Related
There is already a topic about this task, but I'd like to ask about my specific approach.
The task is:
Let A be a non-empty array consisting of N integers.
The abs sum of two for a pair of indices (P, Q) is the absolute value
|A[P] + A[Q]|, for 0 ≤ P ≤ Q < N.
For example, the following array A:
A[0] = 1 A1 = 4 A[2] = -3 has pairs of indices (0, 0), (0,
1), (0, 2), (1, 1), (1, 2), (2, 2). The abs sum of two for the pair
(0, 0) is A[0] + A[0] = |1 + 1| = 2. The abs sum of two for the pair
(0, 1) is A[0] + A1 = |1 + 4| = 5. The abs sum of two for the pair
(0, 2) is A[0] + A[2] = |1 + (−3)| = 2. The abs sum of two for the
pair (1, 1) is A1 + A1 = |4 + 4| = 8. The abs sum of two for the
pair (1, 2) is A1 + A[2] = |4 + (−3)| = 1. The abs sum of two for
the pair (2, 2) is A[2] + A[2] = |(−3) + (−3)| = 6. Write a function:
def solution(A)
that, given a non-empty array A consisting of N integers, returns the
minimal abs sum of two for any pair of indices in this array.
For example, given the following array A:
A[0] = 1 A1 = 4 A[2] = -3 the function should return 1, as
explained above.
Given array A:
A[0] = -8 A1 = 4 A[2] = 5 A[3] =-10 A[4] = 3 the
function should return |(−8) + 5| = 3.
Write an efficient algorithm for the following assumptions:
N is an integer within the range [1..100,000]; each element of array A
is an integer within the range [−1,000,000,000..1,000,000,000].
The official solution is O(N*M^2), but I think it could be solved in O(N).
My approach is to first get rid of duplicates and sort the array. Then we check both ends and sompare the abs sum moving the ends by one towards each other. We try to move the left end, the right one or both. If this doesn't improve the result, our sum is the lowest. My code is:
def solution(A):
A = list(set(A))
n = len(A)
A.sort()
beg = 0
end = n - 1
min_sum = abs(A[beg] + A[end])
while True:
min_left = abs(A[beg+1] + A[end]) if beg+1 < n else float('inf')
min_right = abs(A[beg] + A[end-1]) if end-1 >= 0 else float('inf')
min_both = abs(A[beg+1] + A[end-1]) if beg+1 < n and end-1 >= 0 else float('inf')
min_all = min([min_left, min_right, min_both])
if min_sum <= min_all:
return min_sum
if min_left == min_all:
beg += 1
min_sum = min_left
elif min_right == min_all:
end -= 1
min_sum = min_right
else:
beg += 1
end -= 1
min_sum = min_both
It passes almost all of the tests, but not all. Is there some bug in my code or the approach is wrong?
EDIT:
After the aka.nice answer I was able to fix the code. It scores 100% now.
def solution(A):
A = list(set(A))
n = len(A)
A.sort()
beg = 0
end = n - 1
min_sum = abs(A[beg] + A[end])
while beg <= end:
min_left = abs(A[beg+1] + A[end]) if beg+1 < n else float('inf')
min_right = abs(A[beg] + A[end-1]) if end-1 >= 0 else float('inf')
min_all = min(min_left, min_right)
if min_all < min_sum:
min_sum = min_all
if min_left <= min_all:
beg += 1
else:
end -= 1
return min_sum
Just take this example for array A
-11 -5 -2 5 6 8 12
and execute your algorithm step by step, you get a premature return:
beg=0
end=6
min_sum=1
min_left=7
min_right=3
min_both=3
min_all=3
return min_sum
though there is a better solution abs(5-5)=0.
Hint: you should check the sign of A[beg] and A[end] to decide whether to continue or exit the loop. What to do if both >= 0, if both <= 0, else ?
Note that A.sort() has a non neglectable cost, likely O(N*log(N)), it will dominate the cost of the solution you exhibit.
By the way, what is M in the official cost O(N*M^2)?
And the link you provide is another problem (sum all the elements of A or their opposite).
The problem goes as follows:
You are given two arrays of integers a and b, and two integers lower and upper.
Your task is to find the number of pairs (i, j) such that lower ≤ a[i] * a[i] + b[j] * b[j] ≤ upper.
