numbers, int target, std::list<int> partial)
{
int s = 0;
for (std::list<int>::const_iterator cit = partial.begin(); cit != partial.end(); cit++)
{
s += *cit;
}
if(s == target)
{
std::cout << "sum([";
for (std::list<int>::const_iterator cit = partial.begin(); cit != partial.end(); cit++)
{
std::cout << *cit << ",";
}
std::cout << "])=" << target << std::endl;
}
if(s >= target)
return;
int n;
for (std::list<int>::const_iterator ai = numbers.begin(); ai != numbers.end(); ai++)
{
n = *ai;
std::list<int> remaining;
for(std::list<int>::const_iterator aj = ai; aj != numbers.end(); aj++)
{
if(aj == ai)continue;
remaining.push_back(*aj);
}
std::list<int> partial_rec=partial;
partial_rec.push_back(n);
subset_sum_recursive(remaining,target,partial_rec);
}
}
void subset_sum(std::list<int> numbers,int target)
{
subset_sum_recursive(numbers,target,std::list<int>());
}
int main()
{
std::list<int> a;
a.push_back (3); a.push_back (9); a.push_back (8);
a.push_back (4);
a.push_back (5);
a.push_back (7);
a.push_back (10);
int n = 15;
//std::cin >> n;
subset_sum(a, n);
return 0;
}
C# version of #msalvadores code answer
void Main()
{
int[] numbers = {3,9,8,4,5,7,10};
int target = 15;
sum_up(new List<int>(numbers.ToList()),target);
}
static void sum_up_recursive(List<int> numbers, int target, List<int> part)
{
int s = 0;
foreach (int x in part)
{
s += x;
}
if (s == target)
{
Console.WriteLine("sum(" + string.Join(",", part.Select(n => n.ToString()).ToArray()) + ")=" + target);
}
if (s >= target)
{
return;
}
for (int i = 0;i < numbers.Count;i++)
{
var remaining = new List<int>();
int n = numbers[i];
for (int j = i + 1; j < numbers.Count;j++)
{
remaining.Add(numbers[j]);
}
var part_rec = new List<int>(part);
part_rec.Add(n);
sum_up_recursive(remaining,target,part_rec);
}
}
static void sum_up(List<int> numbers, int target)
{
sum_up_recursive(numbers,target,new List<int>());
}
Java non-recursive version that simply keeps adding elements and redistributing them amongst possible values. 0's are ignored and works for fixed lists (what you're given is what you can play with) or a list of repeatable numbers.
import java.util.*;
public class TestCombinations {
public static void main(String[] args) {
ArrayList<Integer> numbers = new ArrayList<>(Arrays.asList(0, 1, 2, 2, 5, 10, 20));
LinkedHashSet<Integer> targets = new LinkedHashSet<Integer>() {{
add(4);
add(10);
add(25);
}};
System.out.println("## each element can appear as many times as needed");
for (Integer target: targets) {
Combinations combinations = new Combinations(numbers, target, true);
combinations.calculateCombinations();
for (String solution: combinations.getCombinations()) {
System.out.println(solution);
}
}
System.out.println("## each element can appear only once");
for (Integer target: targets) {
Combinations combinations = new Combinations(numbers, target, false);
combinations.calculateCombinations();
for (String solution: combinations.getCombinations()) {
System.out.println(solution);
}
}
}
public static class Combinations {
private boolean allowRepetitions;
private int[] repetitions;
private ArrayList<Integer> numbers;
private Integer target;
private Integer sum;
private boolean hasNext;
private Set<String> combinations;
/**
* Constructor.
*
* #param numbers Numbers that can be used to calculate the sum.
* #param target Target value for sum.
*/
public Combinations(ArrayList<Integer> numbers, Integer target) {
this(numbers, target, true);
}
/**
* Constructor.
*
* #param numbers Numbers that can be used to calculate the sum.
* #param target Target value for sum.
*/
public Combinations(ArrayList<Integer> numbers, Integer target, boolean allowRepetitions) {
this.allowRepetitions = allowRepetitions;
if (this.allowRepetitions) {
Set<Integer> numbersSet = new HashSet<>(numbers);
this.numbers = new ArrayList<>(numbersSet);
} else {
this.numbers = numbers;
}
this.numbers.removeAll(Arrays.asList(0));
Collections.sort(this.numbers);
this.target = target;
this.repetitions = new int[this.numbers.size()];
this.combinations = new LinkedHashSet<>();
this.sum = 0;
if (this.repetitions.length > 0)
this.hasNext = true;
else
this.hasNext = false;
}
/**
* Calculate and return the sum of the current combination.
*
* #return The sum.
*/
private Integer calculateSum() {
this.sum = 0;
for (int i = 0; i < repetitions.length; ++i) {
this.sum += repetitions[i] * numbers.get(i);
}
return this.sum;
}
/**
* Redistribute picks when only one of each number is allowed in the sum.
*/
private void redistribute() {
for (int i = 1; i < this.repetitions.length; ++i) {
if (this.repetitions[i - 1] > 1) {
this.repetitions[i - 1] = 0;
this.repetitions[i] += 1;
}
}
if (this.repetitions[this.repetitions.length - 1] > 1)
this.repetitions[this.repetitions.length - 1] = 0;
}
/**
* Get the sum of the next combination. When 0 is returned, there's no other combinations to check.
*
* #return The sum.
*/
private Integer next() {
if (this.hasNext && this.repetitions.length > 0) {
this.repetitions[0] += 1;
if (!this.allowRepetitions)
this.redistribute();
this.calculateSum();
for (int i = 0; i < this.repetitions.length && this.sum != 0; ++i) {
if (this.sum > this.target) {
this.repetitions[i] = 0;
if (i + 1 < this.repetitions.length) {
this.repetitions[i + 1] += 1;
if (!this.allowRepetitions)
this.redistribute();
}
this.calculateSum();
}
}
if (this.sum.compareTo(0) == 0)
this.hasNext = false;
}
return this.sum;
}
/**
* Calculate all combinations whose sum equals target.
