Finding all possible combinations of numbers to reach a given sum - algorithm

How would you go about testing all possible combinations of additions from a given set N of numbers so they add up to a given final number?
A brief example:
Set of numbers to add: N = {1,5,22,15,0,...}
Desired result: 12345

This problem can be solved with a recursive combinations of all possible sums filtering out those that reach the target. Here is the algorithm in Python:
def subset_sum(numbers, target, partial=[]):
s = sum(partial)
# check if the partial sum is equals to target
if s == target:
print "sum(%s)=%s" % (partial, target)
if s >= target:
return # if we reach the number why bother to continue
for i in range(len(numbers)):
n = numbers[i]
remaining = numbers[i+1:]
subset_sum(remaining, target, partial + [n])
if __name__ == "__main__":
subset_sum([3,9,8,4,5,7,10],15)
#Outputs:
#sum([3, 8, 4])=15
#sum([3, 5, 7])=15
#sum([8, 7])=15
#sum([5, 10])=15
This type of algorithms are very well explained in the following Stanford's Abstract Programming lecture - this video is very recommendable to understand how recursion works to generate permutations of solutions.
Edit
The above as a generator function, making it a bit more useful. Requires Python 3.3+ because of yield from.
def subset_sum(numbers, target, partial=[], partial_sum=0):
if partial_sum == target:
yield partial
if partial_sum >= target:
return
for i, n in enumerate(numbers):
remaining = numbers[i + 1:]
yield from subset_sum(remaining, target, partial + [n], partial_sum + n)
Here is the Java version of the same algorithm:
package tmp;
import java.util.ArrayList;
import java.util.Arrays;
class SumSet {
static void sum_up_recursive(ArrayList<Integer> numbers, int target, ArrayList<Integer> partial) {
int s = 0;
for (int x: partial) s += x;
if (s == target)
System.out.println("sum("+Arrays.toString(partial.toArray())+")="+target);
if (s >= target)
return;
for(int i=0;i<numbers.size();i++) {
ArrayList<Integer> remaining = new ArrayList<Integer>();
int n = numbers.get(i);
for (int j=i+1; j<numbers.size();j++) remaining.add(numbers.get(j));
ArrayList<Integer> partial_rec = new ArrayList<Integer>(partial);
partial_rec.add(n);
sum_up_recursive(remaining,target,partial_rec);
}
}
static void sum_up(ArrayList<Integer> numbers, int target) {
sum_up_recursive(numbers,target,new ArrayList<Integer>());
}
public static void main(String args[]) {
Integer[] numbers = {3,9,8,4,5,7,10};
int target = 15;
sum_up(new ArrayList<Integer>(Arrays.asList(numbers)),target);
}
}
It is exactly the same heuristic. My Java is a bit rusty but I think is easy to understand.
C# conversion of Java solution: (by #JeremyThompson)
public static void Main(string[] args)
{
List<int> numbers = new List<int>() { 3, 9, 8, 4, 5, 7, 10 };
int target = 15;
sum_up(numbers, target);
}
private static void sum_up(List<int> numbers, int target)
{
sum_up_recursive(numbers, target, new List<int>());
}
private static void sum_up_recursive(List<int> numbers, int target, List<int> partial)
{
int s = 0;
foreach (int x in partial) s += x;
if (s == target)
Console.WriteLine("sum(" + string.Join(",", partial.ToArray()) + ")=" + target);
if (s >= target)
return;
for (int i = 0; i < numbers.Count; i++)
{
List<int> remaining = new List<int>();
int n = numbers[i];
for (int j = i + 1; j < numbers.Count; j++) remaining.Add(numbers[j]);
List<int> partial_rec = new List<int>(partial);
partial_rec.Add(n);
sum_up_recursive(remaining, target, partial_rec);
}
}
Ruby solution: (by #emaillenin)
def subset_sum(numbers, target, partial=[])
s = partial.inject 0, :+
# check if the partial sum is equals to target
puts "sum(#{partial})=#{target}" if s == target
return if s >= target # if we reach the number why bother to continue
(0..(numbers.length - 1)).each do |i|
n = numbers[i]
remaining = numbers.drop(i+1)
subset_sum(remaining, target, partial + [n])
end
end
subset_sum([3,9,8,4,5,7,10],15)
Edit: complexity discussion
As others mention this is an NP-hard problem. It can be solved in exponential time O(2^n), for instance for n=10 there will be 1024 possible solutions. If the targets you are trying to reach are in a low range then this algorithm works. So for instance:
subset_sum([1,2,3,4,5,6,7,8,9,10],100000) generates 1024 branches because the target never gets to filter out possible solutions.
On the other hand subset_sum([1,2,3,4,5,6,7,8,9,10],10) generates only 175 branches, because the target to reach 10 gets to filter out many combinations.
If N and Target are big numbers one should move into an approximate version of the solution.

The solution of this problem has been given a million times on the Internet. The problem is called The coin changing problem. One can find solutions at http://rosettacode.org/wiki/Count_the_coins and mathematical model of it at http://jaqm.ro/issues/volume-5,issue-2/pdfs/patterson_harmel.pdf (or Google coin change problem).
By the way, the Scala solution by Tsagadai, is interesting. This example produces either 1 or 0. As a side effect, it lists on the console all possible solutions. It displays the solution, but fails making it usable in any way.
To be as useful as possible, the code should return a List[List[Int]]in order to allow getting the number of solution (length of the list of lists), the "best" solution (the shortest list), or all the possible solutions.
Here is an example. It is very inefficient, but it is easy to understand.
object Sum extends App {
def sumCombinations(total: Int, numbers: List[Int]): List[List[Int]] = {
def add(x: (Int, List[List[Int]]), y: (Int, List[List[Int]])): (Int, List[List[Int]]) = {
(x._1 + y._1, x._2 ::: y._2)
}
def sumCombinations(resultAcc: List[List[Int]], sumAcc: List[Int], total: Int, numbers: List[Int]): (Int, List[List[Int]]) = {
if (numbers.isEmpty || total < 0) {
(0, resultAcc)
} else if (total == 0) {
(1, sumAcc :: resultAcc)
} else {
add(sumCombinations(resultAcc, sumAcc, total, numbers.tail), sumCombinations(resultAcc, numbers.head :: sumAcc, total - numbers.head, numbers))
}
}
sumCombinations(Nil, Nil, total, numbers.sortWith(_ > _))._2
}
println(sumCombinations(15, List(1, 2, 5, 10)) mkString "\n")
}
When run, it displays:
List(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
List(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2)
List(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2)
List(1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2)
List(1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2)
List(1, 1, 1, 1, 1, 2, 2, 2, 2, 2)
List(1, 1, 1, 2, 2, 2, 2, 2, 2)
List(1, 2, 2, 2, 2, 2, 2, 2)
List(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5)
List(1, 1, 1, 1, 1, 1, 1, 1, 2, 5)
List(1, 1, 1, 1, 1, 1, 2, 2, 5)
List(1, 1, 1, 1, 2, 2, 2, 5)
List(1, 1, 2, 2, 2, 2, 5)
List(2, 2, 2, 2, 2, 5)
List(1, 1, 1, 1, 1, 5, 5)
List(1, 1, 1, 2, 5, 5)
List(1, 2, 2, 5, 5)
List(5, 5, 5)
List(1, 1, 1, 1, 1, 10)
List(1, 1, 1, 2, 10)
List(1, 2, 2, 10)
List(5, 10)
The sumCombinations() function may be used by itself, and the result may be further analyzed to display the "best" solution (the shortest list), or the number of solutions (the number of lists).
Note that even like this, the requirements may not be fully satisfied. It might happen that the order of each list in the solution be significant. In such a case, each list would have to be duplicated as many time as there are combination of its elements. Or we might be interested only in the combinations that are different.
For example, we might consider that List(5, 10) should give two combinations: List(5, 10) and List(10, 5). For List(5, 5, 5) it could give three combinations or one only, depending on the requirements. For integers, the three permutations are equivalent, but if we are dealing with coins, like in the "coin changing problem", they are not.
Also not stated in the requirements is the question of whether each number (or coin) may be used only once or many times. We could (and we should!) generalize the problem to a list of lists of occurrences of each number. This translates in real life into "what are the possible ways to make an certain amount of money with a set of coins (and not a set of coin values)". The original problem is just a particular case of this one, where we have as many occurrences of each coin as needed to make the total amount with each single coin value.

A Javascript version:
function subsetSum(numbers, target, partial) {
var s, n, remaining;
partial = partial || [];
// sum partial
s = partial.reduce(function (a, b) {
return a + b;
}, 0);
// check if the partial sum is equals to target
if (s === target) {
console.log("%s=%s", partial.join("+"), target)
}
if (s >= target) {
return; // if we reach the number why bother to continue
}
for (var i = 0; i < numbers.length; i++) {
n = numbers[i];
remaining = numbers.slice(i + 1);
subsetSum(remaining, target, partial.concat([n]));
}
}
subsetSum([3,9,8,4,5,7,10],15);
// output:
// 3+8+4=15
// 3+5+7=15
// 8+7=15
// 5+10=15

In Haskell:
filter ((==) 12345 . sum) $ subsequences [1,5,22,15,0,..]
And J:
(]#~12345=+/#>)(]<##~[:#:#i.2^#)1 5 22 15 0 ...
As you may notice, both take the same approach and divide the problem into two parts: generate each member of the power set, and check each member's sum to the target.
There are other solutions but this is the most straightforward.
Do you need help with either one, or finding a different approach?