Example:
For a = [3, -1, 9], b = [100, 5, -2], lower = 7, and upper = 99, the output should be boundedSquareSum(a, b, lower, upper) = 4.
There are only four pairs that satisfy the requirement:
If i = 0 and j = 1, then a[0] = 3, b[1] = 5, and 7 ≤ 3 * 3 + 5 * 5 = 9 + 25 = 36 ≤ 99.
If i = 0 and j = 2, then a[0] = 3, b[2] = -2, and 7 ≤ 3 * 3 + (-2) * (-2) = 9 + 4 = 13 ≤ 99.
If i = 1 and j = 1, then a[1] = -1, b[1] = 5, and 7 ≤ (-1) * (-1) + 5 * 5 = 1 + 25 = 26 ≤ 99.
If i = 2 and j = 2, then a[2] = 9, b[2] = -2, and 7 ≤ 9 * 9 + (-2) * (-2) = 81 + 4 = 85 ≤ 99.
For a = [1, 2, 3, -1, -2, -3], b = [10], lower = 0, and upper = 100, the output should be boundedSquareSum(a, b, lower, upper) = 0.
Since the array b contains only one element 10 and the array a does not contain 0, it is not possible to satisfy 0 ≤ a[i] * a[i] + 10 * 10 ≤ 100.
Now, I know there is a brute force way to solve this, but what would be the optimal solution for this problem?
Sort the smaller array using the absolute value of the elements, then for each element in the unsorted array, binary search the interval on the sorted one.
You can break loop when calculation goes higher than upper limit.
I will reduce execution time.
function boundedSquareSum(a, b, lower, upper) {
let result = 0;
a = a.sort((i,j) => Math.abs(i) - Math.abs(j));
b = b.sort((i,j) => Math.abs(i) - Math.abs(j))
for(let i = 0; i < a.length; i++) {
let aValue = a[i] ** 2;
if(aValue > upper) {
break; // Don't need to check further
}
for(let j = 0; j < b.length; j++) {
let bValue = b[j] ** 2;
let total = aValue + bValue;
if(total > upper) {
break; // Don't need to check further
}
if((total >= lower && total <= upper) ) {
result++;
}
}
}
return result;
}
Given a list of numbers, say [4 5 2 3], I need to maximize the sum obtained according to the following set of rules:
I need to select a number from the list and that number will be removed.
Eg. selecting 2 will have the list as [4 5 3].
If the number to be removed has two neighbours then I should get the result of this selection as the product of the currently selected number with one of its neighbours and this product summed up with the other neighbour. eg.: if I select 2 then I can have the result of this selction as 2 * 5 + 3.
If I select a number with only one neighbour then the result is the product of the selected number with its neighbour.
When their is only one number left then it is just added to the result till now.
Following these rules, I need to select the numbers in such an order that the result is maximized.
For the above list, if the order of selction is 4->2->3->5 then the sum obtained is 53 which is the maximum.
I am including a program which lets you pass as input the set of elements and gives all possible sums and also indicates the max sum.
Here's a link.
import itertools
l = [int(i) for i in input().split()]
p = itertools.permutations(l)
c, cs = 1, -1
mm = -1
for i in p:
var, s = l[:], 0
print(c, ':', i)
c += 1
for j in i:
print(' removing: ', j)
pos = var.index(j)
if pos == 0 or pos == len(var) - 1:
if pos == 0 and len(var) != 1:
s += var[pos] * var[pos + 1]
var.remove(j)
elif pos == 0 and len(var) == 1:
s += var[pos]
var.remove(j)
if pos == len(var) - 1 and pos != 0:
s += var[pos] * var[pos - 1]
var.remove(j)
else:
mx = max(var[pos - 1], var[pos + 1])
mn = min(var[pos - 1], var[pos + 1])
s += var[pos] * mx + mn
var.remove(j)
if s > mm:
mm = s
cs = c - 1
print(' modified list: ', var, '\n sum:', s)
print('MAX SUM was', mm, ' at', cs)
Consider 4 variants of the problem: those where every element gets consumed, and those where either the left, the right, or both the right and left elements are not consumed.
In each case, you can consider the last element to be removed, and this breaks the problem down into 1 or 2 subproblems.