*/
public void calculateCombinations() {
while (this.hasNext) {
if (this.next().compareTo(target) == 0)
this.combinations.add(this.toString());
}
}
/**
* Return all combinations whose sum equals target.
*
* #return Combinations as a set of strings.
*/
public Set<String> getCombinations() {
return this.combinations;
}
#Override
public String toString() {
StringBuilder stringBuilder = new StringBuilder("" + sum + ": ");
for (int i = 0; i < repetitions.length; ++i) {
for (int j = 0; j < repetitions[i]; ++j) {
stringBuilder.append(numbers.get(i) + " ");
}
}
return stringBuilder.toString();
}
}
}
Sample input:
numbers: 0, 1, 2, 2, 5, 10, 20
targets: 4, 10, 25
Sample output:
## each element can appear as many times as needed
4: 1 1 1 1
4: 1 1 2
4: 2 2
10: 1 1 1 1 1 1 1 1 1 1
10: 1 1 1 1 1 1 1 1 2
10: 1 1 1 1 1 1 2 2
10: 1 1 1 1 2 2 2
10: 1 1 2 2 2 2
10: 2 2 2 2 2
10: 1 1 1 1 1 5
10: 1 1 1 2 5
10: 1 2 2 5
10: 5 5
10: 10
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2
25: 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2
25: 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
25: 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
25: 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2
25: 1 1 1 2 2 2 2 2 2 2 2 2 2 2
25: 1 2 2 2 2 2 2 2 2 2 2 2 2
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 5
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 5
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 5
25: 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 5
25: 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 5
25: 1 1 1 1 1 1 1 1 2 2 2 2 2 2 5
25: 1 1 1 1 1 1 2 2 2 2 2 2 2 5
25: 1 1 1 1 2 2 2 2 2 2 2 2 5
25: 1 1 2 2 2 2 2 2 2 2 2 5
25: 2 2 2 2 2 2 2 2 2 2 5
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 5
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 2 5 5
25: 1 1 1 1 1 1 1 1 1 1 1 2 2 5 5
25: 1 1 1 1 1 1 1 1 1 2 2 2 5 5
25: 1 1 1 1 1 1 1 2 2 2 2 5 5
25: 1 1 1 1 1 2 2 2 2 2 5 5
25: 1 1 1 2 2 2 2 2 2 5 5
25: 1 2 2 2 2 2 2 2 5 5
25: 1 1 1 1 1 1 1 1 1 1 5 5 5
25: 1 1 1 1 1 1 1 1 2 5 5 5
25: 1 1 1 1 1 1 2 2 5 5 5
25: 1 1 1 1 2 2 2 5 5 5
25: 1 1 2 2 2 2 5 5 5
25: 2 2 2 2 2 5 5 5
25: 1 1 1 1 1 5 5 5 5
25: 1 1 1 2 5 5 5 5
25: 1 2 2 5 5 5 5
25: 5 5 5 5 5
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 2 10
25: 1 1 1 1 1 1 1 1 1 1 1 2 2 10
25: 1 1 1 1 1 1 1 1 1 2 2 2 10
25: 1 1 1 1 1 1 1 2 2 2 2 10
25: 1 1 1 1 1 2 2 2 2 2 10
25: 1 1 1 2 2 2 2 2 2 10
25: 1 2 2 2 2 2 2 2 10
25: 1 1 1 1 1 1 1 1 1 1 5 10
25: 1 1 1 1 1 1 1 1 2 5 10
25: 1 1 1 1 1 1 2 2 5 10
25: 1 1 1 1 2 2 2 5 10
25: 1 1 2 2 2 2 5 10
25: 2 2 2 2 2 5 10
25: 1 1 1 1 1 5 5 10
25: 1 1 1 2 5 5 10
25: 1 2 2 5 5 10
25: 5 5 5 10
25: 1 1 1 1 1 10 10
25: 1 1 1 2 10 10
25: 1 2 2 10 10
25: 5 10 10
25: 1 1 1 1 1 20
25: 1 1 1 2 20
25: 1 2 2 20
25: 5 20
## each element can appear only once
4: 2 2
10: 1 2 2 5
10: 10
25: 1 2 2 20
25: 5 20
Thank you.. ephemient
i have converted above logic from python to php..
<?php
$data = array(array(2,3,5,10,15),array(4,6,23,15,12),array(23,34,12,1,5));
$maxsum = 25;
print_r(bestsum($data,$maxsum)); //function call
function bestsum($data,$maxsum)
{
$res = array_fill(0, $maxsum + 1, '0');
$res[0] = array(); //base case
foreach($data as $group)
{
$new_res = $res; //copy res
foreach($group as $ele)
{
for($i=0;$i<($maxsum-$ele+1);$i++)
{
if($res[$i] != 0)
{
$ele_index = $i+$ele;
$new_res[$ele_index] = $res[$i];
$new_res[$ele_index][] = $ele;
}
}
}
$res = $new_res;
}
for($i=$maxsum;$i>0;$i--)
{
if($res[$i]!=0)
{
return $res[$i];
break;
}
}
return array();
}
?>
Another python solution would be to use the itertools.combinations module as follows:
#!/usr/local/bin/python
from itertools import combinations
def find_sum_in_list(numbers, target):
results = []
for x in range(len(numbers)):
results.extend(
[
combo for combo in combinations(numbers ,x)
if sum(combo) == target
]
)
print results
if __name__ == "__main__":
find_sum_in_list([3,9,8,4,5,7,10], 15)
Output: [(8, 7), (5, 10), (3, 8, 4), (3, 5, 7)]
I thought I'd use an answer from this question but I couldn't, so here is my answer. It is using a modified version of an answer in Structure and Interpretation of Computer Programs. I think this is a better recursive solution and should please the purists more.
