Freestanding GCC and builtin functions - gcc

The GCC docs at http://gcc.gnu.org/onlinedocs/gcc/C-Dialect-Options.html say (under -ffreestanding) that a freestanding environment implies -fno-builtin. I might be misunderstanding exactly what a freestanding environment is or how it works, but it seems to me that, since the builtins usually emit inline code instead of calling the library function, this is ideal for a freestanding environment where the standard library may be missing functionality or even missing entirely.
So why would we not want to use the biltins with a freestanding environment?

In freestanding mode the compiler can not rely on semantical considerations.
Most builtins in GCC work silently -- for instance the compiler sees that you are using strcpy() and in hosted mode it may guess that, when you are using strcpy(), you are intending exactly to copy a string. Then it may replace strcpy with an extensionally equivalent builtin, which is better for the given target to copy a string.
In freestanding mode, using strcpy() function means ANYTHING. The idea is just not the standard library absence in linkage. The idea of freestanding mode is that there is no standard library even on definition level, except float.h, iso646.h, limits.h, stdarg.h, stdbool.h, stddef.h, stdint.h (C99 standard 4.6). You may in freestanding mode decide to format your hard drive with strcpy, and this is perfectly legal for the C language. The compiler thus don't know how to use builtins, and it declines to use them at all.

Related

GCC [for ARM] force no floating point

I would like to create a build of my embedded C code which specifically checks that floating point operations aren't introduced into it by accident. I've tried adding +nofp to my [cortex-m3] processor architecture but GCC for ARM doesn't like that (probably because the cortex-m3 doesn't have a floating point unit). I've tried specifying -mfpu=none but that isn't a permitted option. I've tried leaving -lm off the linker command-line but the linker seems too clever to be fooled by that and is compiling code with double in it and resolving pow() anyway.
This post: https://gcc.gnu.org/legacy-ml/gcc-help/2011-07/msg00093.html from 2011 hints that GCC has no such option, since no-one is interested in it, which surprises me as it seems like a common thing to want, at least from an embedded standpoint, to avoid accidental C-library bloat.
Does anyone know of a way to do this with GCC/newlib without me having to go through and manually hack stuff out of the C library file it chooses?
It is not just a library issue. Your target will use soft-fp, and the compiler will supply floating point code to implement arithmetic operators regardless of the library.
The solution I generally apply is to scan the map file for instances of the compiler supplied floating-point routines. If your code is "fp clean" there will be no such references. The math library and any other code that perform floating-point arithmetic operations will use these operator implementations, so you only need look for these operator calls and can ignore the Newlib math library functions.
The internal soft-fp routines are listed at https://gcc.gnu.org/onlinedocs/gccint/Soft-float-library-routines.html. It is probably feasible to manually check the mapfile for fp symbols but you might write yourself a script or tool to scan the map file for these names to check your. The cross-reference section of the map file will list all modules these symbols are used in so you can use that to identify where the floating point code is used.
The Newlib stdio functions support floating-point by default. If your formatted I/O is limited to printf() you can use iprintf() instead or you can rebuild Newlib with FLOATING_POINT undefined to remove floating point support from all but scanf() (no idea why). You can then use the map file technique again to find "banned" formatted I/O functions (although these are likely to also use the floating point operator functions in any case, so you will already have spotted them indirectly).
An alternative is to use an alternative stdio library to override the Newlib versions. There are any number of "tiny printf" implementations available you could use. If you link such a library as object code or list its library ahead of Newlib in the link command, it will override the Newlib versions.

Where is __builtin_va_start defined?