This solves the problem in O(n^3) time. Here's a python program that solves the problem. The 4 variants of solve_ correspond to none, one or the other, or both of the endpoints being fixed. No doubt this program can be reduced (there's a lot of duplication).
def solve_00(seq, n, m, cache):
key = ('00', n, m)
if key in cache:
return cache[key]
assert m >= n
if n == m:
return seq[n]
best = -1e9
for i in range(n, m+1):
left = solve_01(seq, n, i, cache) if i > n else 0
right = solve_10(seq, i, m, cache) if i < m else 0
best = max(best, left + right + seq[i])
cache[key] = best
return best
def solve_01(seq, n, m, cache):
key = ('01', n, m)
if key in cache:
return cache[key]
assert m >= n + 1
if m == n + 1:
return seq[n] * seq[m]
best = -1e9
for i in range(n, m):
left = solve_01(seq, n, i, cache) if i > n else 0
right = solve_11(seq, i, m, cache) if i < m - 1 else 0
best = max(best, left + right + seq[i] * seq[m])
cache[key] = best
return best
def solve_10(seq, n, m, cache):
key = ('10', n, m)
if key in cache:
return cache[key]
assert m >= n + 1
if m == n + 1:
return seq[n] * seq[m]
best = -1e9
for i in range(n+1, m+1):
left = solve_11(seq, n, i, cache) if i > n + 1 else 0
right = solve_10(seq, i, m, cache) if i < m else 0
best = max(best, left + right + seq[n] * seq[i])
cache[key] = best
return best
def solve_11(seq, n, m, cache):
key = ('11', n, m)
if key in cache:
return cache[key]
assert m >= n + 2
if m == n + 2:
return max(seq[n] * seq[n+1] + seq[n+2], seq[n] + seq[n+1] * seq[n+2])
best = -1e9
for i in range(n + 1, m):
left = solve_11(seq, n, i, cache) if i > n + 1 else 0
right = solve_11(seq, i, m, cache) if i < m - 1 else 0
best = max(best, left + right + seq[i] * seq[n] + seq[m], left + right + seq[i] * seq[m] + seq[n])
cache[key] = best
return best
for c in [[1, 1, 1], [4, 2, 3, 5], [1, 2], [1, 2, 3], [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]]:
print(c, solve_00(c, 0, len(c)-1, dict()))
We are given an array with n values.
Example: [1,4,5,6,6]
For each index i of the array a ,we construct a new element of array b such that,
b[i]= [a[i]/1] + [a[i+1]/2] + [a[i+2]/3] + ⋯ + [a[n]/(n−i+1)] where [.] denotes the greatest integer function.
We are given an integer k as well.
We have to find the minimum i such that b[i] ≤ k.
I know the brute-force O(n^2) algorithm (to create the array - 'b'), can anybody suggest a better time complexity and way solve it?
For example, for the input [1,2,3],k=3, the output is 1(minimum-index).
Here, a[1]=1; a[2]=2; a[3]=3;
Now, b[1] = [a[1]/1] + [a[2]/2] + [a[3]/3] = [1/1] + [2/2] + [3/3] = 3;
b[2] = [a[2]/1] + [a[3]/2] = [2/1] + [3/2] = 3;
b[3] = [a[3]/1] = [3/1] = 3 (obvious)
Now, we have to find the index i such that b[i]<=k , k='3' , also b[1]<=3, henceforth, 1 is our answer! :-)
Constraints : - Time limits: -(2-seconds) , 1 <= a[i] <= 10^5, 1 <=
n <= 10^5, 1 <= k <= 10^9
Here's an O(n √A)-time algorithm to compute the b array where n is the number of elements in the a array and A is the maximum element of the a array.
This algorithm computes the difference sequence of the b array (∆b = b[0], b[1] - b[0], b[2] - b[1], ..., b[n-1] - b[n-2]) and derives b itself as the cumulative sums. Since the differences are linear, we can start with ∆b = 0, 0, ..., 0, loop over each element a[i], and add the difference sequence for [a[i]], [a[i]/2], [a[i]/3], ... at the appropriate spot. The key is that this difference sequence is sparse (less than 2√a[i] elements). For example, for a[i] = 36,
>>> [36//j for j in range(1,37)]
[36, 18, 12, 9, 7, 6, 5, 4, 4, 3, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
>>> list(map(operator.sub,_,[0]+_[:-1]))
[36, -18, -6, -3, -2, -1, -1, -1, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
We can derive the difference sequence from a subroutine that, given a positive integer r, returns all maximal pairs of positive integers (p, q) such that pq ≤ r.