My answer is in Scala (and apologies if my Scala sucks, I've just started learning it). The findSumCombinations craziness is to sort and unique the original list for the recursion to prevent dupes.
def findSumCombinations(target: Int, numbers: List[Int]): Int = {
cc(target, numbers.distinct.sortWith(_ < _), List())
}
def cc(target: Int, numbers: List[Int], solution: List[Int]): Int = {
if (target == 0) {println(solution); 1 }
else if (target < 0 || numbers.length == 0) 0
else
cc(target, numbers.tail, solution)
+ cc(target - numbers.head, numbers, numbers.head :: solution)
}
To use it:
> findSumCombinations(12345, List(1,5,22,15,0,..))
* Prints a whole heap of lists that will sum to the target *
Excel VBA version below. I needed to implement this in VBA (not my preference, don't judge me!), and used the answers on this page for the approach. I'm uploading in case others also need a VBA version.
Option Explicit
Public Sub SumTarget()
Dim numbers(0 To 6) As Long
Dim target As Long
target = 15
numbers(0) = 3: numbers(1) = 9: numbers(2) = 8: numbers(3) = 4: numbers(4) = 5
numbers(5) = 7: numbers(6) = 10
Call SumUpTarget(numbers, target)
End Sub
Public Sub SumUpTarget(numbers() As Long, target As Long)
Dim part() As Long
Call SumUpRecursive(numbers, target, part)
End Sub
Private Sub SumUpRecursive(numbers() As Long, target As Long, part() As Long)
Dim s As Long, i As Long, j As Long, num As Long
Dim remaining() As Long, partRec() As Long
s = SumArray(part)
If s = target Then Debug.Print "SUM ( " & ArrayToString(part) & " ) = " & target
If s >= target Then Exit Sub
If (Not Not numbers) <> 0 Then
For i = 0 To UBound(numbers)
Erase remaining()
num = numbers(i)
For j = i + 1 To UBound(numbers)
AddToArray remaining, numbers(j)
Next j
Erase partRec()
CopyArray partRec, part
AddToArray partRec, num
SumUpRecursive remaining, target, partRec
Next i
End If
End Sub
Private Function ArrayToString(x() As Long) As String
Dim n As Long, result As String
result = "{" & x(n)
For n = LBound(x) + 1 To UBound(x)
result = result & "," & x(n)
Next n
result = result & "}"
ArrayToString = result
End Function
Private Function SumArray(x() As Long) As Long
Dim n As Long
SumArray = 0
If (Not Not x) <> 0 Then
For n = LBound(x) To UBound(x)
SumArray = SumArray + x(n)
Next n
End If
End Function
Private Sub AddToArray(arr() As Long, x As Long)
If (Not Not arr) <> 0 Then
ReDim Preserve arr(0 To UBound(arr) + 1)
Else
ReDim Preserve arr(0 To 0)
End If
arr(UBound(arr)) = x
End Sub
Private Sub CopyArray(destination() As Long, source() As Long)
Dim n As Long
If (Not Not source) <> 0 Then
For n = 0 To UBound(source)
AddToArray destination, source(n)
Next n
End If
End Sub
Output (written to the Immediate window) should be:
SUM ( {3,8,4} ) = 15
SUM ( {3,5,7} ) = 15
SUM ( {8,7} ) = 15
SUM ( {5,10} ) = 15
Here's a solution in R
subset_sum = function(numbers,target,partial=0){
if(any(is.na(partial))) return()
s = sum(partial)
if(s == target) print(sprintf("sum(%s)=%s",paste(partial[-1],collapse="+"),target))
if(s > target) return()
for( i in seq_along(numbers)){
n = numbers[i]
remaining = numbers[(i+1):length(numbers)]
subset_sum(remaining,target,c(partial,n))
}
}
Perl version (of the leading answer):
use strict;
sub subset_sum {
my ($numbers, $target, $result, $sum) = #_;
print 'sum('.join(',', #$result).") = $target\n" if $sum == $target;
return if $sum >= $target;
subset_sum([#$numbers[$_ + 1 .. $#$numbers]], $target,
[#{$result||[]}, $numbers->[$_]], $sum + $numbers->[$_])
for (0 .. $#$numbers);
}
subset_sum([3,9,8,4,5,7,10,6], 15);
Result:
sum(3,8,4) = 15
sum(3,5,7) = 15
sum(9,6) = 15
sum(8,7) = 15
sum(4,5,6) = 15
sum(5,10) = 15
Javascript version:
const subsetSum = (numbers, target, partial = [], sum = 0) => {
if (sum < target)
numbers.forEach((num, i) =>
subsetSum(numbers.slice(i + 1), target, partial.concat([num]), sum + num));
else if (sum == target)
console.log('sum(%s) = %s', partial.join(), target);
}
subsetSum([3,9,8,4,5,7,10,6], 15);
Javascript one-liner that actually returns results (instead of printing it):
const subsetSum=(n,t,p=[],s=0,r=[])=>(s<t?n.forEach((l,i)=>subsetSum(n.slice(i+1),t,[...p,l],s+l,r)):s==t?r.push(p):0,r);
console.log(subsetSum([3,9,8,4,5,7,10,6], 15));
And my favorite, one-liner with callback:
const subsetSum=(n,t,cb,p=[],s=0)=>s<t?n.forEach((l,i)=>subsetSum(n.slice(i+1),t,cb,[...p,l],s+l)):s==t?cb(p):0;
subsetSum([3,9,8,4,5,7,10,6], 15, console.log);
Here is a Java version which is well suited for small N and very large target sum, when complexity O(t*N) (the dynamic solution) is greater than the exponential algorithm. My version uses a meet in the middle attack, along with a little bit shifting in order to reduce the complexity from the classic naive O(n*2^n) to O(2^(n/2)).