I'm trying to locate where __builtin_va_start is defined in GCC's source code, and see how it is implemented. (I was looking for where va_start is defined and then found that this macro is defined as __builtin_va_start.) I used cscope -r in GCC 9.1's source code directory to search the definition but haven't found it. Can anyone point where this function is defined?
That __builtin_va_start is not defined anywhere. It is a GCC compiler builtin (a bit like sizeof is a compile-time operator). It is an implementation detail related to the <stdarg.h> standard header (provided by the compiler, not the C standard library implementation libc). What really matters are the calling conventions and ABI followed by the generated assembler.
GCC has special code to deal with compiler builtins. And that code is not defining the builtin, but implementing its ad-hoc behavior inside the compiler. And __builtin_va_start is expanded into some compiler-specific internal representation of your compiled C/C++ code, specific to GCC (some GIMPLE perhaps)
From a comment of yours, I would infer that you are interested in implementation details. But that should be in your question
If you study GCC 9.1 source code, look inside some of gcc-9.1.0/gcc/builtins.c (the expand_builtin_va_start function there), and for other builtins inside gcc-9.1.0/gcc/c-family/c-cppbuiltin.c, gcc-9.1.0/gcc/cppbuiltin.c, gcc-9.1.0/gcc/jit/jit-builtins.c
You could write your own GCC plugin (in 2Q2019, for GCC 9, and the C++ code of your plugin might have to change for the future GCC 10) to add your own GCC builtins. BTW, you might even overload the behavior of the existing __builtin_va_start by your own specific code, and/or you might have -at least for research purposes- your own stdarg.h header with #define va_start(v,l) __my_builtin_va_start(v,l) and have your GCC plugin understand your __my_builtin_va_start plugin-specific builtin. Be however aware of the GCC runtime library exception and read its rationale: I am not a lawyer, but I tend to believe that you should (and that legal document requires you to) publish your GCC plugin with some open source license.
You first need to read a textbook on compilers, such as the Dragon book, to understand that an optimizing compiler is mostly transforming internal representations of your compiled code.
You further need to spend months in studying the many internal representations of GCC. Remember, GCC is a very complex program (of about ten millions lines of code). Don't expect to understand it with only a few days of work. Look inside the GCC resource center website.
My dead GCC MELT project had references and slides explaining more of GCC (the design philosophy and architecture of GCC changes slowly; so the concepts are still relevant, even if individual details changed). It took me almost ten years full time to partly understand some of the middle-end layers of GCC. I cannot transmit that knowledge in a StackOverflow answer.
My draft Bismon report (work in progress, funded by H2020, so lot of bureaucracy) has a dozen of pages (in its sections ยง1.3 and 1.4) introducing the internal representations of GCC.

GCC __attribute__((always_inline)) and lambdas, is this syntax correct?

I am using GCC 4.6 as part of the lpcxpresso ide for a Cortex embedded processor. I have very limited code size, especially when compiling in debug mode. Using attribute((always_inline)) has so far proven to be a good tool to inline trivial functions and this saves a lot of code bloat in debug mode while still maintaining readability. I expect it to be somewhat mainstream and supported in the future because it is mentioned here http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0348c/CIAJGAIH.html
Now to my question: Is this the correct Syntax for declaring a Lambda always inline?
#define ALWAYS_INLINE __attribute__((always_inline))
[](volatile int &i)ALWAYS_INLINE{i++;}
It does work, my question is will it continue to work in future and what can I do to ensure it works in the future. If I ever switch to another major compiler that supports c++11 will I find a similar keyword which I can replace the attribute((always_inline)) with?
If I were to meet my fairy godmother I would wish for a compiler directive which causes all lambdas which are constructed as temporaries with empty constructors and bound by reference to be automatically inlined even in debug mode. Any ideas?
Will it continue to work in future?
Likely but, always_inline is compiler specific and since there is no standard specifying its exact behavior with lambda, there is no guaranty that this will continue to work in the future.
What can I do to ensure it works?
This depends on the compiler not you. If a future version drops support for always_inline with lambda, you have to stick with a version that works or code your own preprocessor that inlines lambdas with an always_inline-like keyword.
If I ever switch to another major compiler that supports c++11 will I
find a similar keyword?
Likely but again, there is no guaranty. The only real standard is the C++ inline keyword and it is not applicable to lambdas. For non-lambda it only suggests inlining and tells the compiler that a function may be defined in different compile units.