See complete Python code below.
def maximal_pairs(r):
p = 1
q = r
while p < q:
yield (p, q)
p += 1
q = r // p
while q > 0:
p = r // q
yield (p, q)
q -= 1
def compute_b_fast(a):
n = len(a)
delta_b = [0] * n
for i, ai in enumerate(a):
previous_j = i
for p, q in maximal_pairs(ai):
delta_b[previous_j] += q
j = i + p
if j >= n:
break
delta_b[j] -= q
previous_j = j
for i in range(1, n):
delta_b[i] += delta_b[i - 1]
return delta_b
def compute_b_slow(a):
n = len(a)
b = [0] * n
for i, ai in enumerate(a):
for j in range(n - i):
b[i + j] += ai // (j + 1)
return b
for n in range(1, 100):
print(list(maximal_pairs(n)))
lst = [1, 34, 3, 2, 9, 21, 3, 2, 2, 1]
print(compute_b_fast(lst))
print(compute_b_slow(lst))
This probably cannot reach the efficiency of David Eisenstat's answer but since I spent quite a long time figuring out an implementation, I thought I'd leave it up anyway. As it is, it seems about O(n^2).
The elements of b[i] may be out of order, but sections of them are not:
[a[1]/1] + [a[2]/2] + [a[3]/3]
|------ s2_1 -----|
|-s1_1-|
[a[2]/1] + [a[3]/2]
|------ s2_2 -----|
|-s1_2-|
[a[3]/1]
|-s1_3-|
s2_1 < s2_2
s1_1 < s1_2 < s1_3
Binary search for k on s1. Any result with an s1_i greater than k will rule out a section of ordered rows (rows are b_is).
Binary search for k on s2 on the remaining rows. Any result with an s2_i greater than k will rule out a section of ordered rows (rows are b_is).
This wouldn't help much since in the worst case, we'd have O(n^2 * log n) complexity, greater than O(n^2).
But we can also search horizontally. If we know that b_i ≤ k, then it will rule out both all rows with greater or equal length and the need to search smaller s(m)s, not because smaller s(m)s cannot produce a sum >= k, but because they will necessarily produce one with a higher i and we are looking for the minimum i.
JavaScript code:
var sum_width_iterations = 0
var total_width_summed = 0
var sum_width_cache = {}
function sum_width(A, i, width){
let key = `${i},${width}`
if (sum_width_cache.hasOwnProperty(key))
return sum_width_cache[key]
sum_width_iterations++
total_width_summed += width
let result = 0
for (let j=A.length-width; j<A.length; j++)
result += ~~(A[j] / (j + 1 - i))
return sum_width_cache[key] = result
}
function get_b(A){
let result = []
A.map(function(a, i){
result.push(sum_width(A, i, A.length - i))
})
return result
}
function find_s_greater_than_k(A, width, low, high, k){
let mid = low + ((high - low) >> 1)
let s = sum_width(A, mid, width)
while (low <= high){
mid = low + ((high - low) >> 1)
s = sum_width(A, mid, width)
if (s > k)
high = mid - 1
else
low = mid + 1
}
return [mid, s]
}
function f(A, k, l, r){
let n = A.length
if (l > r){
console.log(`l > r: l, r: ${l}, ${r}`)
return [n + 1, Infinity]
}
let width = n - l
console.log(`\n(call) width, l, r: ${width}, ${l}, ${r}`)
let mid = l + ((r - l) >> 1)
let mid_width = n - mid
console.log(`mid: ${mid}`)
console.log('mid_width: ' + mid_width)
let highest_i = n - mid_width
let [i, s] = find_s_greater_than_k(A, mid_width, 0, highest_i, k)
console.log(`hi_i, s,i,k: ${highest_i}, ${s}, ${i}, ${k}`)
if (mid_width == width)
return [i, s]
// either way we need to look left
// and down
console.log(`calling left`)
let [li, ls] = f(A, k, l, mid - 1)
// if i is the highest, width is
// the width of b_i
console.log(`got left: li, ls, i, high_i: ${li}, ${ls}, ${i}, ${highest_i}`)