If you want to use this for sets with between 32 and 64 elements, you should change the int which represents the current subset in the step function to a long although performance will obviously drastically decrease as the set size increases. If you want to use this for a set with odd number of elements, you should add a 0 to the set to make it even numbered.
import java.util.ArrayList;
import java.util.List;
public class SubsetSumMiddleAttack {
static final int target = 100000000;
static final int[] set = new int[]{ ... };
static List<Subset> evens = new ArrayList<>();
static List<Subset> odds = new ArrayList<>();
static int[][] split(int[] superSet) {
int[][] ret = new int[2][superSet.length / 2];
for (int i = 0; i < superSet.length; i++) ret[i % 2][i / 2] = superSet[i];
return ret;
}
static void step(int[] superSet, List<Subset> accumulator, int subset, int sum, int counter) {
accumulator.add(new Subset(subset, sum));
if (counter != superSet.length) {
step(superSet, accumulator, subset + (1 << counter), sum + superSet[counter], counter + 1);
step(superSet, accumulator, subset, sum, counter + 1);
}
}
static void printSubset(Subset e, Subset o) {
String ret = "";
for (int i = 0; i < 32; i++) {
if (i % 2 == 0) {
if ((1 & (e.subset >> (i / 2))) == 1) ret += " + " + set[i];
}
else {
if ((1 & (o.subset >> (i / 2))) == 1) ret += " + " + set[i];
}
}
if (ret.startsWith(" ")) ret = ret.substring(3) + " = " + (e.sum + o.sum);
System.out.println(ret);
}
public static void main(String[] args) {
int[][] superSets = split(set);
step(superSets[0], evens, 0,0,0);
step(superSets[1], odds, 0,0,0);
for (Subset e : evens) {
for (Subset o : odds) {
if (e.sum + o.sum == target) printSubset(e, o);
}
}
}
}
class Subset {
int subset;
int sum;
Subset(int subset, int sum) {
this.subset = subset;
this.sum = sum;
}
}
Very efficient algorithm using tables i wrote in c++ couple a years ago.
If you set PRINT 1 it will print all combinations(but it wont be use the efficient method).
Its so efficient that it calculate more than 10^14 combinations in less than 10ms.
#include <stdio.h>
#include <stdlib.h>
//#include "CTime.h"
#define SUM 300
#define MAXNUMsSIZE 30
#define PRINT 0
long long CountAddToSum(int,int[],int,const int[],int);
void printr(const int[], int);
long long table1[SUM][MAXNUMsSIZE];
int main()
{
int Nums[]={3,4,5,6,7,9,13,11,12,13,22,35,17,14,18,23,33,54};
int sum=SUM;
int size=sizeof(Nums)/sizeof(int);
int i,j,a[]={0};
long long N=0;
//CTime timer1;
for(i=0;i<SUM;++i)
for(j=0;j<MAXNUMsSIZE;++j)
table1[i][j]=-1;
N = CountAddToSum(sum,Nums,size,a,0); //algorithm
//timer1.Get_Passd();
//printf("\nN=%lld time=%.1f ms\n", N,timer1.Get_Passd());
printf("\nN=%lld \n", N);
getchar();
return 1;
}
long long CountAddToSum(int s, int arr[],int arrsize, const int r[],int rsize)
{
static int totalmem=0, maxmem=0;
int i,*rnew;
long long result1=0,result2=0;
if(s<0) return 0;
if (table1[s][arrsize]>0 && PRINT==0) return table1[s][arrsize];
if(s==0)
{
if(PRINT) printr(r, rsize);
return 1;
}
if(arrsize==0) return 0;
//else
rnew=(int*)malloc((rsize+1)*sizeof(int));
for(i=0;i<rsize;++i) rnew[i]=r[i];
rnew[rsize]=arr[arrsize-1];
result1 = CountAddToSum(s,arr,arrsize-1,rnew,rsize);
result2 = CountAddToSum(s-arr[arrsize-1],arr,arrsize,rnew,rsize+1);
table1[s][arrsize]=result1+result2;
free(rnew);
return result1+result2;
}
void printr(const int r[], int rsize)
{
int lastr=r[0],count=0,i;
for(i=0; i<rsize;++i)
{
if(r[i]==lastr)
count++;
else
{
printf(" %d*%d ",count,lastr);
lastr=r[i];
count=1;
}
}
if(r[i-1]==lastr) printf(" %d*%d ",count,lastr);
printf("\n");
}
This is similar to a coin change problem
public class CoinCount
{
public static void main(String[] args)
{
int[] coins={1,4,6,2,3,5};
int count=0;
for (int i=0;i<coins.length;i++)
{
count=count+Count(9,coins,i,0);
}
System.out.println(count);
}
public static int Count(int Sum,int[] coins,int index,int curSum)
{
int count=0;
if (index>=coins.length)
return 0;
int sumNow=curSum+coins[index];
if (sumNow>Sum)
return 0;
if (sumNow==Sum)
return 1;
for (int i= index+1;i<coins.length;i++)
count+=Count(Sum,coins,i,sumNow);
return count;
}
}
I ported the C# sample to Objective-c and didn't see it in the responses:
//Usage
NSMutableArray* numberList = [[NSMutableArray alloc] init];
NSMutableArray* partial = [[NSMutableArray alloc] init];
int target = 16;
for( int i = 1; i<target; i++ )
{ [numberList addObject:#(i)]; }
[self findSums:numberList target:target part:partial];
//*******************************************************************
// Finds combinations of numbers that add up to target recursively
//*******************************************************************
-(void)findSums:(NSMutableArray*)numbers target:(int)target part:(NSMutableArray*)partial
{
int s = 0;
for (NSNumber* x in partial)
{ s += [x intValue]; }
if (s == target)
{ NSLog(#"Sum[%#]", partial); }
if (s >= target)
{ return; }
for (int i = 0;i < [numbers count];i++ )
{
int n = [numbers[i] intValue];
NSMutableArray* remaining = [[NSMutableArray alloc] init];
for (int j = i + 1; j < [numbers count];j++)
{ [remaining addObject:#([numbers[j] intValue])]; }
NSMutableArray* partRec = [[NSMutableArray alloc] initWithArray:partial];
[partRec addObject:#(n)];
[self findSums:remaining target:target part:partRec];
}
}
Here is a better version with better output formatting and C++ 11 features:
void subset_sum_rec(std::vector<int> & nums, const int & target, std::vector<int> & partialNums)
{
int currentSum = std::accumulate(partialNums.begin(), partialNums.end(), 0);
if (currentSum > target)
return;
if (currentSum == target)
{
std::cout << "sum([";
for (auto it = partialNums.begin(); it != std::prev(partialNums.end()); ++it)
cout << *it << ",";
cout << *std::prev(partialNums.end());
std::cout << "])=" << target << std::endl;
}
for (auto it = nums.begin(); it != nums.end(); ++it)
{
std::vector<int> remaining;
for (auto it2 = std::next(it); it2 != nums.end(); ++it2)
remaining.push_back(*it2);
std::vector<int> partial = partialNums;
partial.push_back(*it);
subset_sum_rec(remaining, target, partial);
}
}
Deduce 0 in the first place. Zero is an identiy for addition so it is useless by the monoid laws in this particular case. Also deduce negative numbers as well if you want to climb up to a positive number. Otherwise you would also need subtraction operation.