There are a lot of solutions so far, but all are of the form generate then filter. Which means that they potentially spend a lot of time working on recursive paths that do not lead to a solution.
Here is a solution that is O(size_of_array * (number_of_sums + number_of_solutions)). In other words it uses dynamic programming to avoid enumerating possible solutions that will never match.
For giggles and grins I made this work with numbers that are both positive and negative, and made it an iterator. It will work for Python 2.3+.
def subset_sum_iter(array, target):
sign = 1
array = sorted(array)
if target < 0:
array = reversed(array)
sign = -1
# Checkpoint A
last_index = {0: [-1]}
for i in range(len(array)):
for s in list(last_index.keys()):
new_s = s + array[i]
if 0 < (new_s - target) * sign:
pass # Cannot lead to target
elif new_s in last_index:
last_index[new_s].append(i)
else:
last_index[new_s] = [i]
# Checkpoint B
# Now yield up the answers.
def recur(new_target, max_i):
for i in last_index[new_target]:
if i == -1:
yield [] # Empty sum.
elif max_i <= i:
break # Not our solution.
else:
for answer in recur(new_target - array[i], i):
answer.append(array[i])
yield answer
for answer in recur(target, len(array)):
yield answer
And here is an example of it being used with an array and target where the filtering approach used in other solutions would effectively never finish.
def is_prime(n):
for i in range(2, n):
if 0 == n % i:
return False
elif n < i * i:
return True
if n == 2:
return True
else:
return False
def primes(limit):
n = 2
while True:
if is_prime(n):
yield(n)
n = n + 1
if limit < n:
break
for answer in subset_sum_iter(primes(1000), 76000):
print(answer)
This prints all 522 answers in under 2 seconds. The previous approaches would be lucky to find any answers in the current lifetime of the universe. (The full space has 2^168 = 3.74144419156711e+50 possible combinations to run through. That...takes a while.)
Explanation
I was asked to explain the code, but explaining data structures is usually more revealing. So I'll explain the data structures.
Let's consider subset_sum_iter([-2, 2, -3, 3, -5, 5, -7, 7, -11, 11], 10).
At checkpoint A, we have realized that our target is positive so sign = 1. And we've sorted our input so that array = [-11, -7, -5, -3, -2, 2, 3, 5, 7, 11]. Since we wind up accessing it by index a lot, here the the map from indexes to values:
0: -11
1: -7
2: -5
3: -3
4: -2
5: 2
6: 3
7: 5
8: 7
9: 11
By checkpoint B we have used Dynamic Programming to generate our last_index data structure. What does it contain?
last_index = {
-28: [4],
-26: [3, 5],
-25: [4, 6],
-24: [5],
-23: [2, 4, 5, 6, 7],
-22: [6],
-21: [3, 4, 5, 6, 7, 8],
-20: [4, 6, 7],
-19: [3, 5, 7, 8],
-18: [1, 4, 5, 6, 7, 8],
-17: [4, 5, 6, 7, 8, 9],
-16: [2, 4, 5, 6, 7, 8],
-15: [3, 5, 6, 7, 8, 9],
-14: [3, 4, 5, 6, 7, 8, 9],
-13: [4, 5, 6, 7, 8, 9],
-12: [2, 4, 5, 6, 7, 8, 9],
-11: [0, 5, 6, 7, 8, 9],
-10: [3, 4, 5, 6, 7, 8, 9],
-9: [4, 5, 6, 7, 8, 9],
-8: [3, 5, 6, 7, 8, 9],
-7: [1, 4, 5, 6, 7, 8, 9],
-6: [5, 6, 7, 8, 9],
-5: [2, 4, 5, 6, 7, 8, 9],
-4: [6, 7, 8, 9],
-3: [3, 5, 6, 7, 8, 9],
-2: [4, 6, 7, 8, 9],
-1: [5, 7, 8, 9],
0: [-1, 5, 6, 7, 8, 9],
1: [6, 7, 8, 9],
2: [5, 6, 7, 8, 9],
3: [6, 7, 8, 9],
4: [7, 8, 9],
5: [6, 7, 8, 9],
6: [7, 8, 9],
7: [7, 8, 9],
8: [7, 8, 9],
9: [8, 9],
10: [7, 8, 9]
}
(Side note, it is not symmetric because the condition if 0 < (new_s - target) * sign stops us from recording anything past target, which in our case was 10.)
What does this mean? Well, take the entry, 10: [7, 8, 9]. It means that we can wind up at a final sum of 10 with the last number chosen being at indexes 7, 8, or 9. Namely the last number chosen could be 5, 7, or 11.
Let's take a closer look at what happens if we choose index 7. That means we end on a 5. So therefore before we came to index 7, we had to get to 10-5 = 5. And the entry for 5 reads, 5: [6, 7, 8, 9]. So we could have picked index 6, which is 3. While we get to 5 at indexes 7, 8, and 9, we didn't get there before index 7. So our second to last choice has to be the 3 at index 6.
And now we have to get to 5-3 = 2 before index 6. The entry 2 reads: 2: [5, 6, 7, 8, 9]. Again, we only care about the answer at index 5 because the others happened too late. So the third to last choice is has to be the 2 at index 5.
And finally we have to get to 2-2 = 0 before index 5. The entry 0 reads: 0: [-1, 5, 6, 7, 8, 9]. Again we only care about the -1. But -1 isn't an index - in fact I'm using it to signal we're done choosing.
So we just found the solution 2+3+5 = 10. Which is the very first solution we print out.
And now we get to the recur subfunction. Because it is defined inside of our main function, it can see last_index.
The first thing to note is that it calls yield, not return. This makes it into a generator. When you call it you return a special kind of iterator. When you loop over that iterator, you'll get a list of all of the things it can yield. But you get them as it generates them. If it is a long list, you don't put it in memory. (Kind of important because we could get a long list.)
What recur(new_target, max_i) will yield are all of the ways that you could have summed up to new_target using only elements of array with maximum index max_i. That is it answers: "We have to get to new_target before index max_i+1." It is, of course, recursive.
Therefore recur(target, len(array)) is all solutions that reach target using any index at all. Which is what we want.

C++ version of the same algorithm
#include <iostream>
#include <list>
void subset_sum_recursive(std::list<int> numbers, int target, std::list<int> partial)
{
int s = 0;
for (std::list<int>::const_iterator cit = partial.begin(); cit != partial.end(); cit++)
{
s += *cit;
}
if(s == target)
{
std::cout << "sum([";
for (std::list<int>::const_iterator cit = partial.begin(); cit != partial.end(); cit++)
{
std::cout << *cit << ",";
}
std::cout << "])=" << target << std::endl;
}
if(s >= target)
return;
int n;
for (std::list<int>::const_iterator ai = numbers.begin(); ai != numbers.end(); ai++)
{
n = *ai;
std::list<int> remaining;
for(std::list<int>::const_iterator aj = ai; aj != numbers.end(); aj++)
{
if(aj == ai)continue;
remaining.push_back(*aj);
}
std::list<int> partial_rec=partial;
partial_rec.push_back(n);
subset_sum_recursive(remaining,target,partial_rec);
}
}
void subset_sum(std::list<int> numbers,int target)
{
subset_sum_recursive(numbers,target,std::list<int>());
}
int main()
{
std::list<int> a;
a.push_back (3); a.push_back (9); a.push_back (8);
a.push_back (4);
a.push_back (5);
a.push_back (7);
a.push_back (10);
int n = 15;
//std::cin >> n;
subset_sum(a, n);
return 0;
}

C# version of #msalvadores code answer
void Main()
{
int[] numbers = {3,9,8,4,5,7,10};
int target = 15;
sum_up(new List<int>(numbers.ToList()),target);
}
static void sum_up_recursive(List<int> numbers, int target, List<int> part)
{
int s = 0;
foreach (int x in part)
{
s += x;
}
if (s == target)
{
Console.WriteLine("sum(" + string.Join(",", part.Select(n => n.ToString()).ToArray()) + ")=" + target);
}
if (s >= target)
{
return;
}
for (int i = 0;i < numbers.Count;i++)
{
var remaining = new List<int>();
int n = numbers[i];
for (int j = i + 1; j < numbers.Count;j++)
{
remaining.Add(numbers[j]);
}
var part_rec = new List<int>(part);
part_rec.Add(n);
sum_up_recursive(remaining,target,part_rec);
}
}
static void sum_up(List<int> numbers, int target)
{
sum_up_recursive(numbers,target,new List<int>());
}

Java non-recursive version that simply keeps adding elements and redistributing them amongst possible values. 0's are ignored and works for fixed lists (what you're given is what you can play with) or a list of repeatable numbers.
import java.util.*;
public class TestCombinations {
public static void main(String[] args) {
ArrayList<Integer> numbers = new ArrayList<>(Arrays.asList(0, 1, 2, 2, 5, 10, 20));
LinkedHashSet<Integer> targets = new LinkedHashSet<Integer>() {{
add(4);
add(10);
add(25);
}};
System.out.println("## each element can appear as many times as needed");
for (Integer target: targets) {
Combinations combinations = new Combinations(numbers, target, true);
combinations.calculateCombinations();
for (String solution: combinations.getCombinations()) {
System.out.println(solution);
}
}
System.out.println("## each element can appear only once");
for (Integer target: targets) {
Combinations combinations = new Combinations(numbers, target, false);
combinations.calculateCombinations();
for (String solution: combinations.getCombinations()) {
System.out.println(solution);
}
}
}
public static class Combinations {
private boolean allowRepetitions;
private int[] repetitions;
private ArrayList<Integer> numbers;
private Integer target;
private Integer sum;
private boolean hasNext;
private Set<String> combinations;
/**
* Constructor.
*
* #param numbers Numbers that can be used to calculate the sum.
* #param target Target value for sum.
*/
public Combinations(ArrayList<Integer> numbers, Integer target) {
this(numbers, target, true);
}
/**
* Constructor.
*
* #param numbers Numbers that can be used to calculate the sum.
* #param target Target value for sum.
*/
public Combinations(ArrayList<Integer> numbers, Integer target, boolean allowRepetitions) {
this.allowRepetitions = allowRepetitions;
if (this.allowRepetitions) {
Set<Integer> numbersSet = new HashSet<>(numbers);
this.numbers = new ArrayList<>(numbersSet);
} else {
this.numbers = numbers;
}
this.numbers.removeAll(Arrays.asList(0));
Collections.sort(this.numbers);
this.target = target;
this.repetitions = new int[this.numbers.size()];
this.combinations = new LinkedHashSet<>();
this.sum = 0;
if (this.repetitions.length > 0)
this.hasNext = true;
else
this.hasNext = false;
}
/**
* Calculate and return the sum of the current combination.
*
* #return The sum.
*/
private Integer calculateSum() {
this.sum = 0;
for (int i = 0; i < repetitions.length; ++i) {
this.sum += repetitions[i] * numbers.get(i);
}
return this.sum;
}
/**
* Redistribute picks when only one of each number is allowed in the sum.
*/
private void redistribute() {
for (int i = 1; i < this.repetitions.length; ++i) {
if (this.repetitions[i - 1] > 1) {
this.repetitions[i - 1] = 0;
this.repetitions[i] += 1;
}
}
if (this.repetitions[this.repetitions.length - 1] > 1)
this.repetitions[this.repetitions.length - 1] = 0;
}
/**
* Get the sum of the next combination. When 0 is returned, there's no other combinations to check.
*
* #return The sum.
*/
private Integer next() {
if (this.hasNext && this.repetitions.length > 0) {
this.repetitions[0] += 1;
if (!this.allowRepetitions)
this.redistribute();
this.calculateSum();
for (int i = 0; i < this.repetitions.length && this.sum != 0; ++i) {
if (this.sum > this.target) {
this.repetitions[i] = 0;
if (i + 1 < this.repetitions.length) {
this.repetitions[i + 1] += 1;
if (!this.allowRepetitions)
this.redistribute();
}
this.calculateSum();
}
}
if (this.sum.compareTo(0) == 0)
this.hasNext = false;
}
return this.sum;
}
/**
* Calculate all combinations whose sum equals target.
*/
public void calculateCombinations() {
while (this.hasNext) {
if (this.next().compareTo(target) == 0)
this.combinations.add(this.toString());
}
}
/**
* Return all combinations whose sum equals target.
*
* #return Combinations as a set of strings.
*/
public Set<String> getCombinations() {
return this.combinations;
}
#Override
public String toString() {
StringBuilder stringBuilder = new StringBuilder("" + sum + ": ");
for (int i = 0; i < repetitions.length; ++i) {
for (int j = 0; j < repetitions[i]; ++j) {
stringBuilder.append(numbers.get(i) + " ");
}
}
return stringBuilder.toString();
}
}
}
Sample input:
numbers: 0, 1, 2, 2, 5, 10, 20
targets: 4, 10, 25
Sample output:
## each element can appear as many times as needed
4: 1 1 1 1
4: 1 1 2
4: 2 2
10: 1 1 1 1 1 1 1 1 1 1
10: 1 1 1 1 1 1 1 1 2
10: 1 1 1 1 1 1 2 2
10: 1 1 1 1 2 2 2
10: 1 1 2 2 2 2
10: 2 2 2 2 2
10: 1 1 1 1 1 5
10: 1 1 1 2 5
10: 1 2 2 5
10: 5 5
10: 10
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2
25: 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2
25: 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
25: 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
25: 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2
25: 1 1 1 2 2 2 2 2 2 2 2 2 2 2
25: 1 2 2 2 2 2 2 2 2 2 2 2 2
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 5
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 5
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 5
25: 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 5
25: 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 5
25: 1 1 1 1 1 1 1 1 2 2 2 2 2 2 5
25: 1 1 1 1 1 1 2 2 2 2 2 2 2 5
25: 1 1 1 1 2 2 2 2 2 2 2 2 5
25: 1 1 2 2 2 2 2 2 2 2 2 5
25: 2 2 2 2 2 2 2 2 2 2 5
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 5
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 2 5 5
25: 1 1 1 1 1 1 1 1 1 1 1 2 2 5 5
25: 1 1 1 1 1 1 1 1 1 2 2 2 5 5
25: 1 1 1 1 1 1 1 2 2 2 2 5 5
25: 1 1 1 1 1 2 2 2 2 2 5 5
25: 1 1 1 2 2 2 2 2 2 5 5
25: 1 2 2 2 2 2 2 2 5 5
25: 1 1 1 1 1 1 1 1 1 1 5 5 5
25: 1 1 1 1 1 1 1 1 2 5 5 5
25: 1 1 1 1 1 1 2 2 5 5 5
25: 1 1 1 1 2 2 2 5 5 5
25: 1 1 2 2 2 2 5 5 5
25: 2 2 2 2 2 5 5 5
25: 1 1 1 1 1 5 5 5 5
25: 1 1 1 2 5 5 5 5
25: 1 2 2 5 5 5 5
25: 5 5 5 5 5
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10
25: 1 1 1 1 1 1 1 1 1 1 1 1 1 2 10
25: 1 1 1 1 1 1 1 1 1 1 1 2 2 10
25: 1 1 1 1 1 1 1 1 1 2 2 2 10
25: 1 1 1 1 1 1 1 2 2 2 2 10
25: 1 1 1 1 1 2 2 2 2 2 10
25: 1 1 1 2 2 2 2 2 2 10
25: 1 2 2 2 2 2 2 2 10
25: 1 1 1 1 1 1 1 1 1 1 5 10
25: 1 1 1 1 1 1 1 1 2 5 10
25: 1 1 1 1 1 1 2 2 5 10
25: 1 1 1 1 2 2 2 5 10
25: 1 1 2 2 2 2 5 10
25: 2 2 2 2 2 5 10
25: 1 1 1 1 1 5 5 10
25: 1 1 1 2 5 5 10
25: 1 2 2 5 5 10
25: 5 5 5 10
25: 1 1 1 1 1 10 10
25: 1 1 1 2 10 10
25: 1 2 2 10 10
25: 5 10 10
25: 1 1 1 1 1 20
25: 1 1 1 2 20
25: 1 2 2 20
25: 5 20
## each element can appear only once
4: 2 2
10: 1 2 2 5
10: 10
25: 1 2 2 20
25: 5 20

