Cassandra lookup query is quite slow after deleting large bundle of data - performance

Currently, I have a cassandra column family with large rows of data, to say more than 100,000. Now, I'd like to remove all data in this column family and the problem came up:
After all data is removed, I execute a lookup query in this column family, the cassandra will take tens of seconds to return a empty query result. And the time cost will increase Linearly when the original data is larger
It is caused by the tombstone feature while deleting data from the cassandra database. The lookup speed won't recover to normal until the next GC is fired. See Cassandra Distributed Deletes.
Because such query operations are frequently used in my system, I cannot bear the huge latency up to a few seconds.
Would you please give me a solution to this problem?

This sounds like a very bad way to use a database. Populate it, empty it, repeat. One way you can solve your problem is by using different CF names each time, as in when you empty the data and start repopulating it, create a new column family and use that and just drop the other colum family however this is hacky.
I'd suggest using compaction (gets rid of all the tombstones it can detect) to solve your problem, it is CPU intensive but it's better than waiting for tens of seconds for queries to respond. You can make the task less intensive on your machine by providing the specific ks & cf you want to compact:
./nodetool compact <ks_name> <cf_name>
Ritchard's point is a good one, gc_grace_seconds is set to 10 days by default so you will probably have to tweak this to allow for compaction to get rid of tombstones.

#Fify
If your column family is frequently modified (read then update then read the update again...), you should use the leveled compaction strategy
To make deleted columns removed quickier, change the property gc_grace_seconds of your column family

Related

What is the actual use of partitions in clickhouse?

It says partitions make it easier to drop or move data so that there is hit only on limited data. In various blogs it is suggested to use month as a partitioning key (toYYYYMM(date)). In many places it is also suggested to not have more than a couple of partitions. I am using clickhouse as a database to store time series data which do not undergo frequent deletions. What would be the advisable partitioning key for timeseries data of high volume? Does there have to be one if I do not want to perform deletes frequently?
In production I noticed that startup was very slow and I was suspecting that having too many partitions is the culprit. So I decided to test it out by inserting time-series data fresh into a table (which created >2300 partitions for ~20Bil rows) by selecting data from another table (so that it doesn't have an opportunity to optimize the table). Immediately I dropped the original table and tried a restart. It finished fast in about 10s. This is in complete opposite to what I observed in production with 800GB+ of data (with many databases and tables as opposed to my test node which had only one table).
Edit: As it was pointed out, I mixed up parts and partitions. Regarding startup time of clickhouse being affected, I'd better post another question.
This is a pretty common question, and for disclosure, I work at ClickHouse.
Partitions are particularly useful when you have timeseries data, as you noted. When determining the number of partitions, we often recommend a few guidelines:
The use of partitioning should be determined by a couple of questions as to why you're using them:
are you generally going to query only a single partition? For example, if your queries are often for results within a one day or one month period, it could make sense to partition at that period duration
are you wanting to "tier" or set a TTL on your data such that once the partition reaches an age of X (e.g., 91 days old, 7 months old), you want to do something special with it? (e.g., TTL to lower cost tier storage, backup and delete from ClickHouse, etc.)
We often recommend to keep the number of partitions less than around 100. Up to 1000 partitions can work, but it is suboptimal and will have some performance impact at the filesystem and index/memory sizes, which can impact startup time insert/query time
Given these guidelines, hoping that helps with your question. It is probably most common to partition at the day or month, but since ClickHouse can manage large tables quite easily, might want to move towards fewer partitions if possible - partitioning by month probably most common.
I didn't fully understand your test results so please feel free to expand. 2300 partitions sounds like too many but might work, just with some performance implications. Reducing your number of partitions (and therefore increasing the partition size) seems like a good recommendation.