So... the fastest algorithm you can get on this particular job is as follows given in JS.
function items2T([n,...ns],t){
var c = ~~(t/n);
return ns.length ? Array(c+1).fill()
.reduce((r,_,i) => r.concat(items2T(ns, t-n*i).map(s => Array(i).fill(n).concat(s))),[])
: t % n ? []
: [Array(c).fill(n)];
};
var data = [3, 9, 8, 4, 5, 7, 10],
result;
console.time("combos");
result = items2T(data, 15);
console.timeEnd("combos");
console.log(JSON.stringify(result));
This is a very fast algorithm but if you sort the data array descending it will be even faster. Using .sort() is insignificant since the algorithm will end up with much less recursive invocations.
PHP Version, as inspired by Keith Beller's C# version.
bala's PHP version did not work for me, because I did not need to group numbers. I wanted a simpler implementation with one target value, and a pool of numbers. This function will also prune any duplicate entries.
Edit 25/10/2021: Added the precision argument to support floating point numbers (now requires the bcmath extension).
/**
* Calculates a subset sum: finds out which combinations of numbers
* from the numbers array can be added together to come to the target
* number.
*
* Returns an indexed array with arrays of number combinations.
*
* Example:
*
* <pre>
* $matches = subset_sum(array(5,10,7,3,20), 25);
* </pre>
*
* Returns:
*
* <pre>
* Array
* (
* [0] => Array
* (
* [0] => 3
* [1] => 5
* [2] => 7
* [3] => 10
* )
* [1] => Array
* (
* [0] => 5
* [1] => 20
* )
* )
* </pre>
*
* #param number[] $numbers
* #param number $target
* #param array $part
* #param int $precision
* #return array[number[]]
*/
function subset_sum($numbers, $target, $precision=0, $part=null)
{
// we assume that an empty $part variable means this
// is the top level call.
$toplevel = false;
if($part === null) {
$toplevel = true;
$part = array();
}
$s = 0;
foreach($part as $x)
{
$s = $s + $x;
}
// we have found a match!
if(bccomp((string) $s, (string) $target, $precision) === 0)
{
sort($part); // ensure the numbers are always sorted
return array(implode('|', $part));
}
// gone too far, break off
if($s >= $target)
{
return null;
}
$matches = array();
$totalNumbers = count($numbers);
for($i=0; $i < $totalNumbers; $i++)
{
$remaining = array();
$n = $numbers[$i];
for($j = $i+1; $j < $totalNumbers; $j++)
{
$remaining[] = $numbers[$j];
}
$part_rec = $part;
$part_rec[] = $n;
$result = subset_sum($remaining, $target, $precision, $part_rec);
if($result)
{
$matches = array_merge($matches, $result);
}
}
if(!$toplevel)
{
return $matches;
}
// this is the top level function call: we have to
// prepare the final result value by stripping any
// duplicate results.
$matches = array_unique($matches);
$result = array();
foreach($matches as $entry)
{
$result[] = explode('|', $entry);
}
return $result;
}
Example:
$result = subset_sum(array(5, 10, 7, 3, 20), 25);
This will return an indexed array with two number combination arrays:
3, 5, 7, 10
5, 20
Example with floating point numbers:
// Specify the precision in the third argument
$result = subset_sum(array(0.40, 0.03, 0.05), 0.45, 2);
This will return a single match:
0.40, 0.05
To find the combinations using excel - (its fairly easy).
(You computer must not be too slow)
Go to this site
Go to the "Sum to Target" page
Download the "Sum to Target" excel file.
Follow the directions on the website page.
hope this helps.