Thank you.. ephemient
i have converted above logic from python to php..
<?php
$data = array(array(2,3,5,10,15),array(4,6,23,15,12),array(23,34,12,1,5));
$maxsum = 25;
print_r(bestsum($data,$maxsum)); //function call
function bestsum($data,$maxsum)
{
$res = array_fill(0, $maxsum + 1, '0');
$res[0] = array(); //base case
foreach($data as $group)
{
$new_res = $res; //copy res
foreach($group as $ele)
{
for($i=0;$i<($maxsum-$ele+1);$i++)
{
if($res[$i] != 0)
{
$ele_index = $i+$ele;
$new_res[$ele_index] = $res[$i];
$new_res[$ele_index][] = $ele;
}
}
}
$res = $new_res;
}
for($i=$maxsum;$i>0;$i--)
{
if($res[$i]!=0)
{
return $res[$i];
break;
}
}
return array();
}
?>

Another python solution would be to use the itertools.combinations module as follows:
#!/usr/local/bin/python
from itertools import combinations
def find_sum_in_list(numbers, target):
results = []
for x in range(len(numbers)):
results.extend(
[
combo for combo in combinations(numbers ,x)
if sum(combo) == target
]
)
print results
if __name__ == "__main__":
find_sum_in_list([3,9,8,4,5,7,10], 15)
Output: [(8, 7), (5, 10), (3, 8, 4), (3, 5, 7)]

I thought I'd use an answer from this question but I couldn't, so here is my answer. It is using a modified version of an answer in Structure and Interpretation of Computer Programs. I think this is a better recursive solution and should please the purists more.
My answer is in Scala (and apologies if my Scala sucks, I've just started learning it). The findSumCombinations craziness is to sort and unique the original list for the recursion to prevent dupes.
def findSumCombinations(target: Int, numbers: List[Int]): Int = {
cc(target, numbers.distinct.sortWith(_ < _), List())
}
def cc(target: Int, numbers: List[Int], solution: List[Int]): Int = {
if (target == 0) {println(solution); 1 }
else if (target < 0 || numbers.length == 0) 0
else
cc(target, numbers.tail, solution)
+ cc(target - numbers.head, numbers, numbers.head :: solution)
}
To use it:
> findSumCombinations(12345, List(1,5,22,15,0,..))
* Prints a whole heap of lists that will sum to the target *

Excel VBA version below. I needed to implement this in VBA (not my preference, don't judge me!), and used the answers on this page for the approach. I'm uploading in case others also need a VBA version.
Option Explicit
Public Sub SumTarget()
Dim numbers(0 To 6) As Long
Dim target As Long
target = 15
numbers(0) = 3: numbers(1) = 9: numbers(2) = 8: numbers(3) = 4: numbers(4) = 5
numbers(5) = 7: numbers(6) = 10
Call SumUpTarget(numbers, target)
End Sub
Public Sub SumUpTarget(numbers() As Long, target As Long)
Dim part() As Long
Call SumUpRecursive(numbers, target, part)
End Sub
Private Sub SumUpRecursive(numbers() As Long, target As Long, part() As Long)
Dim s As Long, i As Long, j As Long, num As Long
Dim remaining() As Long, partRec() As Long
s = SumArray(part)
If s = target Then Debug.Print "SUM ( " & ArrayToString(part) & " ) = " & target
If s >= target Then Exit Sub
If (Not Not numbers) <> 0 Then
For i = 0 To UBound(numbers)
Erase remaining()
num = numbers(i)
For j = i + 1 To UBound(numbers)
AddToArray remaining, numbers(j)
Next j
Erase partRec()
CopyArray partRec, part
AddToArray partRec, num
SumUpRecursive remaining, target, partRec
Next i
End If
End Sub
Private Function ArrayToString(x() As Long) As String
Dim n As Long, result As String
result = "{" & x(n)
For n = LBound(x) + 1 To UBound(x)
result = result & "," & x(n)
Next n
result = result & "}"
ArrayToString = result
End Function
Private Function SumArray(x() As Long) As Long
Dim n As Long
SumArray = 0
If (Not Not x) <> 0 Then
For n = LBound(x) To UBound(x)
SumArray = SumArray + x(n)
Next n
End If
End Function
Private Sub AddToArray(arr() As Long, x As Long)
If (Not Not arr) <> 0 Then
ReDim Preserve arr(0 To UBound(arr) + 1)
Else
ReDim Preserve arr(0 To 0)
End If
arr(UBound(arr)) = x
End Sub
Private Sub CopyArray(destination() As Long, source() As Long)
Dim n As Long
If (Not Not source) <> 0 Then
For n = 0 To UBound(source)
AddToArray destination, source(n)
Next n
End If
End Sub
Output (written to the Immediate window) should be:
SUM ( {3,8,4} ) = 15
SUM ( {3,5,7} ) = 15
SUM ( {8,7} ) = 15
SUM ( {5,10} ) = 15

Here's a solution in R
subset_sum = function(numbers,target,partial=0){
if(any(is.na(partial))) return()
s = sum(partial)
if(s == target) print(sprintf("sum(%s)=%s",paste(partial[-1],collapse="+"),target))
if(s > target) return()
for( i in seq_along(numbers)){
n = numbers[i]
remaining = numbers[(i+1):length(numbers)]
subset_sum(remaining,target,c(partial,n))
}
}

Perl version (of the leading answer):
use strict;
sub subset_sum {
my ($numbers, $target, $result, $sum) = #_;
print 'sum('.join(',', #$result).") = $target\n" if $sum == $target;
return if $sum >= $target;
subset_sum([#$numbers[$_ + 1 .. $#$numbers]], $target,
[#{$result||[]}, $numbers->[$_]], $sum + $numbers->[$_])
for (0 .. $#$numbers);
}
subset_sum([3,9,8,4,5,7,10,6], 15);
Result:
sum(3,8,4) = 15
sum(3,5,7) = 15
sum(9,6) = 15
sum(8,7) = 15
sum(4,5,6) = 15
sum(5,10) = 15
Javascript version:
const subsetSum = (numbers, target, partial = [], sum = 0) => {
if (sum < target)
numbers.forEach((num, i) =>
subsetSum(numbers.slice(i + 1), target, partial.concat([num]), sum + num));
else if (sum == target)
console.log('sum(%s) = %s', partial.join(), target);
}
subsetSum([3,9,8,4,5,7,10,6], 15);
Javascript one-liner that actually returns results (instead of printing it):
const subsetSum=(n,t,p=[],s=0,r=[])=>(s<t?n.forEach((l,i)=>subsetSum(n.slice(i+1),t,[...p,l],s+l,r)):s==t?r.push(p):0,r);
console.log(subsetSum([3,9,8,4,5,7,10,6], 15));
And my favorite, one-liner with callback:
const subsetSum=(n,t,cb,p=[],s=0)=>s<t?n.forEach((l,i)=>subsetSum(n.slice(i+1),t,cb,[...p,l],s+l)):s==t?cb(p):0;
subsetSum([3,9,8,4,5,7,10,6], 15, console.log);

Here is a Java version which is well suited for small N and very large target sum, when complexity O(t*N) (the dynamic solution) is greater than the exponential algorithm. My version uses a meet in the middle attack, along with a little bit shifting in order to reduce the complexity from the classic naive O(n*2^n) to O(2^(n/2)).
If you want to use this for sets with between 32 and 64 elements, you should change the int which represents the current subset in the step function to a long although performance will obviously drastically decrease as the set size increases. If you want to use this for a set with odd number of elements, you should add a 0 to the set to make it even numbered.
import java.util.ArrayList;
import java.util.List;
public class SubsetSumMiddleAttack {
static final int target = 100000000;
static final int[] set = new int[]{ ... };
static List<Subset> evens = new ArrayList<>();
static List<Subset> odds = new ArrayList<>();
static int[][] split(int[] superSet) {
int[][] ret = new int[2][superSet.length / 2];
for (int i = 0; i < superSet.length; i++) ret[i % 2][i / 2] = superSet[i];
return ret;
}
static void step(int[] superSet, List<Subset> accumulator, int subset, int sum, int counter) {
accumulator.add(new Subset(subset, sum));
if (counter != superSet.length) {
step(superSet, accumulator, subset + (1 << counter), sum + superSet[counter], counter + 1);
step(superSet, accumulator, subset, sum, counter + 1);
}
}
static void printSubset(Subset e, Subset o) {
String ret = "";
for (int i = 0; i < 32; i++) {
if (i % 2 == 0) {
if ((1 & (e.subset >> (i / 2))) == 1) ret += " + " + set[i];
}
else {
if ((1 & (o.subset >> (i / 2))) == 1) ret += " + " + set[i];
}
}
if (ret.startsWith(" ")) ret = ret.substring(3) + " = " + (e.sum + o.sum);
System.out.println(ret);
}
public static void main(String[] args) {
int[][] superSets = split(set);
step(superSets[0], evens, 0,0,0);
step(superSets[1], odds, 0,0,0);
for (Subset e : evens) {
for (Subset o : odds) {
if (e.sum + o.sum == target) printSubset(e, o);
}
}
}
}
class Subset {
int subset;
int sum;
Subset(int subset, int sum) {
this.subset = subset;
this.sum = sum;
}
}

Very efficient algorithm using tables i wrote in c++ couple a years ago.
If you set PRINT 1 it will print all combinations(but it wont be use the efficient method).
Its so efficient that it calculate more than 10^14 combinations in less than 10ms.
#include <stdio.h>
#include <stdlib.h>
//#include "CTime.h"
#define SUM 300
#define MAXNUMsSIZE 30
#define PRINT 0
long long CountAddToSum(int,int[],int,const int[],int);
void printr(const int[], int);
long long table1[SUM][MAXNUMsSIZE];
int main()
{
int Nums[]={3,4,5,6,7,9,13,11,12,13,22,35,17,14,18,23,33,54};
int sum=SUM;
int size=sizeof(Nums)/sizeof(int);
int i,j,a[]={0};
long long N=0;
//CTime timer1;
for(i=0;i<SUM;++i)
for(j=0;j<MAXNUMsSIZE;++j)
table1[i][j]=-1;
N = CountAddToSum(sum,Nums,size,a,0); //algorithm
//timer1.Get_Passd();
//printf("\nN=%lld time=%.1f ms\n", N,timer1.Get_Passd());
printf("\nN=%lld \n", N);
getchar();
return 1;
}
long long CountAddToSum(int s, int arr[],int arrsize, const int r[],int rsize)
{
static int totalmem=0, maxmem=0;
int i,*rnew;
long long result1=0,result2=0;
if(s<0) return 0;
if (table1[s][arrsize]>0 && PRINT==0) return table1[s][arrsize];
if(s==0)
{
if(PRINT) printr(r, rsize);
return 1;
}
if(arrsize==0) return 0;
//else
rnew=(int*)malloc((rsize+1)*sizeof(int));
for(i=0;i<rsize;++i) rnew[i]=r[i];
rnew[rsize]=arr[arrsize-1];
result1 = CountAddToSum(s,arr,arrsize-1,rnew,rsize);
result2 = CountAddToSum(s-arr[arrsize-1],arr,arrsize,rnew,rsize+1);
table1[s][arrsize]=result1+result2;
free(rnew);
return result1+result2;
}
void printr(const int r[], int rsize)
{
int lastr=r[0],count=0,i;
for(i=0; i<rsize;++i)
{
if(r[i]==lastr)
count++;
else
{
printf(" %d*%d ",count,lastr);
lastr=r[i];
count=1;
}
}
if(r[i-1]==lastr) printf(" %d*%d ",count,lastr);
printf("\n");
}