Postgresql Performance tip for scattered data

I am trying to improve the performance of my database, which simplified set-up is the following :
EDIT
One table with 3 rows (id_device, timestamp, data) with a composite btree index (id_device, timestamp)
1k devices sending data every minute
The insert are quite fast, since PostgreSQL merely writes the rows in the order they are received. However, when trying to get many data with consecutive timestamp of a given device, the query is not so fast. The way I understand it is that due to the way the data is collected, there is never more than one row of a given device on each page of the table. Therefore, if I want to get 10k data with consecutive timestamp of a given device, PostgreSQL has to fetch 10k pages from disk. Besides, since this operation can be done on any of the 1k devices, those pages are not going to be kept in RAM.
I have tried to CLUSTER the table, and it indeed solve the performance issue, but this operation is incredibly long (~1 day) and it locks the entire table, so I discarded this solution.
I have read about the partitionning, but that would mean a lot of scripting if I need to add a new table every time a new devices is connected, and it seems to me a bit bug-prone.
I am rather confident in the fact that this set-up is not particularly original, so is there an advice I could use?
Thanks for reading,
Guillaume
I'm guessing your index also has low selectivity, because you're indexing device_id first (which are only 1000 different) and not timestamp first.
Depends on what you do with the data you fetch, but maybe the solution could be batching the operation, such as fetching the data for a predetermined period and processing data for all 1000 devices in one go.

Is there a way to change keys in leveldb?

Is there some how to change only the value of the keys in a leveldb database?
I already have a database with 18 milion rows, and I would like to change keys to add a prefix.
I am using leveldb with node.js. But any solution must fit.
I have already tried to rebuilt this database, but it costs too much time.
The way LevelDB works, every "Put" is a write that creates new state.
If you do a "Put" that overwrites an existing value, you'll have two
copies until compaction eliminates the older value.
Practically, this means that rebuilding will be the only option.
To make it faster you can try:
Scan the existing database, and rebuild by doing a linear scan
through the keyspace. Your new data will be inserted in sorted
order, which may help speed things up.
Insert in batches. Many variants of LevelDB will slow down writes to
accommodate compaction. In the stock LevelDB, your writer will sleep
1ms whenever it needs to sleep and this is independent of the number of writes in the batch.
Increase the write buffer size. I've found 16MB-32MB to be a good "sweet spot".
Consider using HyperLevelDB. We were running into some
performance issues with LevelDB with writes, and made some changes
that improve performance. You'll see your insertion speed go up,
which could help you rebuild faster -- sometimes significantly
faster.

SQL Server - Merging large tables without locking the data

I have a very large set of data (~3 million records) which needs to be merged with updates and new records on a daily schedule. I have a stored procedure that actually breaks up the record set into 1000 record chunks and uses the MERGE command with temp tables in an attempt to avoid locking the live table while the data is updating. The problem is that it doesn't exactly help. The table still "locks up" and our website that uses the data receives timeouts when attempting to access the data. I even tried splitting it up into 100 record chunks and even tried a WAITFOR DELAY '000:00:5' to see if it would help to pause between merging the chunks. It's still rather sluggish.
I'm looking for any suggestions, best practices, or examples on how to merge large sets of data without locking the tables.
Thanks
Change your front end to use NOLOCK or READ UNCOMMITTED when doing the selects.
You can't NOLOCK MERGE,INSERT, or UPDATE as the records must be locked in order to perform the update. However, you can NOLOCK the SELECTS.
Note that you should use this with caution. If dirty reads are okay, then go ahead. However, if the reads require the updated data then you need to go down a different path and figure out exactly why merging 3M records is causing an issue.
I'd be willing to bet that most of the time is spent reading data from the disk during the merge command and/or working around low memory situations. You might be better off simply stuffing more ram into your database server.
An ideal amount would be to have enough ram to pull the whole database into memory as needed. For example, if you have a 4GB database, then make sure you have 8GB of RAM.. in an x64 server of course.
I'm afraid that I've quite the opposite experience. We were performing updates and insertions where the source table had only a fraction of the number of rows as the target table, which was in the millions.
When we combined the source table records across the entire operational window and then performed the MERGE just once, we saw a 500% increase in performance. My explanation for this is that you are paying for the up front analysis of the MERGE command just once instead of over and over again in a tight loop.
Furthermore, I am certain that merging 1.6 million rows (source) into 7 million rows (target), as opposed to 400 rows into 7 million rows over 4000 distinct operations (in our case) leverages the capabilities of the SQL server engine much better. Again, a fair amount of the work is in the analysis of the two data sets and this is done only once.
Another question I have to ask is well is whether you are aware that the MERGE command performs much better with indexes on both the source and target tables? I would like to refer you to the following link:
http://msdn.microsoft.com/en-us/library/cc879317(v=SQL.100).aspx
From personal experience, the main problem with MERGE is that since it does page lock it precludes any concurrency in your INSERTs directed to a table. So if you go down this road it is fundamental that you batch all updates that will hit a table in a single writer.
For example: we had a table on which INSERT took a crazy 0.2 seconds per entry, most of this time seemingly being wasted on transaction latching, so we switched this over to using MERGE and some quick tests showed that it allowed us to insert 256 entries in 0.4 seconds or even 512 in 0.5 seconds, we tested this with load generators and all seemed to be fine, until it hit production and everything blocked to hell on the page locks, resulting in a much lower total throughput than with the individual INSERTs.
The solution was to not only batch the entries from a single producer in a MERGE operation, but also to batch the batch from producers going to individual DB in a single MERGE operation through an additional level of queue (previously also a single connection per DB, but using MARS to interleave all the producers call to the stored procedure doing the actual MERGE transaction), this way we were then able to handle many thousands of INSERTs per second without problem.
Having the NOLOCK hints on all of your front-end reads is an absolute must, always.