GCC technical details

I don't know if this is the right place for things like this, but I am curious about a few aspects of the GCC front-end/back-end architecture:
I know I can compile .o files from C code and link them to C++ code, and I think I can do it the other way round, too. Does this work because the two languages are similar, or because the GCC back-end is really language-independent? Would this work with ADA code too? (I don't even know if that makes sense, since I don't know ADA or if it even has "functions", but the question is understood. If it makes no sense, think "Pascal" or even "my own custom language front-end")
Where would garbage-collection be implemented? For example, a Java front-end. The way I understand, if compiling to a JVM back-end, the "platform" will take care of the GC, and so the front-end needs not do anything about it, but if compiling to native code, would the front-end send garbage-collecting GENERIC code to the back-end, or does it turn on some flag telling the back-end to produce garbage-collecting code? The first makes more sense to me, but that would mean the front-end produces different output based on the target, which seems to miss the point of the GCC's front-end/back-end architecture.
Where would language-specific libraries go? For instance, the standard Java classes or standard C headers. If they are linked in at the end, then could a C program theoretically call functions from the Java library or something like that, since it is just another linked library?
Yes, the backend is at least reasonably language independent. Yes, it works with Ada.
GCJ generates native code which uses a runtime library. The garbage collector is part of the runtime library.
GCJ implements the CNI, which allows you to write code in C++ that can be used as native methods by Java code -- but being able to do this is a consequence of them having designed it in, not just an accidental byproduct of using the same back-end.
It is possible because calling convention is compatible, but name mangling is different (no mangling in C). To call C function from C++ you should declare it with extern "C". And to call C++ function from C you should declare it with mangled name (and may be with additional or different type args). The calling Fortran code is possible in some cases too, but argument passing convention is different (pass by ref in Fortran).
There were actually a converters from C++ to C (cfront) and from fortran to c (f2c) and some solutions from them are still used.
garbage-collection is implemented in run-time library, e.g. boehm. Backend should generate objects compatible with selected GC library.
Compiler driver (g++, gfortran, ..) will add language-specific libraries to linking step.

GCC atomic built-ins: Is there a list showing which are supported on which platform?

Is there a site listing the various platforms and their support for GCC's atomic built-ins, for the various GCC versions?
EDIT:
To be more clear:
GCC adds _sync... as intrinsics on platforms it contains support for. On all other platforms it keeps those as normal functions declarations but does not supply an implementation. This must be done by some framework.
So the question is: For which platforms does GCC supply which intrinsics without need to add a function implementation?
I'm not aware if there's such a list, however http://gcc.gnu.org/projects/cxx0x.html says atomics are supported since GCC 4.4.
GCC libstdc++ implements <atomic> on top of the builtin functions `__sync_fetch_and_add' and friends ( http://gcc.gnu.org/onlinedocs/gcc-4.6.1/gcc/Atomic-Builtins.html ).
These functions are expanded either using machine specific expanders in the machine description of the target (usually in a file named `sync.md') or, lacking such expanders, using a CAS loop. If the presense of `sync.md' file is any indication for a proper atomics support, then you can count in MIPS, i386, ARM, BlackFin, Alpha, PowerPC, IA64 and Sparc.
[Though this is an old question, I thought I should update and complete the answer]
I am not aware of a per-architecture-version and per-gcc-version table, describing supported built-ins.
The __sync built-in functions of gcc exist since version 4.1 (see, e.g., gcc 4.1.2 manual. As stated there:
Not all operations are supported by all target processors. If a particular operation cannot be implemented on the target processor, a warning will be generated and a call an external function will be generated. The external function will carry the same name as the builtin, with an additional suffix `_n' where n is the size of the data type.
So, when there is not an implementation for a specific architecture, a compilation warning will appear and, I guess, a link-time error, unless you provide the required function with the appropriate name.
After gcc 4.7 there are also __atomic built-ins and __sync built-ins are deprecated.
For example, see how Fedora uses gcc __sync and __atomic here

Resources