This is similar to a coin change problem
public class CoinCount
{
public static void main(String[] args)
{
int[] coins={1,4,6,2,3,5};
int count=0;
for (int i=0;i<coins.length;i++)
{
count=count+Count(9,coins,i,0);
}
System.out.println(count);
}
public static int Count(int Sum,int[] coins,int index,int curSum)
{
int count=0;
if (index>=coins.length)
return 0;
int sumNow=curSum+coins[index];
if (sumNow>Sum)
return 0;
if (sumNow==Sum)
return 1;
for (int i= index+1;i<coins.length;i++)
count+=Count(Sum,coins,i,sumNow);
return count;
}
}

I ported the C# sample to Objective-c and didn't see it in the responses:
//Usage
NSMutableArray* numberList = [[NSMutableArray alloc] init];
NSMutableArray* partial = [[NSMutableArray alloc] init];
int target = 16;
for( int i = 1; i<target; i++ )
{ [numberList addObject:#(i)]; }
[self findSums:numberList target:target part:partial];
//*******************************************************************
// Finds combinations of numbers that add up to target recursively
//*******************************************************************
-(void)findSums:(NSMutableArray*)numbers target:(int)target part:(NSMutableArray*)partial
{
int s = 0;
for (NSNumber* x in partial)
{ s += [x intValue]; }
if (s == target)
{ NSLog(#"Sum[%#]", partial); }
if (s >= target)
{ return; }
for (int i = 0;i < [numbers count];i++ )
{
int n = [numbers[i] intValue];
NSMutableArray* remaining = [[NSMutableArray alloc] init];
for (int j = i + 1; j < [numbers count];j++)
{ [remaining addObject:#([numbers[j] intValue])]; }
NSMutableArray* partRec = [[NSMutableArray alloc] initWithArray:partial];
[partRec addObject:#(n)];
[self findSums:remaining target:target part:partRec];
}
}

Here is a better version with better output formatting and C++ 11 features:
void subset_sum_rec(std::vector<int> & nums, const int & target, std::vector<int> & partialNums)
{
int currentSum = std::accumulate(partialNums.begin(), partialNums.end(), 0);
if (currentSum > target)
return;
if (currentSum == target)
{
std::cout << "sum([";
for (auto it = partialNums.begin(); it != std::prev(partialNums.end()); ++it)
cout << *it << ",";
cout << *std::prev(partialNums.end());
std::cout << "])=" << target << std::endl;
}
for (auto it = nums.begin(); it != nums.end(); ++it)
{
std::vector<int> remaining;
for (auto it2 = std::next(it); it2 != nums.end(); ++it2)
remaining.push_back(*it2);
std::vector<int> partial = partialNums;
partial.push_back(*it);
subset_sum_rec(remaining, target, partial);
}
}

Deduce 0 in the first place. Zero is an identiy for addition so it is useless by the monoid laws in this particular case. Also deduce negative numbers as well if you want to climb up to a positive number. Otherwise you would also need subtraction operation.
So... the fastest algorithm you can get on this particular job is as follows given in JS.
function items2T([n,...ns],t){
var c = ~~(t/n);
return ns.length ? Array(c+1).fill()
.reduce((r,_,i) => r.concat(items2T(ns, t-n*i).map(s => Array(i).fill(n).concat(s))),[])
: t % n ? []
: [Array(c).fill(n)];
};
var data = [3, 9, 8, 4, 5, 7, 10],
result;
console.time("combos");
result = items2T(data, 15);
console.timeEnd("combos");
console.log(JSON.stringify(result));
This is a very fast algorithm but if you sort the data array descending it will be even faster. Using .sort() is insignificant since the algorithm will end up with much less recursive invocations.

PHP Version, as inspired by Keith Beller's C# version.
bala's PHP version did not work for me, because I did not need to group numbers. I wanted a simpler implementation with one target value, and a pool of numbers. This function will also prune any duplicate entries.
Edit 25/10/2021: Added the precision argument to support floating point numbers (now requires the bcmath extension).
/**
* Calculates a subset sum: finds out which combinations of numbers
* from the numbers array can be added together to come to the target
* number.
*
* Returns an indexed array with arrays of number combinations.
*
* Example:
*
* <pre>
* $matches = subset_sum(array(5,10,7,3,20), 25);
* </pre>
*
* Returns:
*
* <pre>
* Array
* (
* [0] => Array
* (
* [0] => 3
* [1] => 5
* [2] => 7
* [3] => 10
* )
* [1] => Array
* (
* [0] => 5
* [1] => 20
* )
* )
* </pre>
*
* #param number[] $numbers
* #param number $target
* #param array $part
* #param int $precision
* #return array[number[]]
*/
function subset_sum($numbers, $target, $precision=0, $part=null)
{
// we assume that an empty $part variable means this
// is the top level call.
$toplevel = false;
if($part === null) {
$toplevel = true;
$part = array();
}
$s = 0;
foreach($part as $x)
{
$s = $s + $x;
}
// we have found a match!
if(bccomp((string) $s, (string) $target, $precision) === 0)
{
sort($part); // ensure the numbers are always sorted
return array(implode('|', $part));
}
// gone too far, break off
if($s >= $target)
{
return null;
}
$matches = array();
$totalNumbers = count($numbers);
for($i=0; $i < $totalNumbers; $i++)
{
$remaining = array();
$n = $numbers[$i];
for($j = $i+1; $j < $totalNumbers; $j++)
{
$remaining[] = $numbers[$j];
}
$part_rec = $part;
$part_rec[] = $n;
$result = subset_sum($remaining, $target, $precision, $part_rec);
if($result)
{
$matches = array_merge($matches, $result);
}
}
if(!$toplevel)
{
return $matches;
}
// this is the top level function call: we have to
// prepare the final result value by stripping any
// duplicate results.
$matches = array_unique($matches);
$result = array();
foreach($matches as $entry)
{
$result[] = explode('|', $entry);
}
return $result;
}
Example:
$result = subset_sum(array(5, 10, 7, 3, 20), 25);
This will return an indexed array with two number combination arrays:
3, 5, 7, 10
5, 20
Example with floating point numbers:
// Specify the precision in the third argument
$result = subset_sum(array(0.40, 0.03, 0.05), 0.45, 2);
This will return a single match:
0.40, 0.05

To find the combinations using excel - (its fairly easy).
(You computer must not be too slow)
Go to this site
Go to the "Sum to Target" page
Download the "Sum to Target" excel file.
Follow the directions on the website page.
hope this helps.

Swift 3 conversion of Java solution: (by #JeremyThompson)
protocol _IntType { }
extension Int: _IntType {}
extension Array where Element: _IntType {
func subsets(to: Int) -> [[Element]]? {
func sum_up_recursive(_ numbers: [Element], _ target: Int, _ partial: [Element], _ solution: inout [[Element]]) {
var sum: Int = 0
for x in partial {
sum += x as! Int
}
if sum == target {
solution.append(partial)
}
guard sum < target else {
return
}
for i in stride(from: 0, to: numbers.count, by: 1) {
var remaining = [Element]()
for j in stride(from: i + 1, to: numbers.count, by: 1) {
remaining.append(numbers[j])
}
var partial_rec = [Element](partial)
partial_rec.append(numbers[i])
sum_up_recursive(remaining, target, partial_rec, &solution)
}
}
var solutions = [[Element]]()
sum_up_recursive(self, to, [Element](), &solutions)
return solutions.count > 0 ? solutions : nil
}
}
usage:
let numbers = [3, 9, 8, 4, 5, 7, 10]
if let solution = numbers.subsets(to: 15) {
print(solution) // output: [[3, 8, 4], [3, 5, 7], [8, 7], [5, 10]]
} else {
print("not possible")
}

This can be used to print all the answers as well
public void recur(int[] a, int n, int sum, int[] ans, int ind) {
if (n < 0 && sum != 0)
return;
if (n < 0 && sum == 0) {
print(ans, ind);
return;
}
if (sum >= a[n]) {
ans[ind] = a[n];
recur(a, n - 1, sum - a[n], ans, ind + 1);
}
recur(a, n - 1, sum, ans, ind);
}
public void print(int[] a, int n) {
for (int i = 0; i < n; i++)
System.out.print(a[i] + " ");
System.out.println();
}
Time Complexity is exponential. Order of 2^n

I was doing something similar for a scala assignment. Thought of posting my solution here:
def countChange(money: Int, coins: List[Int]): Int = {
def getCount(money: Int, remainingCoins: List[Int]): Int = {
if(money == 0 ) 1
else if(money < 0 || remainingCoins.isEmpty) 0
else
getCount(money, remainingCoins.tail) +
getCount(money - remainingCoins.head, remainingCoins)
}
if(money == 0 || coins.isEmpty) 0
else getCount(money, coins)
}

#KeithBeller's answer with slightly changed variable names and some comments.
public static void Main(string[] args)
{
List<int> input = new List<int>() { 3, 9, 8, 4, 5, 7, 10 };
int targetSum = 15;
SumUp(input, targetSum);
}
public static void SumUp(List<int> input, int targetSum)
{
SumUpRecursive(input, targetSum, new List<int>());
}
private static void SumUpRecursive(List<int> remaining, int targetSum, List<int> listToSum)
{
// Sum up partial
int sum = 0;
foreach (int x in listToSum)
sum += x;
//Check sum matched
if (sum == targetSum)
Console.WriteLine("sum(" + string.Join(",", listToSum.ToArray()) + ")=" + targetSum);
//Check sum passed
if (sum >= targetSum)
return;
//Iterate each input character
for (int i = 0; i < remaining.Count; i++)
{
//Build list of remaining items to iterate
List<int> newRemaining = new List<int>();
for (int j = i + 1; j < remaining.Count; j++)
newRemaining.Add(remaining[j]);
//Update partial list
List<int> newListToSum = new List<int>(listToSum);
int currentItem = remaining[i];
newListToSum.Add(currentItem);
SumUpRecursive(newRemaining, targetSum, newListToSum);
}
}'

Recommended as an answer:
Here's a solution using es2015 generators:
function* subsetSum(numbers, target, partial = [], partialSum = 0) {
if(partialSum === target) yield partial
if(partialSum >= target) return
for(let i = 0; i < numbers.length; i++){
const remaining = numbers.slice(i + 1)
, n = numbers[i]
yield* subsetSum(remaining, target, [...partial, n], partialSum + n)
}
}
Using generators can actually be very useful because it allows you to pause script execution immediately upon finding a valid subset. This is in contrast to solutions without generators (ie lacking state) which have to iterate through every single subset of numbers

I did not like the Javascript Solution I saw above. Here is the one I build using partial applying, closures and recursion:
Ok, I was mainly concern about, if the combinations array could satisfy the target requirement, hopefully this approached you will start to find the rest of combinations
Here just set the target and pass the combinations array.
function main() {
const target = 10
const getPermutationThatSumT = setTarget(target)
const permutation = getPermutationThatSumT([1, 4, 2, 5, 6, 7])
console.log( permutation );
}
the currently implementation I came up with
function setTarget(target) {
let partial = [];
return function permute(input) {
let i, removed;
for (i = 0; i < input.length; i++) {
removed = input.splice(i, 1)[0];
partial.push(removed);
const sum = partial.reduce((a, b) => a + b)
if (sum === target) return partial.slice()
if (sum < target) permute(input)
input.splice(i, 0, removed);
partial.pop();
}
return null
};
}

An iterative C++ stack solution for a flavor of this problem. Unlike some other iterative solutions, it doesn't make unnecessary copies of intermediate sequences.
#include <vector>
#include <iostream>
// Given a positive integer, return all possible combinations of
// positive integers that sum up to it.
std::vector<std::vector<int>> print_all_sum(int target){
std::vector<std::vector<int>> output;
std::vector<int> stack;
int curr_min = 1;
int sum = 0;
while (curr_min < target) {
sum += curr_min;
if (sum >= target) {
if (sum == target) {
output.push_back(stack); // make a copy
output.back().push_back(curr_min);
}
sum -= curr_min + stack.back();
curr_min = stack.back() + 1;
stack.pop_back();
} else {
stack.push_back(curr_min);
}
}
return output;
}
int main()
{
auto vvi = print_all_sum(6);
for (auto const& v: vvi) {
for(auto const& i: v) {
std::cout << i;
}
std::cout << "\n";
}
return 0;
}
Output print_all_sum(6):
111111
11112
1113
1122
114
123
15
222
24
33

function solve(n){
let DP = [];
DP[0] = DP[1] = DP[2] = 1;
DP[3] = 2;
for (let i = 4; i <= n; i++) {
DP[i] = DP[i-1] + DP[i-3] + DP[i-4];
}
return DP[n]
}
console.log(solve(5))
This is a Dynamic Solution for JS to tell how many ways anyone can get the certain sum. This can be the right solution if you think about time and space complexity.