if (i == highest_i){
console.log(`i == highest_i, s <= k: ${s <= k}`)
// b_i is small enough
if (s <= k){
if (ls <= k)
return [li, ls]
else
return [i, s]
// b_i is larger than k
} else {
console.log(`b_i > k`)
let [ri, rs] = f(A, k, mid + 1, r)
console.log(`ri, rs: ${ri}, ${rs}`)
if (ls <= k)
return [li, ls]
else if (rs <= k)
return [ri, rs]
else
return [i, s]
}
// i < highest_i
} else {
console.log(`i < highest_i: high_i, i, s, li, ls, mid, mid_width, width, l, r: ${highest_i}, ${i}, ${s}, ${li}, ${ls}, ${mid}, ${mid_width}, ${width}, ${l}, ${r}`)
// get the full sum for this b
let b_i = sum_width(A, i, n - i)
console.log(`b_i: ${b_i}`)
// suffix sum is less than k
// so we cannot rule out either side
if (s < k){
console.log(`s < k`)
let ll = l
let lr = mid - 1
let [lli, lls] = f(A, k, ll, lr)
console.log(`ll, lr, lli, lls: ${ll}, ${lr}, ${lli}, ${lls}`)
// b_i is a match so we don't
// need to look to the right
if (b_i <= k){
console.log(`b_i <= k: i, b_i: ${i}, ${b_i}`)
if (lls <= k)
return [lli, lls]
else
return [i, b_i]
// b_i > k
} else {
console.log(`b_i > k: i, b_i: ${i}, ${b_i}`)
let rl = mid + 1
let rr = r
let [rri, rrs] = f(A, k, rl, rr)
console.log(`rl, rr, rri, rrs: ${rl}, ${rr}, ${rri}, ${rrs}`)
// return the best of right
// and left sections
if (lls <= k)
return [lli, lls]
else if (rrs <= k)
return [rri, rrs]
else
return [i, b_i]
}
// suffix sum is greater than or
// equal to k so we can rule out
// this and all higher rows (`b`s)
// that share this suffix
} else {
console.log(`s >= k`)
let ll = l
// the suffix rules out b_i
// and above
let lr = i - 1
let [lli, lls] = f(A, k, ll, lr)
console.log(`ll, lr, lli, lls: ${ll}, ${lr}, ${lli}, ${lls}`)
let rl = highest_i + 1
let rr = r
let [rri, rrs] = f(A, k, rl, rr)
console.log(`rl, rr, rri, rrs: ${rl}, ${rr}, ${rri}, ${rrs}`)
// return the best of right
// and left sections
if (lls <= k)
return [lli, lls]
else if (rrs <= k)
return [rri, rrs]
else
return [i, b_i]
}
}
}
let lst = [1, 2, 3, 1]
// b [3, 3, 3, 1]
lst = [ 1, 34, 3, 2, 9, 21, 3, 2, 2, 1]
// b [23, 41, 12, 13, 20, 22, 4, 3, 2, 1]
console.log(
JSON.stringify(f(lst, 20, 0, lst.length)))
console.log(`sum_width_iterations: ${sum_width_iterations}`)
console.log(`total_width_summed: ${total_width_summed}`)
Why should calculating b[i] lead to O(n²)? If i = 1, it takes n steps. If i = n, it takes one step to calculate b[i]...
You could improve your calculation when you abort the sum on the condition Sum > k.
Let a in N^n
Let k in N
for (i1 := 1; i1 <= n; i1++)
b := 0
for (i2 :=i1; i2 <= n; i2++) // This loop is the calculation of b[i]
b := b + ceil(a[i2]/(i2 + 1))
if (b > k)
break
if (i2 == n)
return i1
I'm trying to come up with a fast algorithm for, given any array of length n, obtaining the largest subarray of distinct values.
For example, the largest subarray of distinct values of
[1, 4, 3, 2, 4, 2, 8, 1, 9]
would be
[4, 2, 8, 1, 9]
This is my current solution, I think it runs in O(n^2). This is because check_dups runs in linear time, and it is called every time j or i increments.
arr = [0,...,n]
i = 0
j = 1
i_best = i
j_best = j
while i < n-1 and j < n:
if check_dups(arr, i j): //determines if there's duplicates in the subarray i,j in linear time
i += 1
else:
if j - i > j_best - i_best:
i_best = i
j_best = j
j += 1
return subarray(arr, i_best, j_best)
Does anyone have a better solution, in linear time?