Swift 3 conversion of Java solution: (by #JeremyThompson)
protocol _IntType { }
extension Int: _IntType {}
extension Array where Element: _IntType {
func subsets(to: Int) -> [[Element]]? {
func sum_up_recursive(_ numbers: [Element], _ target: Int, _ partial: [Element], _ solution: inout [[Element]]) {
var sum: Int = 0
for x in partial {
sum += x as! Int
}
if sum == target {
solution.append(partial)
}
guard sum < target else {
return
}
for i in stride(from: 0, to: numbers.count, by: 1) {
var remaining = [Element]()
for j in stride(from: i + 1, to: numbers.count, by: 1) {
remaining.append(numbers[j])
}
var partial_rec = [Element](partial)
partial_rec.append(numbers[i])
sum_up_recursive(remaining, target, partial_rec, &solution)
}
}
var solutions = [[Element]]()
sum_up_recursive(self, to, [Element](), &solutions)
return solutions.count > 0 ? solutions : nil
}
}
usage:
let numbers = [3, 9, 8, 4, 5, 7, 10]
if let solution = numbers.subsets(to: 15) {
print(solution) // output: [[3, 8, 4], [3, 5, 7], [8, 7], [5, 10]]
} else {
print("not possible")
}
This can be used to print all the answers as well
public void recur(int[] a, int n, int sum, int[] ans, int ind) {
if (n < 0 && sum != 0)
return;
if (n < 0 && sum == 0) {
print(ans, ind);
return;
}
if (sum >= a[n]) {
ans[ind] = a[n];
recur(a, n - 1, sum - a[n], ans, ind + 1);
}
recur(a, n - 1, sum, ans, ind);
}
public void print(int[] a, int n) {
for (int i = 0; i < n; i++)
System.out.print(a[i] + " ");
System.out.println();
}
Time Complexity is exponential. Order of 2^n
I was doing something similar for a scala assignment. Thought of posting my solution here:
def countChange(money: Int, coins: List[Int]): Int = {
def getCount(money: Int, remainingCoins: List[Int]): Int = {
if(money == 0 ) 1
else if(money < 0 || remainingCoins.isEmpty) 0
else
getCount(money, remainingCoins.tail) +
getCount(money - remainingCoins.head, remainingCoins)
}
if(money == 0 || coins.isEmpty) 0
else getCount(money, coins)
}
#KeithBeller's answer with slightly changed variable names and some comments.
public static void Main(string[] args)
{
List<int> input = new List<int>() { 3, 9, 8, 4, 5, 7, 10 };
int targetSum = 15;
SumUp(input, targetSum);
}
public static void SumUp(List<int> input, int targetSum)
{
SumUpRecursive(input, targetSum, new List<int>());
}
private static void SumUpRecursive(List<int> remaining, int targetSum, List<int> listToSum)
{
// Sum up partial
int sum = 0;
foreach (int x in listToSum)
sum += x;
//Check sum matched
if (sum == targetSum)
Console.WriteLine("sum(" + string.Join(",", listToSum.ToArray()) + ")=" + targetSum);
//Check sum passed
if (sum >= targetSum)
return;
//Iterate each input character
for (int i = 0; i < remaining.Count; i++)
{
//Build list of remaining items to iterate
List<int> newRemaining = new List<int>();
for (int j = i + 1; j < remaining.Count; j++)
newRemaining.Add(remaining[j]);
//Update partial list
List<int> newListToSum = new List<int>(listToSum);
int currentItem = remaining[i];
newListToSum.Add(currentItem);
SumUpRecursive(newRemaining, targetSum, newListToSum);
}
}'
Recommended as an answer:
Here's a solution using es2015 generators:
function* subsetSum(numbers, target, partial = [], partialSum = 0) {
if(partialSum === target) yield partial
if(partialSum >= target) return
for(let i = 0; i < numbers.length; i++){
const remaining = numbers.slice(i + 1)
, n = numbers[i]
yield* subsetSum(remaining, target, [...partial, n], partialSum + n)
}
}
Using generators can actually be very useful because it allows you to pause script execution immediately upon finding a valid subset. This is in contrast to solutions without generators (ie lacking state) which have to iterate through every single subset of numbers
I did not like the Javascript Solution I saw above. Here is the one I build using partial applying, closures and recursion:
Ok, I was mainly concern about, if the combinations array could satisfy the target requirement, hopefully this approached you will start to find the rest of combinations
Here just set the target and pass the combinations array.
function main() {
const target = 10
const getPermutationThatSumT = setTarget(target)
const permutation = getPermutationThatSumT([1, 4, 2, 5, 6, 7])
console.log( permutation );
}
the currently implementation I came up with
function setTarget(target) {
let partial = [];
return function permute(input) {
let i, removed;
for (i = 0; i < input.length; i++) {
removed = input.splice(i, 1)[0];
partial.push(removed);
const sum = partial.reduce((a, b) => a + b)
if (sum === target) return partial.slice()
if (sum < target) permute(input)
input.splice(i, 0, removed);
partial.pop();
}
return null
};
}
An iterative C++ stack solution for a flavor of this problem. Unlike some other iterative solutions, it doesn't make unnecessary copies of intermediate sequences.
#include <vector>
#include <iostream>
// Given a positive integer, return all possible combinations of
// positive integers that sum up to it.
std::vector<std::vector<int>> print_all_sum(int target){
std::vector<std::vector<int>> output;
std::vector<int> stack;
int curr_min = 1;
int sum = 0;
while (curr_min < target) {
sum += curr_min;
if (sum >= target) {
if (sum == target) {
output.push_back(stack); // make a copy
output.back().push_back(curr_min);
}
sum -= curr_min + stack.back();
curr_min = stack.back() + 1;
stack.pop_back();
} else {
stack.push_back(curr_min);
}
}
return output;
}
int main()
{
auto vvi = print_all_sum(6);
for (auto const& v: vvi) {
for(auto const& i: v) {
std::cout << i;
}
std::cout << "\n";
}
return 0;
}
Output print_all_sum(6):
111111
11112
1113
1122
114
123
15
222
24
33
function solve(n){
let DP = [];
DP[0] = DP[1] = DP[2] = 1;
DP[3] = 2;
for (let i = 4; i <= n; i++) {
DP[i] = DP[i-1] + DP[i-3] + DP[i-4];
}
return DP[n]
}
console.log(solve(5))
This is a Dynamic Solution for JS to tell how many ways anyone can get the certain sum. This can be the right solution if you think about time and space complexity.

algorithm to sum up a list of numbers for all combinations

I have a list of numbers and I want to add up all the different combinations.