Related

How would one solve the staircase problem recursively with a variable number of steps?

The problem of determining the n amount of ways to climb a staircase given you can take 1 or 2 steps is well known with the Fibonacci sequencing solution being very clear. However how exactly could one solve this recursively if you also assume that you can take a variable M amount of steps?
I tried to make a quick mockup of this algorithm in typescript with
function counter(n: number, h: number){
console.log(`counter(n=${n},h=${h})`);
let sum = 0
if(h<1) return 0;
sum = 1
if (n>h) {
n = h;
}
if (n==h) {
sum = Math.pow(2, h-1)
console.log(`return sum=${sum}, pow(2,${h-1}) `)
return sum
}
for (let c = 1; c <= h; c++) {
console.log(`c=${c}`)
sum += counter(n, h-c);
console.log(`sum=${sum}`)
}
console.log(`return sum=${sum}`)
return sum;
}
let result = counter (2, 4);
console.log(`result=${result}`)
but unfortunately this doesn't seem to work for most cases where the height is not equal to the number of steps one could take.
I think this could be solved with recursive DP.
vector<vector<int>> dp2; //[stair count][number of jumps]
int stair(int c, int p) {
int& ret = dp2[c][p];
if (ret != -1) return ret; //If you've already done same search, return saved result
if (c == n) { //If you hit the last stair, return 1
return ret = 1;
}
int s1 = 0, s2 = 0;
if (p < m) { //If you can do more jumps, make recursive call
s1 = stair(c + 1, p + 1);
if (c + 2 <= n) { //+2 stairs can jump over the last stair. That shouldn't happen.
s2 = stair(c + 2, p + 1);
}
}
return ret = s1 + s2; //Final result will be addition of +1 stair methods and +2 methods
}
int main()
{
ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);
cin >> n >> m; dp2 = vector<vector<int>>(n + 1, vector<int>(m + 1, -1));
for (int i = 1; i <= m; i++) {
dp2[n][i] = 1; //All last stair method count should be 1, because there is no more after.
}
cout << stair(0, 0) << "\n";
return 0;
}
Example IO 1
5 5
8
// 1 1 1 1 1
// 1 1 1 2
// 1 1 2 1
// 1 2 1 1
// 2 1 1 1
// 1 2 2
// 2 1 2
// 2 2 1
Example IO 2
5 4
7
// 1 1 1 2
// 1 1 2 1
// 1 2 1 1
// 2 1 1 1
// 1 2 2
// 2 1 2
// 2 2 1
Example IO 3
5 3
3
// 1 2 2
// 2 1 2
// 2 2 1

swift 3 algorithm - flags from codility

I am trying to solve the Flags question on codility.com in Swift 3 and the following code only gets a 6%. The reason for the low score is b/c my code is not accounting for other possible arrays, just the one given in the question. There must be a way that I can use a "for loop" instead of the multiple "if statements" towards the bottom. Any suggestion or constructive criticism would be appreciated. Thanks.
import Foundation
var A = [1, 5, 3, 4, 3, 4, 1, 2, 3, 4, 6, 2]
public func solution(_ A : inout [Int]) -> Int {
let n = A.count
if n < 3 { // if there are only two elements in array A, then there are no peaks
return 0
}
var peaks = [Int]()
for i in 1..<n - 1 { // loop to find peak indices
if A[i - 1] < A[i] && A[i] > A[i + 1] {
peaks.append(i)
}
}
var numFlags = 0
if peaks[3] - peaks[2] >= peaks.count {
numFlags += 2
}
if peaks[2] - peaks[1] >= peaks.count {
numFlags += 1
}
if peaks[1] - peaks[0] >= peaks.count {
numFlags += 1
}
if peaks[2] - peaks[0] >= peaks.count {
numFlags += 1
}
return numFlags
}
print(solution(&A))
This gives a 93% score to the Flags question in Swift 3 on Codility.
import Foundation
var A = [1, 5, 3, 4, 3, 4, 1, 2, 3, 4, 6, 2]
public func solution(_ A : inout [Int]) -> Int {
let n = A.count // n = number of indices in A
var peaks: [Int] = [] // create array for peaks
if n < 3 { // you need at least three elements to have a peak
return 0
}
for i in 1...n-2 { // loop to determine number of peaks and put them into peaks array
if A[i - 1] < A[i] && A[i] > A[i + 1] {
peaks.append(i)
}
}
if peaks.count == 0 {
return 0
}
var totalMarked = 0
for i in ((0 + 1)...n).reversed() {
if (i - 1) * i + 2 > n { // if this condition is met then iterate for next element
continue
}
var prevPeak = peaks.first
var marked = 1
for j in 1..<peaks.count {
if peaks[j] - prevPeak! < i { // if this condition is met then iterate for next element
continue
}
marked += 1
prevPeak = peaks[j]
if marked >= i { // if this condition is met, then exit loop
break
}
}
totalMarked = max(totalMarked, marked) // take the greater of totalMarked and marked
}
return totalMarked
}
print(solution(&A))

n steps with 1, 2 or 3 steps taken. How many ways to get to the top?

