Recursive realtion solution in terms of variable(p) - wolfram-mathematica

u[0, 0] =1
u[m, n] =(1/(p + m + m^2)) (m*u[(m - 1), n] + n*u[(m + 1), (n - 2)] + m*(m - 1)*u[(m - 2), (n + 2)])
I want u[m,n] in terms of p; don't want answer like u[0,2]=2u[1,0]/p only in terms of p; like I want value of u[m,n] for different value of m and n.

As stated by Jonie Shih your recursion doesn't terminate. Perhaps you want to terminate for either argument less than one:
u[x_, y_] /; x < 1 || y < 1 = 1;
u[m_, n_] :=
(1/(p + m + m^2)) (m*u[(m - 1), n] + n*u[(m + 1), (n - 2)] +
m*(m - 1)*u[(m - 2), (n + 2)])
p = 4;
u[3, 5]
593037/1392640

Related

How can I solve the problem on the segment tree

I have an array a[0..n - 1]. I have 2 types operations:
sum l r:
sum = a[l] * 1 + a[l+1] * 2 + ... + a[r] * (r - l)
update index value: a[index] = value
How can I modify standart sum segment tree for this task?
Store a second segment tree for sums of the array b, where b[i] = (i+1) * a[i]. Then, setting a[index] = value should also update the second segment tree with b[index] = value * (index + 1).
To calculate the sum you want, given the ability to query the normal subarray sums of a and b:
special_sum(l, r) = a[l] * 1 + a[l+1] * 2 + ... + a[r] * (r - l)
can be rewritten as:
(l+1) * a[l] + (l+2) * a[l+1] + ... + (r) * a[r]
- l * (a[l] + a[l+1] + ... + a[r])
which becomes
b[l] + b[l+1] + ... + b[r]
- l * (a[l] + a[l+1] + ... + a[r])

How can I solve this problem using dynamic programming?

Given a list of numbers, say [4 5 2 3], I need to maximize the sum obtained according to the following set of rules:
I need to select a number from the list and that number will be removed.
Eg. selecting 2 will have the list as [4 5 3].
If the number to be removed has two neighbours then I should get the result of this selection as the product of the currently selected number with one of its neighbours and this product summed up with the other neighbour. eg.: if I select 2 then I can have the result of this selction as 2 * 5 + 3.
If I select a number with only one neighbour then the result is the product of the selected number with its neighbour.
When their is only one number left then it is just added to the result till now.
Following these rules, I need to select the numbers in such an order that the result is maximized.
For the above list, if the order of selction is 4->2->3->5 then the sum obtained is 53 which is the maximum.
I am including a program which lets you pass as input the set of elements and gives all possible sums and also indicates the max sum.
Here's a link.
import itertools
l = [int(i) for i in input().split()]
p = itertools.permutations(l)
c, cs = 1, -1
mm = -1
for i in p:
var, s = l[:], 0
print(c, ':', i)
c += 1
for j in i:
print(' removing: ', j)
pos = var.index(j)
if pos == 0 or pos == len(var) - 1:
if pos == 0 and len(var) != 1:
s += var[pos] * var[pos + 1]
var.remove(j)
elif pos == 0 and len(var) == 1:
s += var[pos]
var.remove(j)
if pos == len(var) - 1 and pos != 0:
s += var[pos] * var[pos - 1]
var.remove(j)
else:
mx = max(var[pos - 1], var[pos + 1])
mn = min(var[pos - 1], var[pos + 1])
s += var[pos] * mx + mn
var.remove(j)
if s > mm:
mm = s
cs = c - 1
print(' modified list: ', var, '\n sum:', s)
print('MAX SUM was', mm, ' at', cs)
Consider 4 variants of the problem: those where every element gets consumed, and those where either the left, the right, or both the right and left elements are not consumed.
In each case, you can consider the last element to be removed, and this breaks the problem down into 1 or 2 subproblems.
This solves the problem in O(n^3) time. Here's a python program that solves the problem. The 4 variants of solve_ correspond to none, one or the other, or both of the endpoints being fixed. No doubt this program can be reduced (there's a lot of duplication).
def solve_00(seq, n, m, cache):
key = ('00', n, m)
if key in cache:
return cache[key]
assert m >= n
if n == m:
return seq[n]
best = -1e9
for i in range(n, m+1):
left = solve_01(seq, n, i, cache) if i > n else 0
right = solve_10(seq, i, m, cache) if i < m else 0
best = max(best, left + right + seq[i])
cache[key] = best
return best
def solve_01(seq, n, m, cache):
key = ('01', n, m)
if key in cache:
return cache[key]
assert m >= n + 1
if m == n + 1:
return seq[n] * seq[m]
best = -1e9
for i in range(n, m):
left = solve_01(seq, n, i, cache) if i > n else 0
right = solve_11(seq, i, m, cache) if i < m - 1 else 0
best = max(best, left + right + seq[i] * seq[m])
cache[key] = best
return best
def solve_10(seq, n, m, cache):
key = ('10', n, m)
if key in cache:
return cache[key]
assert m >= n + 1
if m == n + 1:
return seq[n] * seq[m]
best = -1e9
for i in range(n+1, m+1):
left = solve_11(seq, n, i, cache) if i > n + 1 else 0
right = solve_10(seq, i, m, cache) if i < m else 0
best = max(best, left + right + seq[n] * seq[i])
cache[key] = best
return best
def solve_11(seq, n, m, cache):
key = ('11', n, m)
if key in cache:
return cache[key]
assert m >= n + 2
if m == n + 2:
return max(seq[n] * seq[n+1] + seq[n+2], seq[n] + seq[n+1] * seq[n+2])
best = -1e9
for i in range(n + 1, m):
left = solve_11(seq, n, i, cache) if i > n + 1 else 0
right = solve_11(seq, i, m, cache) if i < m - 1 else 0
best = max(best, left + right + seq[i] * seq[n] + seq[m], left + right + seq[i] * seq[m] + seq[n])
cache[key] = best
return best
for c in [[1, 1, 1], [4, 2, 3, 5], [1, 2], [1, 2, 3], [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]]:
print(c, solve_00(c, 0, len(c)-1, dict()))