For example:
number as 1,4,7 and 13
the output would be:
1+4=5
1+7=8
1+13=14
4+7=11
4+13=17
7+13=20
1+4+7=12
1+4+13=18
1+7+13=21
4+7+13=24
1+4+7+13=25
Is there a formula to calculate this with different numbers?
A simple way to do this is to create a bit set with as much bits as there are numbers.
In your example 4.
Then count from 0001 to 1111 and sum each number that has a 1 on the set:
Numbers 1,4,7,13:
0001 = 13=13
0010 = 7=7
0011 = 7+13 = 20
1111 = 1+4+7+13 = 25
Here's how a simple recursive solution would look like, in Java:
public static void main(String[] args)
{
f(new int[] {1,4,7,13}, 0, 0, "{");
}
static void f(int[] numbers, int index, int sum, String output)
{
if (index == numbers.length)
{
System.out.println(output + " } = " + sum);
return;
}
// include numbers[index]
f(numbers, index + 1, sum + numbers[index], output + " " + numbers[index]);
// exclude numbers[index]
f(numbers, index + 1, sum, output);
}
Output:
{ 1 4 7 13 } = 25
{ 1 4 7 } = 12
{ 1 4 13 } = 18
{ 1 4 } = 5
{ 1 7 13 } = 21
{ 1 7 } = 8
{ 1 13 } = 14
{ 1 } = 1
{ 4 7 13 } = 24
{ 4 7 } = 11
{ 4 13 } = 17
{ 4 } = 4
{ 7 13 } = 20
{ 7 } = 7
{ 13 } = 13
{ } = 0
The best-known algorithm requires exponential time. If there were a polynomial-time algorithm, then you would solve the subset sum problem, and thus the P=NP problem.
The algorithm here is to create bitvector of length that is equal to the cardinality of your set of numbers. Fix an enumeration (n_i) of your set of numbers. Then, enumerate over all possible values of the bitvector. For each enumeration (e_i) of the bitvector, compute the sum of e_i * n_i.
The intuition here is that you are representing the subsets of your set of numbers by a bitvector and generating all possible subsets of the set of numbers. When bit e_i is equal to one, n_i is in the subset, otherwise it is not.
The fourth volume of Knuth's TAOCP provides algorithms for generating all possible values of the bitvector.
C#:
I was trying to find something more elegant - but this should do the trick for now...
//Set up our array of integers
int[] items = { 1, 3, 5, 7 };
//Figure out how many bitmasks we need...
//4 bits have a maximum value of 15, so we need 15 masks.
//Calculated as:
// (2 ^ ItemCount) - 1
int len = items.Length;
int calcs = (int)Math.Pow(2, len) - 1;
//Create our array of bitmasks... each item in the array
//represents a unique combination from our items array
string[] masks = Enumerable.Range(1, calcs).Select(i => Convert.ToString(i, 2).PadLeft(len, '0')).ToArray();
//Spit out the corresponding calculation for each bitmask
foreach (string m in masks)
{
//Get the items from our array that correspond to
//the on bits in our mask
int[] incl = items.Where((c, i) => m[i] == '1').ToArray();
//Write out our mask, calculation and resulting sum
Console.WriteLine(
"[{0}] {1}={2}",
m,
String.Join("+", incl.Select(c => c.ToString()).ToArray()),
incl.Sum()
);
}
Outputs as:
[0001] 7=7
[0010] 5=5
[0011] 5+7=12
[0100] 3=3
[0101] 3+7=10
[0110] 3+5=8
[0111] 3+5+7=15
[1000] 1=1
[1001] 1+7=8
[1010] 1+5=6
[1011] 1+5+7=13
[1100] 1+3=4
[1101] 1+3+7=11
[1110] 1+3+5=9
[1111] 1+3+5+7=16
Here is a simple recursive Ruby implementation:
a = [1, 4, 7, 13]
def add(current, ary, idx, sum)
(idx...ary.length).each do |i|
add(current + [ary[i]], ary, i+1, sum + ary[i])
end
puts "#{current.join('+')} = #{sum}" if current.size > 1
end
add([], a, 0, 0)
Which prints
1+4+7+13 = 25
1+4+7 = 12
1+4+13 = 18
1+4 = 5
1+7+13 = 21
1+7 = 8
1+13 = 14
4+7+13 = 24
4+7 = 11
4+13 = 17
7+13 = 20
If you do not need to print the array at each step, the code can be made even simpler and much faster because no additional arrays are created:
def add(ary, idx, sum)
(idx...ary.length).each do |i|
add(ary, i+1, sum + ary[i])
end
puts sum
end
add(a, 0, 0)
I dont think you can have it much simpler than that.
Mathematica solution:
{#, Total##}& /# Subsets[{1, 4, 7, 13}] //MatrixForm
Output:
{} 0
{1} 1
{4} 4
{7} 7
{13} 13
{1,4} 5
{1,7} 8
{1,13} 14
{4,7} 11
{4,13} 17
{7,13} 20
{1,4,7} 12
{1,4,13} 18
{1,7,13} 21
{4,7,13} 24
{1,4,7,13} 25
This Perl program seems to do what you want. It goes through the different ways to choose n items from k items. It's easy to calculate how many combinations there are, but getting the sums of each combination means you have to add them eventually. I had a similar question on Perlmonks when I was asking How can I calculate the right combination of postage stamps?.
The Math::Combinatorics module can also handle many other cases. Even if you don't want to use it, the documentation has a lot of pointers to other information about the problem. Other people might be able to suggest the appropriate library for the language you'd like to you.
#!/usr/bin/perl
use List::Util qw(sum);
use Math::Combinatorics;
my #n = qw(1 4 7 13);
foreach my $count ( 2 .. #n ) {
my $c = Math::Combinatorics->new(
count => $count, # number to choose
data => [#n],
);
print "combinations of $count from: [" . join(" ",#n) . "]\n";
while( my #combo = $c->next_combination ){
print join( ' ', #combo ), " = ", sum( #combo ) , "\n";
}
}
You can enumerate all subsets using a bitvector.