If we have n steps and we can go up 1 or 2 steps at a time, there is a Fibonacci relation between the number of steps and the ways to climb them. IF and ONLY if we do not count 2+1 and 1+2 as different.
However, this no longer the case, as well as having to add we add a third option, taking 3 steps. How do I do this?
What I have:
1 step = 1 way
2 steps = 2 ways: 1+1, 2
3 steps = 4 ways: 1+1+1, 2+1, 1+2, 3
I have no idea where to go from here to find out the number of ways for n stairs
I get 7 for n = 4 and 14 for n= 5 i get 14+7+4+2+1 by doing the sum of all the combinations before it. so ways for n steps = n-1 ways + n-2 ways + .... 1 ways assuming i kept all the values. DYNAMIC programming.
1 2 and 3 steps would be the base-case is that correct?
I would say that the formula will look in the following way:
K(1) = 1
K(2) = 2
k(3) = 4
K(n) = K(n-3) + K(n-2) + K(n - 1)
The formula says that in order to reach the n'th step we have to firstly reach:
n-3'th step and then take 3 steps at once i.e. K(n-3)
or n-2'th step and then take 2 steps at once i.e. K(n-2)
or n-1'th step and then take 1 steps at once i.e. K(n-1)
K(4) = 7, K(5) = 13 etc.
You can either utilize the recursive formula or use dynamic programming.
Python solutions:
Recursive O(n)
This is based on the answer by Michael. This requires O(n) CPU and O(n) memory.
import functools
#functools.lru_cache(maxsize=None)
def recursive(n):
if n < 4:
initial = [1, 2, 4]
return initial[n-1]
else:
return recursive(n-1) + recursive(n-2) + recursive(n-3)
Recursive O(log(n))
This is per a comment for this answer. This tribonacci-by-doubling solution is analogous to the fibonacci-by-doubling solution in the algorithms by Nayuki. Note that multiplication has a higher complexity than constant. This doesn't require or benefit from a cache.
def recursive_doubling(n):
def recursive_tribonacci_tuple(n):
"""Return the n, n+1, and n+2 tribonacci numbers for n>=0.
Tribonacci forward doubling identities:
T(2n) = T(n+1)^2 + T(n)*(2*T(n+2) - 2*T(n+1) - T(n))
T(2n+1) = T(n)^2 + T(n+1)*(2*T(n+2) - T(n+1))
T(2n+2) = T(n+2)^2 + T(n+1)*(2*T(n) + T(n+1))
"""
assert n >= 0
if n == 0:
return 0, 0, 1 # T(0), T(1), T(2)
a, b, c = recursive_tribonacci_tuple(n // 2)
x = b*b + a*(2*(c - b) - a)
y = a*a + b*(2*c - b)
z = c*c + b*(2*a + b)
return (x, y, z) if n % 2 == 0 else (y, z, x+y+z)
return recursive_tribonacci_tuple(n)[2] # Is offset by 2 for the steps problem.
Iterative O(n)
This is motivated by the answer by 太極者無極而生. It is a modified tribonacci extension of the iterative fibonacci solution. It is modified from tribonacci in that it returns c, not a.
def iterative(n):
a, b, c = 0, 0, 1
for _ in range(n):
a, b, c = b, c, a+b+c
return c
Iterative O(log(n)) (left to right)
This is per a comment for this answer. This modified iterative tribonacci-by-doubling solution is derived from the corresponding recursive solution. For some background, see here and here. It is modified from tribonacci in that it returns c, not a. Note that multiplication has a higher complexity than constant.
The bits of n are iterated from left to right, i.e. MSB to LSB.
def iterative_doubling_l2r(n):
"""Return the n+2 tribonacci number for n>=0.
Tribonacci forward doubling identities:
T(2n) = T(n+1)^2 + T(n)*(2*T(n+2) - 2*T(n+1) - T(n))
T(2n+1) = T(n)^2 + T(n+1)*(2*T(n+2) - T(n+1))
T(2n+2) = T(n+2)^2 + T(n+1)*(2*T(n) + T(n+1))
"""
assert n >= 0
a, b, c = 0, 0, 1 # T(0), T(1), T(2)
for i in range(n.bit_length() - 1, -1, -1): # Left (MSB) to right (LSB).
x = b*b + a*(2*(c - b) - a)
y = a*a + b*(2*c - b)
z = c*c + b*(2*a + b)
bit = (n >> i) & 1
a, b, c = (y, z, x+y+z) if bit else (x, y, z)
return c
Notes:
list(range(m - 1, -1, -1)) == list(reversed(range(m)))
If the bit is odd (1), the sequence is advanced by one iteration. This intuitively makes sense after understanding the same for the efficient integer exponentiation problem.
Iterative O(log(n)) (right to left)
This is per a comment for this answer. The bits of n are iterated from right to left, i.e. LSB to MSB. This approach is probably not prescriptive.
def iterative_doubling_r2l(n):
"""Return the n+2 tribonacci number for n>=0.
Tribonacci forward doubling identities:
T(2n) = T(n+1)^2 + T(n)*(2*T(n+2) - 2*T(n+1) - T(n))
T(2n+1) = T(n)^2 + T(n+1)*(2*T(n+2) - T(n+1))
T(2n+2) = T(n+2)^2 + T(n+1)*(2*T(n) + T(n+1))
Given Tribonacci tuples (T(n), T(n+1), T(n+2)) and (T(k), T(k+1), T(k+2)),
we can "add" them together to get (T(n+k), T(n+k+1), T(n+k+2)).
Tribonacci addition formulas:
T(n+k) = T(n)*(T(k+2) - T(k+1) - T(k)) + T(n+1)*(T(k+1) - T(k)) + T(n+2)*T(k)
T(n+k+1) = T(n)*T(k) + T(n+1)*(T(k+2) - T(k+1)) + T(n+2)*T(k+1)
T(n+k+2) = T(n)*T(k+1) + T(n+1)*(T(k) + T(k+1)) + T(n+2)*T(k+2)
When n == k, these are equivalent to the doubling formulas.
"""
assert n >= 0
a, b, c = 0, 0, 1 # T(0), T(1), T(2)
d, e, f = 0, 1, 1 # T(1), T(2), T(3)
for i in range(n.bit_length()): # Right (LSB) to left (MSB).
bit = (n >> i) & 1
if bit:
# a, b, c += d, e, f
x = a*(f - e - d) + b*(e - d) + c*d
y = a*d + b*(f - e) + c*e
z = a*e + b*(d + e) + c*f
a, b, c = x, y, z
# d, e, f += d, e, f
x = e*e + d*(2*(f - e) - d)
y = d*d + e*(2*f - e)
z = f*f + e*(2*d + e)
d, e, f = x, y, z
return c
Approximations
Approximations are of course useful mainly for very large n. The exponentiation operation is used. Note that exponentiation has a higher complexity than constant.
def approx1(n):
a_pos = (19 + 3*(33**.5))**(1./3)
a_neg = (19 - 3*(33**.5))**(1./3)
b = (586 + 102*(33**.5))**(1./3)
return round(3*b * ((1./3) * (a_pos+a_neg+1))**(n+1) / (b**2 - 2*b + 4))
The approximation above was tested to be correct till n = 53, after which it differed. It's certainly possible that using higher precision floating point arithmetic will lead to a better approximation in practice.
def approx2(n):
return round((0.618363 * 1.8392**n + \
(0.029252 + 0.014515j) * (-0.41964 - 0.60629j)**n + \
(0.029252 - 0.014515j) * (-0.41964 - 0.60629j)**n).real)
The approximation above was tested to be correct till n = 11, after which it differed.
This is my solution in Ruby:
# recursion requirement: it returns the number of way up
# a staircase of n steps, given that the number of steps
# can be 1, 2, 3
def how_many_ways(n)
# this is a bit Zen like, if 0 steps, then there is 1 way
# and we don't even need to specify f(1), because f(1) = summing them up
# and so f(1) = f(0) = 1
# Similarly, f(2) is summing them up = f(1) + f(0) = 1 + 1 = 2
# and so we have all base cases covered
return 1 if n == 0
how_many_ways_total = 0
(1..3).each do |n_steps|
if n >= n_steps
how_many_ways_total += how_many_ways(n - n_steps)
end
end
return how_many_ways_total
end
0.upto(20) {|n| puts "how_many_ways(#{n}) => #{how_many_ways(n)}"}
and a shorter version:
def how_many_ways(n)
# this is a bit Zen like, if 0 steps, then there is 1 way
# if n is negative, there is no way and therefore returns 0
return 1 if n == 0
return 0 if n < 0
return how_many_ways(n - 1) + how_many_ways(n - 2) + how_many_ways(n - 3)
end
0.upto(20) {|n| puts "how_many_ways(#{n}) => #{how_many_ways(n)}"}
and once we know it is similar to fibonacci series, we wouldn't use recursion, but use an iterative method:
#
# from 0 to 27: recursive: 4.72 second
# iterative: 0.03 second
#
def how_many_ways(n)
arr = [0, 0, 1]
n.times do
new_sum = arr.inject(:+) # sum them up
arr.push(new_sum).shift()
end
return arr[-1]
end
0.upto(27) {|n| puts "how_many_ways(#{n}) => #{how_many_ways(n)}"}
output:
how_many_ways(0) => 1
how_many_ways(1) => 1
how_many_ways(2) => 2
how_many_ways(3) => 4
how_many_ways(4) => 7
how_many_ways(5) => 13
how_many_ways(6) => 24
how_many_ways(7) => 44
how_many_ways(8) => 81
how_many_ways(9) => 149
how_many_ways(10) => 274
how_many_ways(11) => 504
how_many_ways(12) => 927
how_many_ways(13) => 1705
.
.
how_many_ways(22) => 410744
how_many_ways(23) => 755476
how_many_ways(24) => 1389537
how_many_ways(25) => 2555757
how_many_ways(26) => 4700770
how_many_ways(27) => 8646064
I like the explanation of #MichałKomorowski and the comment of #rici. Though I think if it depends on knowing K(3) = 4, then it involves counting manually.
Easily get the intuition for the problem:
Think you are climbing stairs and the possible steps you can take are 1 & 2
The total no. of ways to reach step 4 = Total no. of ways to reach step 3 + Total no of ways to reach step 2
How?
Basically, there are only two possible steps from where you can reach step 4.
Either you are in step 3 and take one step
Or you are in step 2 and take two step leap
These two are the only possibilities by which you can ever reach step 4
Similarly, there are only two possible ways to reach step 2
Either you are in step 1 and take one step
Or you are in step 0 and take two step leap
F(n) = F(n-1) + F(n-2)
F(0) = 0 and F(1) = 1 are the base cases. From here you can start building F(2), F(3) and so on. This is similar to Fibonacci series.
If the number of possible steps is increased, say [1,2,3], now for every step you have one more option i.e., you can directly leap from three steps prior to it
Hence the formula would become
F(n) = F(n-1) + F(n-2) + F(n-3)
See this video for understanding Staircase Problem Fibonacci Series
Easy understanding of code: geeksforgeeks staircase problem
Count ways to reach the nth stair using step 1, 2, 3.
We can count using simple Recursive Methods.
// Header File
#include<stdio.h>
// Function prototype for recursive Approch
int findStep(int);
int main(){
int n;
int ways=0;
ways = findStep(4);
printf("%d\n", ways);
return 0;
}
// Function Definition
int findStep(int n){
int t1, t2, t3;
if(n==1 || n==0){
return 1;
}else if(n==2){
return 2;
}
else{
t3 = findStep(n-3);
t2 = findStep(n-2);
t1 = findStep(n-1);
return t1+t2+t3;
}
}
def count(steps):
sol = []
sol.append(1)
sol.append(1 + sol[0])
sol.append(1 + sol[1] + sol[0])
if(steps > 3):
for x in range(4, steps+1):
sol[(x-1)%3] = sum(sol)
return sol[(steps-1)%3]
My solution is in java.
I decided to solve this bottom up.
I start off with having an empty array of current paths []
Each step i will add a all possible step sizes {1,2,3}
First step [] --> [[1],[2],[3]]
Second step [[1],[2],[3]] --> [[1,1],[1,2],[1,3],[2,1],[2,2],[2,3],[3,1][3,2],[3,3]]
Iteration 0: []
Iteration 1: [ [1], [2] , [3]]
Iteration 2: [ [1,1], [1,2], [1,3], [2,1], [2,2], [2,3], [3,1], [3,2], [3,3]]
Iteration 3 [ [1,1,1], [1,1,2], [1,1,3] ....]
The sequence lengths are as follows
1
2
3
5
8
13
21
My step function is called build
public class App {
public static boolean isClimedTooHigh(List<Integer> path, int maxSteps){
int sum = 0;
for (Integer i : path){
sum+=i;
}
return sum>=maxSteps;
}
public static void modify(Integer x){
x++;
return;
}
/// 1 2 3
/// 11 12 13
/// 21 22 23
/// 31 32 33
///111 121
public static boolean build(List<List<Integer>> paths, List<Integer> steps, int maxSteps){
List<List<Integer>> next = new ArrayList<List<Integer>>();
for (List<Integer> path : paths){
if (isClimedTooHigh(path, maxSteps)){
next.add(path);
}
for (Integer step : steps){
List<Integer> p = new ArrayList<Integer>(path);
p.add(step);
next.add(p);
}
}
paths.clear();
boolean completed = true;
for (List<Integer> n : next){
if (completed && !isClimedTooHigh(n, maxSteps))
completed = false;
paths.add(n);
}
return completed;
}
public static boolean isPathEqualToMax(List<Integer> path, int maxSteps){
int sum = 0;
for (Integer i : path){
sum+=i;
}
return sum==maxSteps;
}
public static void calculate( int stepSize, int maxSteps ){
List<List<Integer>> paths = new ArrayList<List<Integer>>();
List<Integer> steps = new ArrayList<Integer>();
for (int i =1; i < stepSize; i++){
List<Integer> s = new ArrayList<Integer>(1);
s.add(i);
steps.add(i);
paths.add(s);
}
while (!build(paths,steps,maxSteps));
List<List<Integer>> finalPaths = new ArrayList<List<Integer>>();
for (List<Integer> p : paths){
if (isPathEqualToMax(p, maxSteps)){
finalPaths.add(p);
}
}
System.out.println(finalPaths.size());
}
public static void main(String[] args){
calculate(3,1);
calculate(3,2);
calculate(3,3);
calculate(3,4);
calculate(3,5);
calculate(3,6);
calculate(3,7);
return;
}
}
Count total number of ways to cover the distance with 1, 2 and 3 steps.
Recursion solution time complexity is exponential i.e. O(3n).
Since same sub problems are solved again, this problem has overlapping sub problems property. So min square sum problem has both properties of a dynamic programming problem.
public class MaxStepsCount {
/** Dynamic Programming. */
private static int getMaxWaysDP(int distance) {
int[] count = new int[distance+1];
count[0] = 1;
count[1] = 1;
count[2] = 2;
/** Memorize the Sub-problem in bottom up manner*/
for (int i=3; i<=distance; i++) {
count[i] = count[i-1] + count[i-2] + count[i-3];
}
return count[distance];
}
/** Recursion Approach. */
private static int getMaxWaysRecur(int distance) {
if(distance<0) {
return 0;
} else if(distance==0) {
return 1;
}
return getMaxWaysRecur(distance-1)+getMaxWaysRecur(distance-2)
+getMaxWaysRecur(distance-3);
}
public static void main(String[] args) {
// Steps pf 1, 2 and 3.
int distance = 10;
/** Recursion Approach. */
int ways = getMaxWaysRecur(distance);
System.out.println(ways);
/** Dynamic Programming. */
ways = getMaxWaysDP(distance);
System.out.println(ways);
}
}
My blog post on this:
http://javaexplorer03.blogspot.in/2016/10/count-number-of-ways-to-cover-distance.html
Recursive memoization based C++ solution:
You ask a stair how many ways we can go to top? If its not the topmost stair, its going to ask all its neighbors and sum it up and return you the result. If its the topmost stair its going to say 1.
vector<int> getAllStairsFromHere(vector<int>& numSteps, int& numStairs, int currentStair)
{
vector<int> res;
for(auto it : numSteps)
if(it + currentStair <= numStairs)
res.push_back(it + currentStair);
return res;
}
int numWaysToClimbUtil(vector<int>& numSteps, int& numStairs, int currentStair, map<int,int>& memT)
{
auto it = memT.find(currentStair);
if(it != memT.end())
return it->second;
if(currentStair >= numStairs)
return 1;
int numWaysToClimb = 0;
auto choices = getAllStairsFromHere(numSteps, numStairs, currentStair);
for(auto it : choices)
numWaysToClimb += numWaysToClimbUtil(numSteps, numStairs, it, memT);
memT.insert(make_pair(currentStair, numWaysToClimb));
return memT[currentStair];
}
int numWaysToClimb(vector<int>numSteps, int numStairs)
{
map<int,int> memT;
int currentStair = 0;
return numWaysToClimbUtil(numSteps, numStairs, currentStair, memT);
}
Here is an O(Nk) Java implementation using dynamic programming:
public class Sample {
public static void main(String[] args) {
System.out.println(combos(new int[]{4,3,2,1}, 100));
}
public static int combos(int[] steps, int stairs) {
int[][] table = new int[stairs+1][steps.length];
for (int i = 0; i < steps.length; i++) {
for (int n = 1; n <= stairs; n++ ) {
int count = 0;
if (n % steps[i] == 0){
if (i == 0)
count++;
else {
if (n <= steps[i])
count++;
}
}
if (i > 0 && n > steps[i]) {
count += table[n - steps[i]][i];
}
if (i > 0)
count += table[n][i-1];
table[n][i] = count;
}
}
for (int n = 1; n < stairs; n++) {
System.out.print(n + "\t");
for (int i = 0; i < steps.length; i++) {
System.out.print(table[n][i] + "\t");
}
System.out.println();
}
return table[stairs][steps.length-1];
}
}
The idea is to fill the following table 1 column at a time from left to right:
N (4) (4,3) (4,3,2) (4,3,2,1)
1 0 0 0 1
2 0 0 1 2
3 0 1 1 3
4 1 1 2 5
5 0 0 1 6
6 0 1 3 9
7 0 1 2 11
8 1 1 4 15
9 0 1 3 18
10 0 1 5 23
11 0 1 4 27
12 1 2 7 34
13 0 1 5 39
..
..
99 0 9 217 7803
100 8037
Below is the several ways to use 1 , 2 and 3 steps
1: 1
2: 11 2
3: 111 12 21 3
4: 1111 121 211 112 22 13 31
5: 11111 1112 1121 1211 2111 122 212 221 113 131 311 23 32
6: 111111 11112 11121 11211 12111 21111 1113 1131 1311 3111 123 132 312 321 213 231 33 222 1122 1221 2211 1212 2121 2112
So according to above combination the soln should be:
K(n) = K(n-3) + K(n-2) + K(n - 1)
k(6) = 24 which is k(5)+k(4)+k(3) = 13+7+4
Java recursive implementation based on Michał's answer:
public class Tribonacci {
// k(0) = 1
// k(1) = 1
// k(2) = 2
// k(3) = 4
// ...
// k(n) = k(n-3) + k(n-2) + k(n - 1)
static int get(int n) {
if (n == 0) {
return 1;
} if (n == 1) {
return 1;
} else if (n == 2) {
return 2;
//} else if (n == 3) {
// return 4;
} else {
return get(n - 3) + get(n - 2) + get(n - 1);
}
}
public static void main(String[] args) {
System.out.println("Tribonacci sequence");
System.out.println(Tribonacci.get(1));
System.out.println(Tribonacci.get(2));
System.out.println(Tribonacci.get(3));
System.out.println(Tribonacci.get(4));
System.out.println(Tribonacci.get(5));
System.out.println(Tribonacci.get(6));
}
}
As the question has got only one input which is stair numbers and simple constraints, I thought result could be equal to a simple mathematical equation which can be calculated with O(1) time complexity. Apparently, it is not as simple as i thought. But, i still could do something!
By underlining this, I found an equation for solution of same question with 1 and 2 steps taken(excluding 3). It took my 1 day to find this out. Harder work can find for 3 step version too.
So, if we were allowed to take 1 or 2 steps, results would be equal to:
First notation is not mathematically perfect, but i think it is easier to understand.
On the other hand, there must be a much simpler equation as there is one for Fibonacci series. But discovering it is out of my skills.
Maybe its just 2^(n-1) with n being the number of steps?
It makes sence for me because with 4 steps you have 8 possibilities:
4,
3+1,
1+3,
2+2,
2+1+1,
1+2+1,
1+1+2,
1+1+1+1,
I guess this is the pattern