How can I find the minimum index of the array in this case?

We are given an array with n values.
Example: [1,4,5,6,6]
For each index i of the array a ,we construct a new element of array b such that,
b[i]= [a[i]/1] + [a[i+1]/2] + [a[i+2]/3] + ⋯ + [a[n]/(n−i+1)] where [.] denotes the greatest integer function.
We are given an integer k as well.
We have to find the minimum i such that b[i] ≤ k.
I know the brute-force O(n^2) algorithm (to create the array - 'b'), can anybody suggest a better time complexity and way solve it?
For example, for the input [1,2,3],k=3, the output is 1(minimum-index).
Here, a[1]=1; a[2]=2; a[3]=3;
Now, b[1] = [a[1]/1] + [a[2]/2] + [a[3]/3] = [1/1] + [2/2] + [3/3] = 3;
b[2] = [a[2]/1] + [a[3]/2] = [2/1] + [3/2] = 3;
b[3] = [a[3]/1] = [3/1] = 3 (obvious)
Now, we have to find the index i such that b[i]<=k , k='3' , also b[1]<=3, henceforth, 1 is our answer! :-)
Constraints : - Time limits: -(2-seconds) , 1 <= a[i] <= 10^5, 1 <=
n <= 10^5, 1 <= k <= 10^9
Here's an O(n √A)-time algorithm to compute the b array where n is the number of elements in the a array and A is the maximum element of the a array.
This algorithm computes the difference sequence of the b array (∆b = b[0], b[1] - b[0], b[2] - b[1], ..., b[n-1] - b[n-2]) and derives b itself as the cumulative sums. Since the differences are linear, we can start with ∆b = 0, 0, ..., 0, loop over each element a[i], and add the difference sequence for [a[i]], [a[i]/2], [a[i]/3], ... at the appropriate spot. The key is that this difference sequence is sparse (less than 2√a[i] elements). For example, for a[i] = 36,
>>> [36//j for j in range(1,37)]
[36, 18, 12, 9, 7, 6, 5, 4, 4, 3, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
>>> list(map(operator.sub,_,[0]+_[:-1]))
[36, -18, -6, -3, -2, -1, -1, -1, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
We can derive the difference sequence from a subroutine that, given a positive integer r, returns all maximal pairs of positive integers (p, q) such that pq ≤ r.
See complete Python code below.
def maximal_pairs(r):
p = 1
q = r
while p < q:
yield (p, q)
p += 1
q = r // p
while q > 0:
p = r // q
yield (p, q)
q -= 1
def compute_b_fast(a):
n = len(a)
delta_b = [0] * n
for i, ai in enumerate(a):
previous_j = i
for p, q in maximal_pairs(ai):
delta_b[previous_j] += q
j = i + p
if j >= n:
break
delta_b[j] -= q
previous_j = j
for i in range(1, n):
delta_b[i] += delta_b[i - 1]
return delta_b
def compute_b_slow(a):
n = len(a)
b = [0] * n
for i, ai in enumerate(a):
for j in range(n - i):
b[i + j] += ai // (j + 1)
return b
for n in range(1, 100):
print(list(maximal_pairs(n)))
lst = [1, 34, 3, 2, 9, 21, 3, 2, 2, 1]
print(compute_b_fast(lst))
print(compute_b_slow(lst))
This probably cannot reach the efficiency of David Eisenstat's answer but since I spent quite a long time figuring out an implementation, I thought I'd leave it up anyway. As it is, it seems about O(n^2).
The elements of b[i] may be out of order, but sections of them are not:
[a[1]/1] + [a[2]/2] + [a[3]/3]
|------ s2_1 -----|
|-s1_1-|
[a[2]/1] + [a[3]/2]
|------ s2_2 -----|
|-s1_2-|
[a[3]/1]
|-s1_3-|
s2_1 < s2_2
s1_1 < s1_2 < s1_3
Binary search for k on s1. Any result with an s1_i greater than k will rule out a section of ordered rows (rows are b_is).
Binary search for k on s2 on the remaining rows. Any result with an s2_i greater than k will rule out a section of ordered rows (rows are b_is).
This wouldn't help much since in the worst case, we'd have O(n^2 * log n) complexity, greater than O(n^2).
But we can also search horizontally. If we know that b_i ≤ k, then it will rule out both all rows with greater or equal length and the need to search smaller s(m)s, not because smaller s(m)s cannot produce a sum >= k, but because they will necessarily produce one with a higher i and we are looking for the minimum i.
JavaScript code:
var sum_width_iterations = 0
var total_width_summed = 0
var sum_width_cache = {}
function sum_width(A, i, width){
let key = `${i},${width}`
if (sum_width_cache.hasOwnProperty(key))