Oracle select query performance

I am working on a application. It is in its initial stage so the number of records in table is not large, but later on it will have around 1 million records in the same table.
I want to know what points I should consider while writing select query which will fetch a huge amount of data from table so it does not slow down performance.
First rule:
Don't fetch huge amounts of data back to the application.
Unless you are going to display every single one of the items in the huge amount of data, do not fetch it. Communication between the DBMS and the application is (relatively) slow, so avoid it when possible. It isn't so slow that you shouldn't use the DBMS or anything like that, but if you can reduce the amount of data flowing between DBMS and application, the overall performance will usually improve.
Often, one easy way to do this is to list only those columns you actually need in the application, rather than using 'SELECT *' to retrieve all columns when you'll only use 4 of the 24 that exist.
Second rule:
Try to ensure that the DBMS does not have to look at huge amounts of data.
To the extent possible, minimize the work that the DBMS has to do. It is busy, and typically it is busy on behalf of many people at any given time. If you can reduce the amount of work that the DBMS has to do to process your query, everyone will be happier.
Consider things like ensuring you have appropriate indexes on the table - not too few, not too many. Designed judiciously, indexes can greatly improve the performance of many queries. Always remember, though, that each index has to be maintained, so inserts, deletes and updates are slower when there are more indexes to manage on a given table.
(I should mention: none of this advice is specific to Oracle - you can apply it to any DBMS.)
To get good performance with a database there is a lot of things you need to have in mind. At first, it is the design, and here you should primary think about normalization and denormalization (split up tables but still not as much as performance heavy joins are required).
There are often a big bunch of tuning when it comes to performance. However, 80% of the performance is determined from the SQL-code. Below are some links that might help you.
http://www.smart-soft.co.uk/Oracle/oracle-performance-tuning-part7.htm
http://www.orafaq.com/wiki/Oracle_database_Performance_Tuning_FAQ
A few points to remember:
Fetch only the columns you need to use on the client side.
Ensure you set up the correct indexes that are going to help you find records. These can be done later, but it is better to plan for them if you can.
Ensure you have properly accounted for column widths and data sizes. Don't use an INT when a TINYINT will hold all possible values. A row with 100 TINYINT fields will fetch faster than a row with 100 INT fields, and you'll also be able to fetch more rows per read.
Depending on how clean you need the data to be, it may be permissable to do a "dirty read", where the database fetches data while an update is in progress. This can speed things up significantly in some cases, though it means the data you get might not be the absolute latest.
Give your DBA beer. And hugs.
Jason

Resources