Tournament bracket placement algorithm

Given a list of opponent seeds (for example seeds 1 to 16), I'm trying to write an algorithm that will result in the top seed playing the lowest seed in that round, the 2nd seed playing the 2nd-lowest seed, etc.
Grouping 1 and 16, 2 and 15, etc. into "matches" is fairly easy, but I also need to make sure that the higher seed will play the lower seed in subsequent rounds.
An example bracket with the correct placement:
1 vs 16
1 vs 8
8 vs 9
1 vs 4
4 vs 13
4 vs 5
5 vs 12
1 vs 2
2 vs 15
2 vs 7
7 vs 10
2 vs 3
3 vs 14
3 vs 6
6 vs 11
As you can see, seed 1 and 2 only meet up in the final.
This JavaScript returns an array where each even index plays the next odd index
function seeding(numPlayers){
var rounds = Math.log(numPlayers)/Math.log(2)-1;
var pls = [1,2];
for(var i=0;i<rounds;i++){
pls = nextLayer(pls);
}
return pls;
function nextLayer(pls){
var out=[];
var length = pls.length*2+1;
pls.forEach(function(d){
out.push(d);
out.push(length-d);
});
return out;
}
}
> seeding(2)
[1, 2]
> seeding(4)
[1, 4, 2, 3]
> seeding(8)
[1, 8, 4, 5, 2, 7, 3, 6]
> seeding(16)
[1, 16, 8, 9, 4, 13, 5, 12, 2, 15, 7, 10, 3, 14, 6, 11]
With your assumptions, players 1 and 2 will play in the final, players 1-4 in the semifinals, players 1-8 in the quarterfinals and so on, so you can build the tournament recursively backwards from the final as AakashM proposed. Think of the tournament as a tree whose root is the final.
In the root node, your players are {1, 2}.
To expand the tree recursively to the next level, take all the nodes on the bottom layer in the tree, one by one, and create two children for them each, and place one of the players of the original node to each one of the child nodes created. Then add the next layer of players and map them to the game so that the worst newly added player plays against the best pre-existing player and so on.
Here first rounds of the algorithm:
{1,2} --- create next layer
{1, _}
/ --- now fill the empty slots
{1,2}
\{2, _}
{1, 4} --- the slots filled in reverse order
/
{1,2}
\{2, 3} --- create next layer again
/{1, _}
{1, 4}
/ \{4, _}
{1,2} --- again fill
\ /{2, _}
{2, 3}
\{3, _}
/{1, 8}
{1, 4}
/ \{4, 5} --- ... and so on
{1,2}
\ /{2, 7}
{2, 3}
\{3, 6}
As you can see, it produces the same tree you posted.
I've come up with the following algorithm. It may not be super-efficient, but I don't think that it really needs to be. It's written in PHP.
<?php
$players = range(1, 32);
$count = count($players);
$numberOfRounds = log($count / 2, 2);
// Order players.
for ($i = 0; $i < $numberOfRounds; $i++) {
$out = array();
$splice = pow(2, $i);
while (count($players) > 0) {
$out = array_merge($out, array_splice($players, 0, $splice));
$out = array_merge($out, array_splice($players, -$splice));
}
$players = $out;
}
// Print match list.
for ($i = 0; $i < $count; $i++) {
printf('%s vs %s<br />%s', $players[$i], $players[++$i], PHP_EOL);
}
?>
I also wrote a solution written in PHP. I saw Patrik Bodin's answer, but thought there must be an easier way.
It does what darkangel asked for: It returns all seeds in the correct positions. The matches are the same as in his example, but in a prettier order, seed 1 and seed number 16 are on the outside of the schema (as you see in tennis tournaments).
If there are no upsets (meaning a higher seeded player always wins from a lower seeded player), you will end up with seed 1 vs seed 2 in the final.
It actually does two things more:
It shows the correct order (which is a requirement for putting byes in the correct positions)
It fills in byes in the correct positions (if required)
A perfect explanation about what a single elimination bracket should look like: http://blog.playdriven.com/2011/articles/the-not-so-simple-single-elimination-advantage-seeding/
Code example for 16 participants:
<?php
define('NUMBER_OF_PARTICIPANTS', 16);
$participants = range(1,NUMBER_OF_PARTICIPANTS);
$bracket = getBracket($participants);
var_dump($bracket);
function getBracket($participants)
{
$participantsCount = count($participants);
$rounds = ceil(log($participantsCount)/log(2));
$bracketSize = pow(2, $rounds);
$requiredByes = $bracketSize - $participantsCount;
echo sprintf('Number of participants: %d<br/>%s', $participantsCount, PHP_EOL);
echo sprintf('Number of rounds: %d<br/>%s', $rounds, PHP_EOL);
echo sprintf('Bracket size: %d<br/>%s', $bracketSize, PHP_EOL);
echo sprintf('Required number of byes: %d<br/>%s', $requiredByes, PHP_EOL);
if($participantsCount < 2)
{
return array();
}
$matches = array(array(1,2));
for($round=1; $round < $rounds; $round++)
{
$roundMatches = array();
$sum = pow(2, $round + 1) + 1;
foreach($matches as $match)
{
$home = changeIntoBye($match[0], $participantsCount);
$away = changeIntoBye($sum - $match[0], $participantsCount);
$roundMatches[] = array($home, $away);
$home = changeIntoBye($sum - $match[1], $participantsCount);
$away = changeIntoBye($match[1], $participantsCount);
$roundMatches[] = array($home, $away);
}
$matches = $roundMatches;
}
return $matches;
}
function changeIntoBye($seed, $participantsCount)
{
//return $seed <= $participantsCount ? $seed : sprintf('%d (= bye)', $seed);
return $seed <= $participantsCount ? $seed : null;
}
?>
The output:
Number of participants: 16
Number of rounds: 4
Bracket size: 16
Required number of byes: 0
C:\projects\draw\draw.php:7:
array (size=8)
0 =>
array (size=2)
0 => int 1
1 => int 16
1 =>
array (size=2)
0 => int 9
1 => int 8
2 =>
array (size=2)
0 => int 5
1 => int 12
3 =>
array (size=2)
0 => int 13
1 => int 4
4 =>
array (size=2)
0 => int 3
1 => int 14
5 =>
array (size=2)
0 => int 11
1 => int 6
6 =>
array (size=2)
0 => int 7
1 => int 10
7 =>
array (size=2)
0 => int 15
1 => int 2
If you change 16 into 6 you get:
Number of participants: 6
Number of rounds: 3
Bracket size: 8
Required number of byes: 2
C:\projects\draw\draw.php:7:
array (size=4)
0 =>
array (size=2)
0 => int 1
1 => null
1 =>
array (size=2)
0 => int 5
1 => int 4
2 =>
array (size=2)
0 => int 3
1 => int 6
3 =>
array (size=2)
0 => null
1 => int 2
# Here's one in python - it uses nested list comprehension to be succinct:
from math import log, ceil
def seed( n ):
""" returns list of n in standard tournament seed order
Note that n need not be a power of 2 - 'byes' are returned as zero
"""
ol = [1]
for i in range( ceil( log(n) / log(2) ) ):
l = 2*len(ol) + 1
ol = [e if e <= n else 0 for s in [[el, l-el] for el in ol] for e in s]
return ol
For JavaScript code, use one of the two functions below. The former embodies imperative style & is much faster. The latter is recursive & neater, but only applicable to relatively small number of teams (<16384).
// imperative style
function foo(n) {
const arr = new Array(n)
arr[0] = 0
for (let i = n >> 1, m = 1; i >= 1; i >>= 1, m = (m << 1) + 1) {
for (let j = n - i; j > 0; j -= i) {
arr[j] = m - arr[j -= i]
}
}
return arr
}
Here you fill in the spots one by one by mirroring already occupied ones. For example, the first-seeded team (that is number 0) goes to the topmost spot. The second one (1) occupies the opposite spot in the other half of the bracket. The third team (2) mirrors 1 in their half of the bracket & so on. Despite the nested loops, the algorithm has a linear time complexity depending on the number of teams.
Here is the recursive method:
// functional style
const foo = n =>
n === 1 ? [0] : foo(n >> 1).reduce((p, c) => [...p, c, n - c - 1], [])
Basically, you do the same mirroring as in the previous function, but recursively:
For n = 1 team, it's just [0].
For n = 2 teams, you apply this function to the argument n-1 (that is,
1) & get [0]. Then you double the array by inserting mirrored
elements between them at even positions. Thus, [0] becomes [0, 1].
For n = 4 teams, you do the same operation, so [0, 1] becomes [0, 3,
1, 2].
If you want to get human-readable output, increase each element of the resulting array by one:
const readableArr = arr.map(i => i + 1)
At each round sort teams by seeding criteria
(If there are n teams in a round)team at ith position plays with team n-i+1
Since this comes up when searching on the subject, and it's hopeless to find another answer that solves the problem AND puts the seeds in a "prettier" order, I will add my version of the PHP code from darkangel. I also added the possibility to give byes to the higher seed players.
This was coded in an OO environment, so the number of participants are in $this->finalists and the number of byes are in $this->byes. I have only tested the code without byes and with two byes.
public function getBracket() {
$players = range(1, $this->finalists);
for ($i = 0; $i < log($this->finalists / 2, 2); $i++) {
$out = array();
$reverse = false;
foreach ($players as $player) {
$splice = pow(2, $i);
if ($reverse) {
$out = array_merge($out, array_splice($players, -$splice));
$out = array_merge($out, array_splice($players, 0, $splice));
$reverse = false;
} else {
$out = array_merge($out, array_splice($players, 0, $splice));
$out = array_merge($out, array_splice($players, -$splice));
$reverse = true;
}
}
$players = $out;
}
if ($this->byes) {
for ($i = 0; $i < $this->byes; $i++ ) {
for ($j = (($this->finalists / pow(2, $i)) - 1); $j > 0; $j--) {
$newPlace = ($this->finalists / pow(2, $i)) - 1;
if ($players[$j] > ($this->finalists / (pow(2 ,($i + 1))))) {
$player = $players[$j];
unset($players[$j]);
array_splice($players, $newPlace, 0, $player);
}
}
}
for ($i = 0; $i < $this->finalists / (pow(2, $this->byes)); $i++ ) {
$swap[] = $players[$i];
}
for ($i = 0; $i < $this->finalists /(pow(2, $this->byes)); $i++ ) {
$players[$i] = $swap[count($swap) - 1 - $i];
}
return array_reverse($players);
}
return $players;
}
I worked on a PHP / Laravel plugin that generates brackets with / without preliminary round robin. Maybe it can be useful to you, I don't know what tech you are using. Here is the github.
https://github.com/xoco70/kendo-tournaments
Hope it helps!
A C version.
int * pctournamentSeedArray(int PlayerCnt)
{
int * Array;
int * PrevArray;
int i;
Array = meAlloc(sizeof(int) * PlayerCnt);
if (PlayerCnt == 2)
{
Array[0] = 0;
Array[1] = 1;
return Array;
}
PrevArray = pctournamentSeedArray(PlayerCnt / 2);
for (i = 0; i < PlayerCnt;i += 2)
{
Array[i] = PrevArray[i / 2];
Array[i + 1] = (PlayerCnt - 1) - Array[i] ;
}
meFree(PrevArray);
return Array;
}

EAN 8 : How to calculate checksum digit?