return sum_width_cache[key]
sum_width_iterations++
total_width_summed += width
let result = 0
for (let j=A.length-width; j<A.length; j++)
result += ~~(A[j] / (j + 1 - i))
return sum_width_cache[key] = result
}
function get_b(A){
let result = []
A.map(function(a, i){
result.push(sum_width(A, i, A.length - i))
})
return result
}
function find_s_greater_than_k(A, width, low, high, k){
let mid = low + ((high - low) >> 1)
let s = sum_width(A, mid, width)
while (low <= high){
mid = low + ((high - low) >> 1)
s = sum_width(A, mid, width)
if (s > k)
high = mid - 1
else
low = mid + 1
}
return [mid, s]
}
function f(A, k, l, r){
let n = A.length
if (l > r){
console.log(`l > r: l, r: ${l}, ${r}`)
return [n + 1, Infinity]
}
let width = n - l
console.log(`\n(call) width, l, r: ${width}, ${l}, ${r}`)
let mid = l + ((r - l) >> 1)
let mid_width = n - mid
console.log(`mid: ${mid}`)
console.log('mid_width: ' + mid_width)
let highest_i = n - mid_width
let [i, s] = find_s_greater_than_k(A, mid_width, 0, highest_i, k)
console.log(`hi_i, s,i,k: ${highest_i}, ${s}, ${i}, ${k}`)
if (mid_width == width)
return [i, s]
// either way we need to look left
// and down
console.log(`calling left`)
let [li, ls] = f(A, k, l, mid - 1)
// if i is the highest, width is
// the width of b_i
console.log(`got left: li, ls, i, high_i: ${li}, ${ls}, ${i}, ${highest_i}`)
if (i == highest_i){
console.log(`i == highest_i, s <= k: ${s <= k}`)
// b_i is small enough
if (s <= k){
if (ls <= k)
return [li, ls]
else
return [i, s]
// b_i is larger than k
} else {
console.log(`b_i > k`)
let [ri, rs] = f(A, k, mid + 1, r)
console.log(`ri, rs: ${ri}, ${rs}`)
if (ls <= k)
return [li, ls]
else if (rs <= k)
return [ri, rs]
else
return [i, s]
}
// i < highest_i
} else {
console.log(`i < highest_i: high_i, i, s, li, ls, mid, mid_width, width, l, r: ${highest_i}, ${i}, ${s}, ${li}, ${ls}, ${mid}, ${mid_width}, ${width}, ${l}, ${r}`)
// get the full sum for this b
let b_i = sum_width(A, i, n - i)
console.log(`b_i: ${b_i}`)
// suffix sum is less than k
// so we cannot rule out either side
if (s < k){
console.log(`s < k`)
let ll = l
let lr = mid - 1
let [lli, lls] = f(A, k, ll, lr)
console.log(`ll, lr, lli, lls: ${ll}, ${lr}, ${lli}, ${lls}`)
// b_i is a match so we don't
// need to look to the right
if (b_i <= k){
console.log(`b_i <= k: i, b_i: ${i}, ${b_i}`)
if (lls <= k)
return [lli, lls]
else
return [i, b_i]
// b_i > k
} else {
console.log(`b_i > k: i, b_i: ${i}, ${b_i}`)
let rl = mid + 1
let rr = r
let [rri, rrs] = f(A, k, rl, rr)
console.log(`rl, rr, rri, rrs: ${rl}, ${rr}, ${rri}, ${rrs}`)
// return the best of right
// and left sections
if (lls <= k)
return [lli, lls]
else if (rrs <= k)
return [rri, rrs]
else
return [i, b_i]
}
// suffix sum is greater than or
// equal to k so we can rule out
// this and all higher rows (`b`s)
// that share this suffix
} else {
console.log(`s >= k`)
let ll = l
// the suffix rules out b_i
// and above
let lr = i - 1
let [lli, lls] = f(A, k, ll, lr)
console.log(`ll, lr, lli, lls: ${ll}, ${lr}, ${lli}, ${lls}`)
let rl = highest_i + 1
let rr = r
let [rri, rrs] = f(A, k, rl, rr)
console.log(`rl, rr, rri, rrs: ${rl}, ${rr}, ${rri}, ${rrs}`)
// return the best of right
// and left sections
if (lls <= k)
return [lli, lls]
else if (rrs <= k)
return [rri, rrs]
else
return [i, b_i]
}
}
}
let lst = [1, 2, 3, 1]
// b [3, 3, 3, 1]
lst = [ 1, 34, 3, 2, 9, 21, 3, 2, 2, 1]
// b [23, 41, 12, 13, 20, 22, 4, 3, 2, 1]
console.log(
JSON.stringify(f(lst, 20, 0, lst.length)))
console.log(`sum_width_iterations: ${sum_width_iterations}`)
console.log(`total_width_summed: ${total_width_summed}`)
Why should calculating b[i] lead to O(n²)? If i = 1, it takes n steps. If i = n, it takes one step to calculate b[i]...
You could improve your calculation when you abort the sum on the condition Sum > k.
Let a in N^n
Let k in N
for (i1 := 1; i1 <= n; i1++)
b := 0
for (i2 :=i1; i2 <= n; i2++) // This loop is the calculation of b[i]
b := b + ceil(a[i2]/(i2 + 1))
if (b > k)
break
if (i2 == n)
return i1