In a for loop, go from 0 to 2 to the Nth power minus 1 (or start with 1 if you don't care about the empty set).
On each iteration, determine which bits are set. The Nth bit represents the Nth element of the set. For each set bit, dereference the appropriate element of the set and add to an accumulated value.
ETA: Because the nature of this problem involves exponential complexity, there's a practical limit to size of the set you can enumerate on. If it turns out you don't need all subsets, you can look up "n choose k" for ways of enumerating subsets of k elements.
PHP: Here's a non-recursive implementation. I'm not saying this is the most efficient way to do it (this is indeed exponential 2^N - see JasonTrue's response and comments), but it works for a small set of elements. I just wanted to write something quick to obtain results. I based the algorithm off Toon's answer.
$set = array(3, 5, 8, 13, 19);
$additions = array();
for($i = 0; $i < pow(2, count($set)); $i++){
$sum = 0;
$addends = array();
for($j = count($set)-1; $j >= 0; $j--) {
if(pow(2, $j) & $i) {
$sum += $set[$j];
$addends[] = $set[$j];
}
}
$additions[] = array($sum, $addends);
}
sort($additions);
foreach($additions as $addition){
printf("%d\t%s\n", $addition[0], implode('+', $addition[1]));
}
Which will output:
0
3 3
5 5
8 8
8 5+3
11 8+3
13 13
13 8+5
16 13+3
16 8+5+3
18 13+5
19 19
21 13+8
21 13+5+3
22 19+3
24 19+5
24 13+8+3
26 13+8+5
27 19+8
27 19+5+3
29 13+8+5+3
30 19+8+3
32 19+13
32 19+8+5
35 19+13+3
35 19+8+5+3
37 19+13+5
40 19+13+8
40 19+13+5+3
43 19+13+8+3
45 19+13+8+5
48 19+13+8+5+3
For example, a case for this could be a set of resistance bands for working out. Say you get 5 bands each having different resistances represented in pounds and you can combine bands to sum up the total resistance. The bands resistances are 3, 5, 8, 13 and 19 pounds. This set gives you 32 (2^5) possible configurations, minus the zero. In this example, the algorithm returns the data sorted by ascending total resistance favoring efficient band configurations first, and for each configuration the bands are sorted by descending resistance.
This is not the code to generate the sums, but it generates the permutations. In your case:
1; 1,4; 1,7; 4,7; 1,4,7; ...
If I have a moment over the weekend, and if it's interesting, I can modify this to come up with the sums.
It's just a fun chunk of LINQ code from Igor Ostrovsky's blog titled "7 tricks to simplify your programs with LINQ" (http://igoro.com/archive/7-tricks-to-simplify-your-programs-with-linq/).
T[] arr = …;
var subsets = from m in Enumerable.Range(0, 1 << arr.Length)
select
from i in Enumerable.Range(0, arr.Length)
where (m & (1 << i)) != 0
select arr[i];
You might be interested in checking out the GNU Scientific Library if you want to avoid maintenance costs. The actual process of summing longer sequences will become very expensive (more-so than generating a single permutation on a step basis), most architectures have SIMD/vector instructions that can provide rather impressive speed-up (I would provide examples of such implementations but I cannot post URLs yet).
Thanks Zach,
I am creating a Bank Reconciliation solution. I dropped your code into jsbin.com to do some quick testing and produced this in Javascript:
function f(numbers,ids, index, sum, output, outputid, find )
{
if (index == numbers.length){
var x ="";
if (find == sum) {
y= output + " } = " + sum + " " + outputid + " }<br/>" ;
}
return;
}
f(numbers,ids, index + 1, sum + numbers[index], output + " " + numbers[index], outputid + " " + ids[index], find);
f(numbers,ids, index + 1, sum, output, outputid,find);
}
var y;
f( [1.2,4,7,13,45,325,23,245,78,432,1,2,6],[1,2,3,4,5,6,7,8,9,10,11,12,13], 0, 0, '{','{', 24.2);
if (document.getElementById('hello')) {
document.getElementById('hello').innerHTML = y;
}
I need it to produce a list of ID's to exclude from the next matching number.
I will post back my final solution using vb.net
v=[1,2,3,4]#variables to sum
i=0
clis=[]#check list for solution excluding the variables itself
def iterate(lis,a,b):
global i
global clis
while len(b)!=0 and i<len(lis):
a=lis[i]
b=lis[i+1:]
if len(b)>1:
t=a+sum(b)
clis.append(t)
for j in b:
clis.append(a+j)
i+=1
iterate(lis,a,b)
iterate(v,0,v)
its written in python. the idea is to break the list in a single integer and a list for eg. [1,2,3,4] into 1,[2,3,4]. we append the total sum now by adding the integer and sum of remaining list.also we take each individual sum i.e 1,2;1,3;1,4. checklist shall now be [1+2+3+4,1+2,1+3,1+4] then we call the new list recursively i.e now int=2,list=[3,4]. checklist will now append [2+3+4,2+3,2+4] accordingly we append the checklist till list is empty.
set is the set of sums and list is the list of the original numbers.
Its Java.
public void subSums() {
Set<Long> resultSet = new HashSet<Long>();
for(long l: list) {
for(long s: set) {
resultSet.add(s);
resultSet.add(l + s);
}
resultSet.add(l);
set.addAll(resultSet);
resultSet.clear();
}
}
public static void main(String[] args) {
// this is an example number
long number = 245L;
int sum = 0;
if (number > 0) {
do {
int last = (int) (number % 10);
sum = (sum + last) % 9;
} while ((number /= 10) > 0);
System.err.println("s = " + (sum==0 ? 9:sum);
} else {
System.err.println("0");
}
}

Resources