I need to create EAN 8 bar code programmatically.
I search an algorithm to calculate the checksum digit.
The algorithm is covered in this wikipedia article on EAN, note that EAN-8 is calculated in the same way as EAN-13.
Here's a worked example from http://www.barcodeisland.com/ean8.phtml :
Assuming we wish to encode the 7-digit message "5512345", we would calculate the checksum in the following manner:
Barcode 5 5 1 2 3 4 5
Odd/Even Pos? O E O E O E O
Weighting 3 1 3 1 3 1 3
Calculation 5*3 5*1 1*3 2*1 3*3 4*1 5*3
Weighted Sum 15 5 3 2 9 4 15
The total is 15 + 5 + 3 + 2 + 9 + 4 + 15 = 53. 7 must be added to 53 to produce a number evenly divisible by 10, thus the checksum digit is 7 and the completed bar code value is "55123457".
string code="55123457";
int sum1 = code[1] + code[3] + code[5]
int sum2 = 3 * (code[0] + code[2] + code[4] + code[6]);
int checksum_value = sum1 + sum2;
int checksum_digit = 10 - (checksum_value % 10);
if (checksum_digit == 10)
checksum_digit = 0;
int checkSum(const std::vector<int>& code) const
{
if (code.size() < 8) return false;
for( SIZE_T i = 0; i< code.size(); i++ )
{
if( code[i] < 0 ) return false;
}
int sum1 = code[1] + code[3] + code[5]
int sum2 = 3 * (code[0] + code[2] + code[4] + code[6]);
int checksum_value = sum1 + sum2;
int checksum_digit = 10 - (checksum_value % 10);
if (checksum_digit == 10) checksum_digit = 0;
return checksum_digit;
}
Sorry for re-opening
JAVA VERSION
public int checkSum(String code){
int val=0;
for(int i=0;i<code.length();i++){
val+=((int)Integer.parseInt(code.charAt(i)+""))*((i%2==0)?1:3);
}
int checksum_digit = 10 - (val % 10);
if (checksum_digit == 10) checksum_digit = 0;
return checksum_digit;
}
Reawakened with a C# version:
public static bool IsValidEan13(string eanBarcode)
{
return IsValidEan(eanBarcode, 13);
}
public static bool IsValidEan12(string eanBarcode)
{
return IsValidEan(eanBarcode, 12);
}
public static bool IsValidEan14(string eanBarcode)
{
return IsValidEan(eanBarcode, 14);
}
public static bool IsValidEan8(string eanBarcode)
{
return IsValidEan(eanBarcode, 8);
}
private static bool IsValidEan(string eanBarcode, int length)
{
if (eanBarcode.Length != length) return false;
var allDigits = eanBarcode.Select(c => int.Parse(c.ToString(CultureInfo.InvariantCulture))).ToArray();
var s = length%2 == 0 ? 3 : 1;
var s2 = s == 3 ? 1 : 3;
return allDigits.Last() == (10 - (allDigits.Take(length-1).Select((c, ci) => c*(ci%2 == 0 ? s : s2)).Sum()%10))%10;
}
Here is a MySQL version for EAN13:
SET #first12digits="123456789012";
SELECT #first12digits,
IF (
(#check:=10-MOD(
(CAST(SUBSTRING(#first12digits, 1, 1) AS DECIMAL))+
(CAST(SUBSTRING(#first12digits, 2, 1) AS DECIMAL) * 3)+
(CAST(SUBSTRING(#first12digits, 3, 1) AS DECIMAL))+
(CAST(SUBSTRING(#first12digits, 4, 1) AS DECIMAL) * 3)+
(CAST(SUBSTRING(#first12digits, 5, 1) AS DECIMAL))+
(CAST(SUBSTRING(#first12digits, 6, 1) AS DECIMAL) * 3)+
(CAST(SUBSTRING(#first12digits, 7, 1) AS DECIMAL))+
(CAST(SUBSTRING(#first12digits, 8, 1) AS DECIMAL) * 3)+
(CAST(SUBSTRING(#first12digits, 9, 1) AS DECIMAL))+
(CAST(SUBSTRING(#first12digits, 10, 1) AS DECIMAL) * 3)+
(CAST(SUBSTRING(#first12digits, 11, 1) AS DECIMAL))+
(CAST(SUBSTRING(#first12digits, 12, 1) AS DECIMAL) * 3)
,10)) = 10, 0, #check
) AS checkDigit;
There was a bug. If Calc result = 10 then check digit = 0.
Here below a better version for EAN14.
SET #first13digits="1234567890123";
SELECT #txCode13:=#first13digits,
#iCheck := (
10 - (
(
MID(#txCode13, 2, 1) +
MID(#txCode13, 4, 1) +
MID(#txCode13, 6, 1) +
MID(#txCode13, 8, 1) +
MID(#txCode13, 10, 1) +
MID(#txCode13, 12, 1)
) + (
MID(#txCode13, 1, 1) +
MID(#txCode13, 3, 1) +
MID(#txCode13, 5, 1) +
MID(#txCode13, 7, 1) +
MID(#txCode13, 9, 1) +
MID(#txCode13, 11, 1) +
MID(#txCode13, 13, 1)
) * 3 ) % 10
) AS iCheck,
#iCheckDigit := IF(#iCheck = 10, 0, #iCheck) AS checkDigit,
CONCAT(#t
xCode13, CAST(#iCheckDigit AS CHAR)) AS EAN14WithCheck
Here is the Java version for EAN13
private int calcChecksum(String first12digits) {
char[] char12digits = first12digits.toCharArray();
int[] ean13 = {1,3};
int sum = 0;
for(int i = 0 ; i<char12digits.length; i++){
sum += Character.getNumericValue(char12digits[i]) * ean13[i%2];
}
int checksum = 10 - sum%10;
if(checksum == 10){
checksum = 0;
}
return checksum;
}
class GTIN(object):
def __init__(self, barcode=''):
self.barcode = barcode
def __checkDigit(self, digits):
total = sum(digits) + sum(map(lambda d: d*2, digits[-1::-2]))
return (10 - (total % 10)) % 10
def validateCheckDigit(self, barcode=''):
barcode = (barcode if barcode else self.barcode)
if len(barcode) in (8,12,13,14) and barcode.isdigit():
digits = map(int, barcode)
checkDigit = self.__checkDigit( digits[0:-1] )
return checkDigit == digits[-1]
return False
def addCheckDigit(self, barcode=''):
barcode = (barcode if barcode else self.barcode)
if len(barcode) in (7,11,12,13) and barcode.isdigit():
digits = map(int, barcode)
return barcode + str(self.__checkDigit(digits))
return ''
Today I need a PHP version, I remember about this page and copy from the Java version. Thank you.
function getEAN13($txEan12)
{
$iVal=0;
for($i=0; $i<strlen($txEan12); $i++)
{
$iSingleCharVal = intval(substr($txEan12, $i, 1)); // extract value of one char
$iSingleCharMult = $iSingleCharVal * ($i%2==0 ? 1 : 3); // calculate depending from position
$iVal+= $iSingleCharMult; // sum
}
$iCheckDigit = 10 - ($iVal % 10);
if ($iCheckDigit == 10) $iCheckDigit = 0;
return $txEan12 . $iCheckDigit;
}
Java Version:
It works perfectly
public static int checkSum(String code){
int val=0;
for(int i=0; i<code.length()-1; i++){
val+=((int)Integer.parseInt(code.charAt(i)+""))*((i%2==0)?1:3);
}
int checksum_digit = (10 - (val % 10)) % 10;
return checksum_digit;
}
Python EAN13 check-digit calculation based on Najoua Mahi's Java function:
def generateEAN13CheckDigit(self, first12digits):
charList = [char for char in first12digits]
ean13 = [1,3]
total = 0
for order, char in enumerate(charList):
total += int(char) * ean13[order % 2]
checkDigit = 10 - total % 10
if (checkDigit == 10):
return 0
return checkDigit
This works on both EAN 13 and EAN8:
public static String generateEAN(String barcode) {
int first = 0;
int second = 0;
if(barcode.length() == 7 || barcode.length() == 12) {
for (int counter = 0; counter < barcode.length() - 1; counter++) {
first = (first + Integer.valueOf(barcode.substring(counter, counter + 1)));
counter++;
second = (second + Integer.valueOf(barcode.substring(counter, counter + 1)));
}
second = second * 3;
int total = second + first;
int roundedNum = Math.round((total + 9) / 10 * 10);
barcode = barcode + String.valueOf(roundedNum - total);
}
return barcode;
}
This is a code I wrote in VFP (Visual FoxPro 9), for both EAN-8 and EAN-13
Lparameters lcBarcode,llShowErrorMessage
If Vartype(m.lcBarcode)<>'C'
If m.llShowErrorMessage
MessageBox([Type of parameter is incorect!],0+16,[Error Message])
EndIf
Return .f.
EndIf
If Len(Chrtran(Alltrim(m.lcBarcode),[0123456789],[]))>0
If m.llShowErrorMessage
MessageBox([Provided barcode contains invalid characters!],0+16,[Error Message])
EndIf
Return .f.
EndIf
If Len(Alltrim(m.lcBarcode))=0
If m.llShowErrorMessage
MessageBox([The length of provided barcode is 0 (zero)!],0+16,[Error Message])
EndIf
Return .f.
EndIf
If !InList(Len(Alltrim(m.lcBarcode)),8,13)
If m.llShowErrorMessage
MessageBox([Provided barcode is not an EAN-8 or EAN-13 barcode!],0+16,[Error Message])
EndIf
Return .f.
EndIf
Local lnCheck as Integer, lnSum as Integer, lnOriginalCheck as Integer,jj as Integer
jj=0
lnSum=0
m.lnOriginalCheck = Cast(Right(Alltrim(m.lcBarcode),1) as Integer)
m.lcBarcode = Left(Alltrim(m.lcBarcode),Len(Alltrim(m.lcBarcode))-1)
For ii = Len(m.lcBarcode) to 1 step -1
jj=jj+1
lnSum = lnSum + Cast(Substr(m.lcBarcode,ii,1) as Integer) * Iif(Mod(jj,2)=0,1,3)
Next
lnCheck = 10-Mod(lnSum,10)
lnCheck = Iif(lnCheck =10,0,lnCheck)
Return (lnCheck = lnOriginalCheck)
JavaScript version for EAN-8 and EAN-13
function checksum(code) {
const sum = code.split('').reverse().reduce((sum, char, idx) => {
let digit = Number.parseInt(char);
let weight = (idx + 1) % 2 === 0 ? 1 : 3;
let partial = digit * weight;
return sum + partial;
}, 0);
const remainder = sum % 10;
const checksum = remainder ? (10 - remainder) : 0;
return checksum;
}
Mini Javascript Version
function checksum(code){
return (10 - (code.split('').reduce((s, e, i) => { return s + parseInt(e) * ((i%2==0)?1:3) },0) % 10)) % 10;
}
=INT(CONCAT([#Code],MOD(10 - MOD((MID([#Code], 2, 1) + MID([#Code], 4, 1) + MID([#Code], 6, 1)) + (3*(MID([#Code], 1, 1) + MID([#Code], 3, 1) + MID([#Code], 5, 1) + MID([#Code], 7, 1))),10), 10)))
The above formula will calculate the check character without the need to use a macro or change to XLSM.
Note: Only works for EAN-8.

Resources