Confusion Regarding deepest pit within an Array

I got this question as prerequisite for an interview,
A non-empty zero-indexed array A consisting of N integers is given. A
pit in this array is any triplet of integers (P, Q, R) such that: 0 ≤
P < Q < R < N;
sequence [A[P], A[P+1], ..., A[Q]] is strictly decreasing, i.e. A[P] >
A[P+1] > ... > A[Q];
sequence A[Q], A[Q+1], ..., A[R] is strictly increasing, i.e. A[Q] <
A[Q+1] < ... < A[R].
The depth of a pit (P, Q, R) is the number min{A[P] − A[Q], A[R] −
A[Q]}. For example, consider array A consisting of 10 elements such
that:
A[0] = 0
A[1] = 1
A[2] = 3
A[3] = -2
A[4] = 0
A[5] = 1
A[6] = 0
A[7] = -3
A[8] = 2
A[9] = 3
Triplet (2, 3, 4) is one of pits in this array, because sequence
[A[2], A[3]] is strictly decreasing (3 > −2) and sequence [A[3], A[4]]
is strictly increasing (−2 < 0). Its depth is min{A[2] − A[3], A[4] −
A[3]} = 2.
Triplet (2, 3, 5) is another pit with depth 3.
Triplet (5, 7, 8) is yet another pit with depth 4. There is no pit in
this array deeper (i.e. having depth greater) than 4.
It says that Triplet (5, 7, 8) has the deepest pit depth of 4.
but isn't Triplet (2, 7, 9) has the deepest pit depth 6?
corresponding value of Triplet (2, 7, 9) is (3, -3, 3) and it also satisfies the conditions mentioned, i.e.
1) 0 ≤ P < Q < R < N
2) A[P] > A[P+1] > ... > A[Q] and A[Q] < A[Q+1] < ... < A[R]
so in this case min{A[P] − A[Q], A[R] − A[Q]} is 6.
What am i missing here?
P.S. if you think this post does not belong here in this forum then please point out where should i post it.
See the sequence from P to Q for 2 to 7.
It is 3 -2 0 1 0 -3.
sequence [A[P], A[P+1], ..., A[Q]] is strictly decreasing, i.e. A[P] > A[P+1] > ... > A[Q];
The rule says that this should be a decreasing sequence. But it isn't. 3>-2 but -2 is not greater than 0. Here the sequence breaks.
From 7 to 9. No problem as the sequence is increasing. -3<2<3.
answer of the deepest pit problem in swift :
func solution(_ array: [Int]) -> Int {
//guaranty we have at least three elements
if array.isEmpty {
print("isEmpty")
return -1
}
if array.count < 3 {
print("is less than 3")
return -1
}
//extremum point; max or min points
var extremumPoints = [Int]()
//adding first element
extremumPoints.append(array[0])
//calculate extremum points for 1 to one before last element
for i in 1..<(array.count - 1) {
let isRelativeExtremum = ((array[i] - array[i - 1]) * (array[i] - array[i + 1])) > 0
//we call a point semi-extremum if a point is equal to previous element or next element and not equal to previous element or next element
let isSemiExtremum = ((array[i] != array[i - 1]) && (array[i] == array[i + 1])) || ((array[i] != array[i + 1]) && (array[i] == array[i - 1]))
if isRelativeExtremum || isSemiExtremum {
extremumPoints.append(array[i])
}
}
//adding last element
extremumPoints.append(array[array.count - 1])
//we will hold depthes in this array
var depthes = [Int]()
for i in 1..<(extremumPoints.count - 1) {
let isBottomOfaPit = extremumPoints[i] < extremumPoints[i - 1] && extremumPoints[i] < extremumPoints[i + 1]
if isBottomOfaPit {
let d1 = extremumPoints[i - 1] - extremumPoints[i]
let d2 = extremumPoints[i + 1] - extremumPoints[i]
let d = min(d1, d2)
depthes.append(d)
}
}
//deepest pit
let deepestPit = depthes.max()
return deepestPit ?? -1
}
//****************************
let A = [0,1,3,-2,0,1,0,-3,2,3]
let deepestPit = solution(A)
print(deepestPit) // 4
def deepest(A):
def check(p, q, r, A):
if A[p] > A[q] and A[q] < A[r]:
return min(A[p] - A[q], A[r] - A[q])
else:
return -1
max_depth = 0
for i in range(1, len(A) - 2):
if A[i-1] > A[i] < A[i + 1]:
p = i
r = i
while 0 <= p and r <= len(A) - 1:
depth = check(p, i, r, A)
max_depth = max(max_depth, depth)
p -= 1
r += 1
return max_depth

Function of two variables

What does a function of two variables f(x,n) that gives the equation of a line with a y-intercept of n and an x-intercept of 16-n, look like?
Equation of a line
f[x_] := m x + c
so, for example, when x = 3
y = f[3]
c + 3 m
When x = 16 - n
f[16 - n]
c + m (16 - n)
This must equal n for the OP's solution
Solve[c + m (16 - n) == n, m]
{{m -> (c - n)/(-16 + n)}}
Replace m in another equation of the line
g[x_] := (c - n)/(-16 + n) x + c
For various values of c and n
c = 1;
Show[Table[Plot[g[x], {x, -100, 100}], {n, 2, 4}]]
c = 3;
Show[Table[Plot[g[x], {x, -100, 100}], {n, 2, 4}]]
Forcing a function of the form f(x,n)
h[x_, n_] := (c - n)/(-16 + n) x + c
c = 3;
n = 4;
Plot[h[x, n], {x, -100, 100}]

Resources