Please note this is pseudocode and I'm not looking for an answer that relies on specific existing functions of a defined language (such as arr.contains()).
Thanks!
Consider the problem of finding the largest distinct-valued subarray ending at a particular index j. Conceptually this is straightforward: starting at arr[j], you go backwards and include all elements until you find a duplicate.
Let's use this intuition to solve this problem for all j from 0 up to length(arr). We need to know, at any point in the iteration, how far back we can go before we find a duplicate. That is, we need to know the least i such that subarray(arr, i, j) contains distinct values. (I'm assuming subarray treats the indices as inclusive.)
If we knew i at some point in the iteration (say, when j = k), can we quickly update i when j = k+1? Indeed, if we knew when was the last occurrence of arr[k+1], then we can update i := max(i, lastOccurrence(arr[k+1]) + 1). We can compute lastOccurrence in O(1) time with a HashMap.
Pseudocode:
arr = ... (from input)
map = empty HashMap
i = 0
i_best = 0
j_best = 0
for j from 0 to length(arr) - 1 inclusive:
if map contains-key arr[j]:
i = max(i, map[arr[j]] + 1)
map[arr[j]] = j
if j - i > j_best - i_best:
i_best = i
j_best = j
return subarray(arr, i_best, j_best)
We can adapt pkpnd's algorithm to use an array rather than hash map for an O(n log n) solution or potentially O(n) if your data allows for an O(n) stable sort, but you'd need to implement a stable sorting function that also provides the original indexes of the elements.
1 4 3 2 4 2 8 1 9
0 1 2 3 4 5 6 7 8 (indexes)
Sorted:
1 1 2 2 3 4 4 8 9
0 7 3 5 2 1 4 6 8 (indexes)
--- --- ---
Now, instead of a hash map, build a new array by iterating over the sorted array and inserting the last occurrence of each element according to the duplicate index arrangements. The final array would look like:
1 4 3 2 4 2 8 1 9
-1 -1 -1 -1 1 3 -1 0 -1 (previous occurrence)
We're now ready to run pkpnd's algorithm with a slight modification:
arr = ... (from input)
map = previous occurrence array
i = 0
i_best = 0
j_best = 0
for j from 0 to length(arr) - 1 inclusive:
if map[j] >= 0:
i = max(i, map[j] + 1)
if j - i > j_best - i_best:
i_best = i
j_best = j
return subarray(arr, i_best, j_best)
JavaScript code:
function f(arr, map){
let i = 0
let i_best = 0
let j_best = 0
for (j=0; j<arr.length; j++){
if (map[j] >= 0)
i = Math.max(i, map[j] + 1)
if (j - i > j_best - i_best){
i_best = i
j_best = j
}
}
return [i_best, j_best]
}
let arr = [ 1, 4, 3, 2, 4, 2, 8, 1, 9]
let map = [-1,-1,-1,-1, 1, 3,-1, 0,-1]
console.log(f(arr, map))
arr = [ 1, 2, 2, 2, 2, 2, 1]
map = [-1,-1, 1, 2, 3, 4, 0]
console.log(f(arr, map))
We can use Hashtable(Dictionary in c#)
public int[] FindSubarrayWithDistinctEntities(int[] arr)
{
Dictionary<int, int> dic = new Dictionary<int, int>();
Result r = new Result(); //struct containing start and end index for subarray
int result = 0;
r.st = 1;
r.end = 1;
for (int i = 0; i < arr.Length; i++)
{
if (dic.ContainsKey(arr[i]))
{
int diff = i - (dic[arr[i]] + 1);
if(result<diff)
{
result = diff;
r.st = Math.Min(r.st, (dic[arr[i]] + 1));
r.end = i-1;
}
dic.Remove(arr[i]);
}
dic.Add(arr[i], i);
}
return arr.Skip(r.st).Take(r.end).ToArray();
}
Add every number to Hashset if it isn't already in it. Hashset's insert and search are both O(1). So final result will be O(n).